source : http://ece-www.colorado.edu/%7Eecen4002/index.html

Non-Real Time Testing Using I/O Files and the Debugger

It is often useful to be able to test the implementation of an algorithm using a non-real time method. This allows single-stepping the program, running to a breakpoint, etc., without the difficulty of handling real time interrupts, A/D and D/A timing, and so forth. It is also useful to be able to process a known sequence of samples for the input and then to be able to collect the output samples as a computer file for later analysis. For example, by collecting the output samples for a known input file (a “test vector”), the results from the DSP can be compared bit-by-bit to a reference output example.

The Domain Technologies Debugger software provides a mechanism to transfer data from a file on the PC to the memory of the DSP, and also to transfer data from the DSP’s memory back to a file on the PC. We write a DSP “wrapper” program that initializes the DSP chip and allocates input and output buffers. The DSP wrapper will then commence a simulated input/output loop by reading data from the PC using calls to the Debugger, executing a process we provide, and then writing the results back to the PC.

First, consider the I/O features of the EVM30xw Debugger. At the Debugger command window prompt:
INPUT infile

OUTPUT outfile

These commands tell the Debugger to open infile and wait for the DSP to request data, and to open or create outfile and wait for the DSP to send data back. The Debugger assigns a file number (handle) to each input file and a file number to each output file as they are opened. The input and output files are regular ASCII text files, and there are options to choose hexadecimal (default), decimal, or fractional number formats. See the commands INPUT and OUTPUT in the online help for the EVM30xw Debugger. Also, consider using the Debugger’s PATH command to set the location of your input and output files. An example of the DSP code for file I/O looks like this:

;input data from PC

move #$200,r0

; start address to load data ($200)

move #$10100,x0

; High 8 bits indicates file number (1),

; low 16 bits indicates number of words to read ($100)

move #$8001,r1

; $8xxx indicates input to DSP,

; $xxx1 indicates X memory space

debug

; invoke emulator service
The debug operand calls the debugger “service” that uses the values in r0, r1, and x0 to determine what action to take. In this example, the Debugger reads 256 words from input file #1 and stores them sequentially beginning at X:$200. After the desired processing is complete, we write the results back to the outfile on the PC using the following instructions:

;output data to PC

move #$400,r0

; start address to retrieve data ($400)

move #$10100,x0

; High 8 bits indicates file number (1),

; low 16 bits indicates number of

; words to write ($100)

move #$4001,r1

; $4xxx indicates output from DSP,

; $xxx1 indicates X memory space

debug

; invoke emulator service
In this example, the Debugger reads 256 words beginning at X:$400 and writes them to output file #1. Once the process is complete, use the Debugger commands

INPUT OFF

OUTPUT OFF
to close the files so that you can examine the results.

The I/O framework for the “wrapper” is given below. The file is passio.asm. Since the codec will not be used there is no need to initialize the A/D and D/A, nor is there a need to handle the codec interrupts. The program creates some small input and output buffers, then begins to read data from the input file The section “I/O block loop” calls a user-supplied subroutine process_mono that receives its input in the A accumulator, and returns its output A as well. The program collects the results and writes them to the output file. Note also that there is a call to the usersupplied subroutine my_init. You probably do not need to modify the passio.asm file, but you will need to create the file lab2_io.asm containing your own memory declarations and the process_mono and my_init subroutines.
;***

;

; ECEN4002/5002 DSP Lab Spring 2002

; Example program: passio.asm

;

; Takes data from Debugger input file 16 words at a time, then

; loads them one by one into the A accumulator and calls user-

; supplied 'process_mono' function. Result in A accumulator is

; sent to Debugger output file.

;

; User provides lab2_io.asm include file containing 'my_init'

; and 'process_mono' subroutines and memory declarations.

;

; To enable data streams type from EVM30x Debugger COMMAND window:

; INPUT data_in -fra ;this will open input file for reading

; ; fractional (not exponent) data

; OUTPUT data_out -fra ;this will open output file for writing

; ; fractional data

; Do these Debugger commands BEFORE running the program.

; Remember to 'INPUT off' and 'OUTPUT off' at the end of the run.

;

;***

nolist

include 'ioequ.asm'

list

BLOCK
EQU $10

; number of words in file I/O

INFILE
EQU $10000

; debugger: infile #1 handle

OUTFILE
EQU $10000

; debugger: outfile #1 handle

XMEM

EQU $0001

; debugger: x memory bit field

YMEM

EQU $0002

; debugger: y memory bit field

INDSP
EQU $8000

; debugger: input to dsp bit field

OUTDSP
EQU $4000

; debugger: output from dsp bit field

org x:0

inbuf ds BLOCK

; buffer for data in/out

bufptr ds 1

; temp storage for R register

org p:$0000

; Program block starts at zero

jmp START

; Skip over interrupt vectors

org p:$0100

START:

movep #$040008,x:M_PCTL
; PLL 8 x 12.288 = 98.016MHz

ori #3,mr

; mask interrupts

movec #0,sp

; clear hardware stack pointer

jmp DO_INIT

; Jump over user-supplied code

include 'lab2_io.asm'

; User-supplied include file

org p:

DO_INIT

jsr my_init

; Call user-supplied subroutine

FILEIO:

;input data from PC

move #inbuf,r0

; start address to load data

move #(INFILE|BLOCK),x0
; BLOCK words from file INFILE

move #(INDSP|XMEM),r1

; X mem space, input direction

debug

; invoke emulator service

; data now in x:inbuf

; (Debugger will generate breakpoint

; if error during read)

do #BLOCK,endl

move x:(r0),a

; move input data to A

move r0,x:bufptr

; save R0 contents

jsr process_mono

; Call user-supplied subroutine

move x:bufptr,r0

; restore R0 contents

nop

nop

; wait for pipeline

nop

move a,x:(r0)+

; Transfer output data from A to mem

; (overwrite input)

endl nop

; At this point, BLOCK input values have been processed and overwritten

; to x:inbuf. Ready to write to output file.

; output data to PC

move #inbuf,r0

; start address to xfer data

move #(OUTFILE|BLOCK),x0
; BLOCK words to file OUTFILE

move #(OUTDSP|XMEM),r1
; X mem space, output direction

debug

; invoke emulator service

nop

; Debugger will generate breakpoint

; if error during write

jmp FILEIO

; Loop back and read next block.

end

Non-real time testing with file I/O

Using MATLAB, a spreadsheet, or some other method, create a text input file containing at least 64 fractional numbers between –0.5 and +0.5 . Write a simple process_mono subroutine that adds 0.25 to each sample and delays by one sample, i.e., y[n] = x[n-1]*0.25. Assemble and verify your program using the INPUT infile.txt -fra and OUTPUT outfile.txt -fra commands with the Debugger.

Try to answer the following questions to perform a good test :

· What happens when the end of the input file is reached?

· What happens if you forget to open and close the I/O files with the Debugger?

· Does the output file contain the expect results?

· Can you import the output file into MATLAB or a spreadsheet and produce a plot of the results?

Now try putting breakpoints in the code, observing memory, changing register values, and so forth.
