
Motorola, Incorporated
Semiconductor Products Sector
6501 William Cannon Drive West
Austin TX 78735-8598

DSP56303EVM User’s Manual

Order this document by
DSP56303EVMUM/D
Rev. 3.4, 12/1999

©MOTOROLA INC., 1998. All rights reserved.

This document contains information on a new product. Specifications and information herein are subject to change
without notice.

Motorola reserves the right to make changes without further notice to any products herein to improve
reliability, function, or design. Motorola does not assume any liability arising out of the application or use
of any product or circuit described herein; neither does it convey any license under its patent rights nor the
rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other application in which the failure of the
Motorola product could create a situation where personal injury or death may occur. Should Buyer
purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer

OnCE and Mfax are trademarks of Motorola, Inc.

1

2

3

A

C

B

Quick Start Guide

Example Test Program

DSP56303EVM Technical Summary

DSP56303EVM Schematics

DSP56303EVM Parts List

Motorola Assembler Notes

DCodec Programming Tutorial

IIndex

1

2

3

A

C

B

Quick Start Guide

Example Test Program

DSP56303EVM Technical Summary

DSP56303EVM Schematics

DSP56303EVM Parts List

Motorola Assembler Notes

D Codec Programming Tutorial

I Index

Motorola Table of Contents vii

Table of Contents

Chapter 1
Quick Start Guide

1.1 Equipment . 1-1
1.1.1 What You Get with the DSP56303EVM . 1-1
1.1.2 What You Need to Supply . 1-2
1.2 Installation Procedure . 1-2
1.2.1 Preparing the DSP56303EVM . 1-3
1.2.2 Connecting the DSP56303EVM to the PC and Power. 1-4

Chapter 2
Example Test Program

2.1 Writing the Program. 2-2
2.1.1 Source Statement Format . 2-2
2.1.1.1 Label Field . 2-3
2.1.1.2 Operation Field . 2-3
2.1.1.3 Operand Field . 2-3
2.1.1.4 Data Transfer Fields . 2-3
2.1.1.5 Comment Field . 2-4
2.1.2 Example Program . 2-4
2.2 Assembling the Program . 2-5
2.2.1 Assembler Command Format. 2-5
2.2.2 Assembler Options . 2-6
2.2.3 Assembler Directives . 2-8
2.2.3.1 Assembler Significant Characters. 2-8
2.2.3.2 Assembly Control . 2-9
2.2.3.3 Symbol Definition. 2-9
2.2.3.4 Data Definition/Storage Allocation . 2-10
2.2.3.5 Listing Control and Options . 2-10
2.2.3.6 Object File Control . 2-11
2.2.3.7 Macros and Conditional Assembly . 2-11
2.2.3.8 Structured Programming. 2-11
2.2.4 Assembling the Example Program . 2-12
2.3 Motorola DSP Linker. 2-12
2.4 Linker Options . 2-13
2.4.1 Linker Directives . 2-16

viii DSP56303EVM User’s Manual Motorola

2.5 Introduction to the Debugger Software . 2-17
2.6 Running the Program. 2-19

Chapter 3
DSP56303EVM Technical Summary

3.1 DSP56303EVM Description and Features . 3-1
3.2 DSP56303 Description . 3-1
3.3 Memory . 3-2
3.3.1 FSRAM . 3-3
3.3.1.1 FSRAM Connections . 3-3
3.3.1.2 Example: Programming AAR0 . 3-4
3.3.2 Flash . 3-6
3.3.2.1 Flash Connections. 3-6
3.3.2.2 Programming for Stand-Alone Operation . 3-6
3.4 Audio Codec . 3-7
3.4.1 Codec Analog Input/Output . 3-8
3.4.2 Codec Digital Interface . 3-8
3.5 Command Converter . 3-10
3.6 Off-Board Interfaces . 3-12
3.6.1 Serial Communication Interface Port (SCI) . 3-12
3.6.2 Enhanced Synchronous Serial Port 0 (ESSI0) . 3-13
3.6.3 Enhanced Synchronous Serial Port 1 (ESSI1) . 3-14
3.6.4 Host Port (HI08). 3-14
3.6.5 Expansion Bus Control . 3-15
3.7 Mode Selector . 3-15

Appendix A
DSP56303EVM Schematics

Appendix B
DSP56303EVM Parts List

B.1 Parts Listing . B-1

Appendix C
Motorola Assembler Notes

C.1 Introduction . C-1
C.2 Assembler Significant Characters . C-1
C.2.1 ; Comment Delimiter Character . C-1
C.2.2 ;; Unreported Comment Delimiter Characters . C-2
C.2.3 \ Line Continuation or Macro Argument Concatenation Character. C-2

Motorola Table of Contents ix

C.2.3.1 Line Continuation . C-2
C.2.3.2 Macro Argument Concatenation. C-2
C.2.4 ? Return Value of Symbol Character . C-3
C.2.5 % Return Hex Value of Symbol Character . C-4
C.2.6 ^ Macro Local Label Override . C-4
C.2.7 " Macro String Delimiter or Quoted String DEFINE Expansion Character C-5
C.2.7.1 Macro String . C-5
C.2.7.2 Quoted String DEFINE Expansion. C-5
C.2.8 @ Function Delimiter. C-6
C.2.9 * Location Counter Substitution . C-6
C.2.10 ++ String Concatenation Operator . C-6
C.2.11 [] Substring Delimiter [<string>,<offset><length>] C-7
C.2.12 << I/O Short Addressing Mode Force Operator . C-7
C.2.13 < Short Addressing Mode Force Operator . C-7
C.2.14 > Long Addressing Mode Force Operator . C-8
C.2.15 # Immediate Addressing Mode . C-9
C.2.16 #< Immediate Short Addressing Mode Force Operator C-9
C.2.17 #> Immediate Long Addressing Mode Force Operator C-9
C.3 Assembler Directives. C-10
C.3.1 BADDR Set Buffer Address . C-10
C.3.2 BSB Block Storage Bit-Reverse . C-11
C.3.3 BSC Block Storage of Constant . C-11
C.3.4 BSM Block Storage Modulo . C-12
C.3.5 BUFFER Start Buffer. C-12
C.3.6 COBJ Comment Object File . C-13
C.3.7 COMMENT Start Comment Lines . C-14
C.3.8 DC Define Constant . C-14
C.3.9 DCB Define Constant Byte . C-15
C.3.10 DEFINE Define Substitution String. C-16
C.3.11 DS Define Storage . C-17
C.3.12 DSM Define Modulo Storage . C-17
C.3.13 DSR Define Reverse Carry Storage . C-18
C.3.14 DUP Duplicate Sequence of Source Lines. C-18
C.3.15 DUPA Duplicate Sequence With Arguments . C-19
C.3.16 DUPC Duplicate Sequence With Characters . C-20
C.3.17 DUPF Duplicate Sequence in Loop . C-21
C.3.18 END End of Source Program. C-22
C.3.19 ENDBUF End Buffer . C-23
C.3.20 ENDIF End of Conditional Assembly . C-23
C.3.21 ENDM End of Macro Definition . C-23

x DSP56303EVM User’s Manual Motorola

C.3.22 ENDSEC End Section . C-24
C.3.23 EQU Equate Symbol to a Value. C-24
C.3.24 EXITM Exit Macro . C-25
C.3.25 FAIL Programmer Generated Error . C-25
C.3.26 FORCE Set Operand Forcing Mode . C-26
C.3.27 GLOBAL Global Section Symbol Declaration . C-26
C.3.28 GSET Set Global Symbol to a Value. C-26
C.3.29 HIMEM Set High Memory Bounds. C-27
C.3.30 IDENT Object Code Identification Record . C-27
C.3.31 IF Conditional Assembly Directive . C-28
C.3.32 INCLUDE Include Secondary File . C-29
C.3.33 LIST List the Assembly . C-29
C.3.34 LOCAL Local Section Symbol Declaration . C-30
C.3.35 LOMEM Set Low Memory Bounds . C-30
C.3.36 LSTCOL Set Listing Field Widths . C-31
C.3.37 MACLIB Macro Library . C-31
C.3.38 MACRO Macro Definition . C-32
C.3.39 MODE Change Relocation Mode . C-33
C.3.40 MSG Programmer Generated Message . C-33
C.3.41 NOLIST Stop Assembly Listing . C-34
C.3.42 OPT Assembler Options . C-34
C.3.42.1 Listing Format Control . C-35
C.3.42.2 Reporting Options. C-35
C.3.42.3 Message Control . C-35
C.3.42.4 Symbol Options . C-36
C.3.42.5 Assembler Operation . C-36
C.3.43 ORG Initialize Memory Space and Location Counters C-42
C.3.44 PAGE Top of Page/Size Page . C-45
C.3.45 PMACRO Purge Macro Definition . C-45
C.3.46 PRCTL Send Control String to Printer . C-46
C.3.47 RADIX Change Input Radix for Constants . C-46
C.3.48 RDIRECT Remove Directive or Mnemonic from Table C-47
C.3.49 SCSJMP Set Structured Control Statement Branching Mode C-47
C.3.50 SCSREG Reassign Structured Control Statement Registers C-48
C.3.51 SECTION Start Section . C-48
C.3.52 SET Set Symbol to a Value . C-51
C.3.53 STITLE Initialize Program Sub-Title . C-51
C.3.54 SYMOBJ Write Symbol Information to Object File C-51
C.3.55 TABS Set Listing Tab Stops . C-52
C.3.56 TITLE Initialize Program Title . C-52

Motorola Table of Contents xi

C.3.57 UNDEF Undefine DEFINE Symbol . C-52
C.3.58 WARN Programmer Generated Warning . C-52
C.3.59 XDEF External Section Symbol Definition . C-53
C.3.60 XREF External Section Symbol Reference . C-53
C.4 Structured Control Statements . C-54
C.4.1 Structured Control Directives . C-54
C.4.2 Syntax. C-55
C.4.2.1 .BREAK Statement. C-55
C.4.2.2 .CONTINUE Statement . C-56
C.4.2.3 .FOR Statement . C-56
C.4.2.4 .IF Statement. C-57
C.4.2.5 .LOOP Statement . C-58
C.4.2.6 .REPEAT Statement . C-58
C.4.2.7 .WHILE Statement . C-58
C.4.3 Simple and Compound Expressions. C-59
C.4.3.3 Operand Comparison Expressions . C-60
C.4.3.4 Compound Expressions . C-61
C.4.3.5 Statement Formatting . C-61
C.4.3.6 Expression Formatting . C-61
C.4.3.7 .FOR/.LOOP Formatting . C-62
C.4.4 Assembly Listing Format . C-62
C.4.5 Effects on the Programmer’s Environment . C-62

Appendix D
Codec Programming Tutorial

D.1 Introduction . D-1
D.2 Codec Background. D-2
D.2.1 Codec Device . D-2
D.2.2 Codec Modes . D-2
D.3 ESSI Ports Background . D-3
D.4 ESSI/GPIO pins . D-4
D.5 ESSI Port Registers . D-4
D.5.1 ESSI/GPIO Shared Registers . D-4
D.5.2 ESSI Registers . D-5
D.5.3 GPIO Registers. D-5
D.5.4 GPIO Mode Port C and Port D . D-6
D.6 Digital Interface (ESSI – Codec) . D-6
D.7 Programming the CS4218 Codec . D-8
D.8 Phase 1: Setting up Constants . D-9
D.8.1 Setting Up Buffer Space and Pointers . D-9

xii DSP56303EVM User’s Manual Motorola

D.8.2 Defining Control Parameters of the CODEC. D-10
D.9 Phase II: Initializing and Interfacing the ESSI and CODEC Ports D-12
D.9.1 Initialize ESSI Ports . D-12
D.9.2 Configure GPIO Pins . D-15
D.9.3 Initialization of the CODEC ports . D-19
D.9.4 Enabling Interrupts/ESSI ports: . D-23
D.10 Phase III: Data Transferring Mechanism. D-24
D.10.1 Interrupts and Interrupt Service Routines . D-24
D.10.2 ESSI Receive Data with Exception Status Interrupt D-24
D.10.3 ESSI Receive Data Interrupt . D-25
D.10.4 ESSI Receive Last Slot Interrupt . D-26
D.10.5 ESSI Transmit Data with Exception Status Interrupt D-27
D.10.6 ESSI Transmit Last Slot Interrupt . D-28
D.10.7 ESSI Transmit Data Interrupt. D-29
D.11 Example Application . D-30
D.11.1 Echo Program. D-31
D.11.2 Echo Code . D-31

Motorola List of Tables xiii

List of Tables

2-1 Assembler Options . 2-6

2-2 Linker Options . 2-13

3-1 CS4218 Sampling Frequency Selection . 3-7

3-2 JP5 Jumper Block Options . 3-9

3-3 JP4 Jumper Block Options . 3-9

3-4 On-Board JTAG Enable/Disable Option . 3-11

3-5 Debug RS-232 Connector (P2) Pinout . 3-11

3-6 JTAG/OnCE (J6) Connector Pinout . 3-12

3-7 SCI Header (J7) Pinout . 3-13

3-8 J7 Jumper Options. 3-13

3-9 DSP Serial Port (P1) Connector Pinout . 3-13

3-10 ESSI0 Header (J5) Pinout . 3-14

3-11 ESSI0 Header (J4) Pinout . 3-14

3-12 HI08 Header (J3) Pinout . 3-15

3-13 Expansion Bus Control Signal Header (J2) Pinout. 3-15

3-14 Boot Mode Selection Options . 3-16

B-1 DSP56303EVM Parts List . B-1

D-1 ESSI Pin Definition. D-4

D-2 ESSI/GPIO Shared Registers . D-5

D-3 ESSI Registers . D-5

D-4 GPIO Registers . D-6

D-5 Pin Set-Up Descriptions . D-7

D-6 JP5 Jumper Block (ESSI0) . D-7

D-7 JP4 Jumper Block (ESSI1) . D-8

D-8 CS4218 Codec Control Information (MSB) . D-10

D-9 Settings for Control Register A. D-13

D-10 Settings Control Register B . D-13

xiv DSP56303EVM User’s Manual Motorola

D-11 Port Data Register C Pin/bit Correspondence . D-16

D-12 Port Data Register D Pin/bit Correspondence . D-16

D-13 Data Direction Register C. D-18

D-14 Data Direction Register D . D-18

D-15 Codec Pins . D-20

Motorola List of Figures xv

List of Figures

1-1 DSP56303EVM Component Layout . 1-4

1-2 Connecting the DSP56303EVM Cables . 1-5

2-1 Development Process Flow. 2-2

2-2 Example Debugger Window Display . 2-18

3-1 DSP56303EVM Component Layout . 3-2

3-2 DSP56303EVM Functional Block Diagram. 3-3

3-3 FSRAM Connections to the DSP56303 . 3-3

3-4 Example Memory Map with the Unified External Memory. 3-5

3-5 Address Attribute Register AAR0 . 3-5

3-6 Flash Connections . 3-6

3-7 Codec Analog Input/Output Diagram. 3-8

3-8 Codec Digital Interface Connections . 3-9

3-9 RS-232 Serial Interface. 3-11

A-1 DSP56303 . A-2

A-2 External Memory . A-3

A-3 RS232 Interface . A-4

A-4 Command Converter . A-5

A-5 Audio Codec . A-6

A-6 Power Supply . A-7

A-7 Bypass Capacitors . A-8

D-1 Data Format of Codec . D-3

D-2 ESSI/Codec Pin Setup. D-8

D-3 Block Diagram of a Delayed Sample (echo) . D-31

xvi DSP56303EVM User’s Manual Motorola

Motorola List of Examples xvii

List of Examples

2-1 Example Source Statement . 2-2

2 -2 Simple DSP56303EVM Code Example . 2-4

C-1 Example of Comment Delimiter . C-1

C-2 Example of Unreported Comment Delimiter . C-2

C-3 Example of Line Continuation Character . C-2

C-4 Example of Macro Concatenation. C-3

C-5 Example of Use of Return Value Character . C-3

C-6 Example of Return Hex Value Symbol Character C-4

C-7 Example of Local Label Override Character . C-4

C-8 Example of a Macro String Delimiter Character C-5

C-9 Example of a Quoted String DEFINE Expression C-6

C-10 Example of a Function Delimiter Character . C-6

C-11 Example of a Location Counter Substitution . C-6

C-12 Example of a String Concatenation Operator . C-6

C-13 Example of a Substring Delimiter. C-7

C-14 Example of an I/O Short Addressing Mode Force Operator C-7

C-15 Example of a Short Addressing Mode Force Operator. C-8

C-16 Example of a Long Addressing Mode Force Operator C-8

C-17 Example of Immediate Addressing Mode . C-9

C-18 Example of Immediate Short Addressing Mode Force Operator C-9

C-19 Example of an Immediate Long Addressing Mode Operator C-10

C-20 Example BADDR Directive . C-10

C-21 Buffer Directive . C-11

C-22 Block Storage of Constant Directive . C-12

C-23 Block Storage Modulo Directive . C-12

C-24 Buffer Directive . C-13

C-25 COBM Directive . C-13

C-26 COMMENT Directive . C-14

C-27 Single Character String Definition . C-15

xviii DSP56303EVM User’s Manual Motorola

C-28 Multiple Character String Definition . C-15

C-29 DC Directive. C-15

C-30 DCB Directive . C-16

C-31 DEFINE Directive . C-16

C-32 DS Directive . C-17

C-33 DSM Directive . C-17

C-34 DSR Directive. C-18

C-35 DUP Directive . C-19

C-36 DUPA Directive . C-20

C-37 DUPC Directive . C-21

C-38 DUPF Directive . C-22

C-39 END Directive . C-23

C-40 ENDBUF Directive . C-23

C-41 ENDIF Directive. C-23

C-42 ENDM Directive. C-24

C-43 ENDSEC Directive. C-24

C-44 EQU Directive . C-25

C-45 EXITM Directive . C-25

C-46 FAIL Directive . C-26

C-47 FORCE Directive . C-26

C-48 GLOBAL Directive . C-26

C-49 GSET Directive . C-27

C-50 HIMEM Directive. C-27

C-51 IDENT Directive . C-28

C-52 IF Directive. C-29

C-53 INCLUDE Directive. C-29

C-54 LIST Directive . C-30

C-55 LOCAL Directives . C-30

C-56 LOMEM Directive . C-31

C-57 LSTCOL Directive . C-31

C-58 MACLIB Directive. C-32

C-59 MACRO Directive . C-33

Motorola List of Examples xix

C-60 MODE Directive. C-33

C-61 MSG Directive . C-33

C-62 NOLIST Directive . C-34

C-63 OPT Directive. C-41

C-64 ORG Directive . C-43

C-65 PAGE Directive . C-45

C-66 PMACRO Directive . C-46

C-67 PRCTL Directive . C-46

C-68 RADIX Directive . C-47

C-69 RDIRECT Directive . C-47

C-70 SCSJMP Directive . C-48

C-71 SCSREG Directive . C-48

C-72 SECTION Directive . C-51

C-73 SET Directive . C-51

C-74 STITLE Directive . C-51

C-75 SYMOBJ . C-52

C-76 TABS Directive . C-52

C-77 TITLE Directive . C-52

C-78 UNDEF Directive . C-52

C-79 WARN Directive . C-53

C-80 XDEF Directive . C-53

C-81 XREF Directive . C-54

C-82 .BREAK Statement. C-56

C-83 .CONTINUE Statement . C-56

C-84 .FOR Statement . C-57

C-85 .IF Statement. C-57

C-86 .LOOP Statement . C-58

C-87 .REPEAT Statement . C-58

C-88 .WHILE Statement . C-59

C-89 Condition Code Expression . C-60

D-1 Setting Up Transmit and Receive Buffers and Pointers D-9

D-2 Setting Codec Control Information . D-11

xx DSP56303EVM User’s Manual Motorola

D-3 ESSI Port Reset Procedure . D-12

D-4 Setting Control Registers for the ESSI0 Port . D-15

D-5 Defining GPIO Pin/Bin Correspondence . D-17

D-6 GPIO Pin Configuration . D-17

D-7 Code Form Settings in Data Direction Registers D-19

D-8 Code Format Procedures . D-19

D-9 Deasserting Code Reset . D-19

D-10 Sending Code Information . D-21

D-11 Sending in Control Words . D-22

D-12 ESSI Port Priority and Functionality Setting . D-24

D-13 ESSI Exception Status Interrupt Service . D-25

D-14 ESSI Receive Data Interrupt Service . D-26

D-15 ESSI Receive Last Slot Interrupt Service. D-27

D-16 ESSI Transmit Data with Exception Status Interrupt Service D-28

D-17 ESSI Transmit Last Slot Interrupt Service . D-29

D-18 ESSI Transmit Data Interrupt Service . D-30

D-19 Include, Define, and Set-Up Tasks . D-32

D-20 DSP Initialization Procedure . D-33

D-21 Initializing CODEC/ESSI. D-33

D-22 Setting Up and Initializing Buffer . D-33

D-23 Implementation of Echo Program. D-34

D-24 Application of Echo Code . D-35

Motorola Quick Start Guide 1-1

Chapter 1
Quick Start Guide
This section summarizes the evaluation module contents and additional requirements and
also provides quick installation and test information. The remaining sections of this
manual give details on the DSP56303EVM design and operation.

1.1 Equipment

The following subsections list the equipment required to use the DSP56303 evaluation
module (DSP56303EVM), some of which is supplied with the module, and some of which
must be supplied by the user.

1.1.1 What You Get with the DSP56303EVM

The following material comes with the DSP56303EVM:

• DSP56303 Evaluation Module board

• DSP56303EVM Product Brief

• DSP56303EVM User’s Manual (this document)

• DSP56303 Product Specifications, Revision 1.03

• DSP56303 Chip Errata

• Crystal Semiconductor CS4218 16-bit Multimedia Audio Codec Data Sheet

• Technical Documentation CD-ROM including the following documents:

— DSP56300 Family Manual

— DSP56303 User’s Manual

— DSP56303 Technical Data Sheet

• The required software:

— GUI Debugger from Domain Technologies (1 CD)

— Assembler/linker software from Motorola (1 CD)

1-2 DSP56303EVM User’s Manual Motorola

Installation Procedure

1.1.2 What You Need to Supply

The user must provide the following:

• PC (Pentium-90MHz or higher) with

— Windows95 or NT4

— Minimum of 16Mbytes of memory with Windows95

— Minimum of 32Mbytes of memory with Windows NT

— 3½-inch high density diskette drive

— CD-ROM drive

— Hard drive with 20 Mbytes of free disk space

— Mouse

— RS-232 serial port supporting 9,600–115,200 bit-per-second transfer rates

• RS-232 interface cable (DB9 plug to DB9 female)

• Power supply, 7–9 V AC or DC input into a 2.1-mm power connector

• Audio source (tape player, radio, CD player, etc.)

• Audio interface cable with 1/8-inch stereo plugs

• Headphones

1.2 Installation Procedure

Installation requires the following four basic steps:

1. Preparing the DSP56303EVM board

2. Connecting the board to the PC and power

3. Installing the software

4. Testing the installation

Installation Procedure

Motorola Quick Start Guide 1-3

1.2.1 Preparing the DSP56303EVM

Locate jumper blocks J1, J4, J5, and J8, as shown in Figure 1-1. For block J1, make sure
that there are jumpers connecting pins 3 and 4 and pins 5 and 6. For blocks J4, J5, and J8
make sure that all positions on each block are jumpered. These jumpers perform the
following functions:

• J1 controls the operating mode of the DSP56303.

• J4 and J5 control the interface between the audio codec and the DSP56303
enhanced synchronous serial interface (ESSI0).

• J8 controls the interface between the DSP56303 JTAG/OnCE™ port and
DSP56002 synchronous serial interface (SSI).

Warning

Because all electronic components are
sensitive to the effects of electrostatic
discharge (ESD) damage, correct
procedures should be used when handling
all components in this kit and inside the
supporting personal computer. Use the
following procedures to minimize the
likelihood of damage due to ESD:

Always handle all static-sensitive
components only in a protected area,
preferably a lab with conductive
(antistatic) flooring and bench surfaces.

Always use grounded wrist straps when
handling sensitive components.

Do not remove components from antistatic
packaging until required for installation.

Always transport sensitive components in
antistatic packaging.

1-4 DSP56303EVM User’s Manual Motorola

Installation Procedure

Figure 1-1. DSP56303EVM Component Layout

1.2.2 Connecting the DSP56303EVM to the PC and Power

Figure 1-2 shows the interconnection diagram for connecting the PC and the external
power supply to the DSP56303EVM board.

CS4218

DSP56303

DSP56002

G
S

71
02

A
TJ7

J6

J9

P5

P4

MC74HCT04

HDPHNE

IN

P3

MAX212

LED

LED

MC33269

SW2

SW3

JTAG/

POWER

MC34164

SW1

P1

TEST

QS3384

J3J1

J4

J5

J2

AT29LV010A

Debug

Power

J4

1

12

J5

12

1

J8

1

OnCE™

P2

Flash

F
S

R
A

M P6 OUT

LM4880

J8

J1

8

1

Serial #

LED

AA1925

J10

J10

Installation Procedure

Motorola Quick Start Guide 1-5

Figure 1-2. Connecting the DSP56303EVM Cables

Use the following steps to complete cable connections:

1. Connect the DB9P end of the RS-232 interface cable to the RS-232 port connection
on the PC.

2. Connect the DB9S end of the cable to P2, shown in Figure 1-1, on the
DSP56303EVM board. This provides the connection to allow the PC to control the
board function.

3. Make sure the external 7–9 V power supply is not supplied with power.

4. Connect the 2.1-mm output power plug into P3, shown in Figure 1-1, on the
DSP56303EVM board.

5. Apply power to the power supply. The green power LED lights up when power is
correctly applied.

PC-Compatible

Cable

Computer

DSP56303EVM

External
7–9 V
Power

P2

P3Connect cable
to RS-232 port

AA1926

1-6 DSP56303EVM User’s Manual Motorola

Installation Procedure

Motorola Example Test Program 2-1

Chapter 2
Example Test Program
This section contains an example that illustrates how to develop a very simple program for
the DSP56303. This example is for users with little or no experience with the DSP
development tools. The example demonstrates the form of assembly programs, gives
instructions on how to assemble programs, and shows how the Debugger can verify the
operation of programs.

Figure 2-1 shows the development process flow for assembly programs. The rounded
blocks represent the assembly and object files. The white blocks represent software
programs to assemble and link the assemble programs. The gray blocks represent
hardware products.

The following sections give basic information on the assembly program, the assembler,
the linker and the object files. For detailed information on these subjects, consult the
assembler and linker manuals provided with the Motorola DSP CLAS software package,
available through your Motorola sales office or distributor. The documentation is also
available through the Motorola Wireless internet, URL
http://www.mot.com/SPS/DSP/documentation.

2-2 DSP56303EVM User’s Manual Motorola

Writing the Program

2.1 Writing the Program

The following sections describe the format of assembly language source statements and
give an example assembly program.

2.1.1 Source Statement Format

Programs written in assembly language consist of a sequence of source statements. Each
source statement may include up to six fields separated by one or more spaces or tabs: a
label field, an operation field, an operand field, up to two data transfer fields, and a
comment field. For example, the following source statement shows all six possible fields:

Example 2-1. Example Source Statement

trm mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;Text

Label Operation Operand X Data Transfer Y Data Transfer Comment

Figure 2-1. Development Process Flow

Assembly Program

Assembler

Relocatable

Linker

Executable

Object File

Object File

DSP56303EVM

*.asm

*.cln

*.cld

ADS Command
Converter Card

DSP56303

DSP56002

AA1927

Writing the Program

Motorola Example Test Program 2-3

2.1.1.1 Label Field

The label field is the first field of a source statement and can take one of the following
forms:

• A space or tab as the first character on a line ordinarily indicates that the label file is
empty and that the line has no label.

• An alphabetic character as the first character indicates that the line contains a
symbol called a label.

• An underscore as the first character indicates that the label is local.

With the exception of some directives, a label is assigned the value of the location counter
of the first word of the instruction or data being assembled. A line consisting of only a
label is a valid line and assigns the value of the location counter to the label.

2.1.1.2 Operation Field

The operation field appears after the label field and must be preceded by at least one space
or tab. Entries in the operation field may be one of three types:

• Opcode—mnemonics that correspond directly to DSP machine instructions

• Directive—special operation codes known to the assembler that control the
assembly process

• Macro call—invocation of a previously defined macro that is to be inserted in
place of the macro call

2.1.1.3 Operand Field

The interpretation of the operand field depends on the contents of the operation field. The
operand field, if present, must follow the operation field and must be preceded by at least
one space or tab.

2.1.1.4 Data Transfer Fields

Most opcodes specify one or more data transfers to occur during the execution of the
instruction. These data transfers are indicated by two addressing mode operands separated
by a comma, with no embedded blanks. If two data transfers are specified, they must be
separated by one or more blanks or tabs. Refer to the DSP56300 Family Manual for a
complete discussion of addressing modes that are applicable to data transfer
specifications.

2-4 DSP56303EVM User’s Manual Motorola

Writing the Program

2.1.1.5 Comment Field

Comments are not considered significant to the assembler but can be included in the
source file for documentation purposes. A comment field is composed of any characters
that are preceded by a semicolon.

2.1.2 Example Program

The example program discussed in this section takes two lists of data, one in X memory
and one in Y memory, and calculates the sum of the products of the two lists. Calculating
the sum of products is the basis for many DSP functions. Therefore, the DSP56303 has a
special instruction, “multiplier-accumulate (MAC)s”, which multiplies two values and
adds the result to the contents of an accumulator.

Example 2 -2. Simple DSP56303EVM Code Example

;***
;A SIMPLE PROGRAM: CALCULATING THE SUM OF PRODUCTS
;***
PBASE EQU $100 ;instruct the assembler to replace

;every occurrence of PBASE with $100
XBASE EQU $0 ;used to define the position of the

;data in X memory
YBASE EQU $0 ;used to define the position of the

;data in Y memory
;***
;X MEMORY
;***

org x:XBASE ;instructs the assembler that we
;are referring to X memory starting
;at location XBASE

list1 dc $475638,$738301,$92673a,$898978,$091271,$f25067
dc $987153,$3A8761,$987237,$34b852,$734623,$233763
dc $f76756,$423423,$324732,$f40029

;***
;Y MEMORY
;***

org y:YBASE ;instructs the assembler that we
;are referring to Y memory starting
;at location YBASE

list2 dc $f98734,$800000,$fedcba,$487327,$957572,$369856
dc $247978,$8a3407,$734546,$344787,$938482,$304f82
dc $123456,$657784,$567123,$675634

;***
;PROGRAM
;***

org p:0 ;put following program in program
;memory starting at location 0

Assembling the Program

Motorola Example Test Program 2-5

Example 2-1. Simple DSP56303EVM Code Example (Continued)

jmp begin ;p:0 is the reset vector i.e. where
;the DSP looks for instructions
;after a reset

org p:PBASE ;start the main program at p:PBASE
begin

move #list1,r0 ;set up pointer to start of list1
move #list2,r4 ;set up pointer to start of list2
clr a ;clear accumulator a
move x:(r0)+,x0 y:(r4)+,y0

;load the value of X memory pointed
;to by the contents of r0 into x0 and
;post-increment r0
;load the value of Y memory pointed
;to by the contents of r4 into y0 and
;post-increment r4

do #15,endloop;do 15 times
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0

;multiply and accumulate, and load
;next values

endloop jmp * ;this is equivalent to
;label jmp label
;and is therefore a never-ending,
;empty loop

;***
;END OF THE SIMPLE PROGRAM
;***

2.2 Assembling the Program

The following sections describe the format of the assembler command, list the assembler
special characters and directives, and give instructions to assemble the example program.

2.2.1 Assembler Command Format

The Motorola DSP assembler is included with the DSP56303EVM on the Motorola Tools
CD and can be installed by following the instructions in the “Read Me” file on the CD.
The Motorola DSP assembler is a program that translates assembly language source
statements into object programs compatible with the DSP56303. The general format of the
command line to invoke the assembler is

asm56300 [options] <filenames>

where asm56300 is the name of the Motorola DSP assembler program, and <filenames>
is a list of the assembly language programs to be assembled.

2-6 DSP56303EVM User’s Manual Motorola

Assembling the Program

2.2.2 Assembler Options

Table 2-1 describes the assembler options. To avoid ambiguity, the option arguments
should immediately follow the option letter with no blanks between them.

Table 2-1. Assembler Options

Option Description

-A Puts the assembler into absolute mode and generates an absolute object file when the -B
command line option is given. By default, the assembler produces a relocatable object file
that is subsequently processed by the Motorola DSP linker.

-B<objfil> Specifies that an object file is to be created for assembler output. <objfil> can be any legal
operating system filename, including an optional pathname. The type of object file depends
on the assembler operation mode. If the -A option is supplied on the command line, the
assembler operates in absolute mode and generates an absolute object (.cld) file. If there
is no -A option, the assembler operates in relative mode and creates a relocatable object
(.cln) file. If the -B option is not specified, the assembler does not generate an object file. If
no <objfil> is specified, the assembler uses the basename (filename without extension) of
the first filename encountered in the source input file list and appends the appropriate file
type (.cln or.cld) to the basename. The -B option should be specified only once.

Example: asm56300 -Bfilter main.asm fft.asm fio.asm

This example assembles the files main.asm, fft.asm, and fio.asm together to produce the
relocatable object file filter.cln.

-D <symbol>
<string>

Replaces all occurrences of <symbol> with <string> in the source files to be assembled.

Example: asm56300 -DPOINTS 16 prog.asm

Replaces all occurrences of the symbol POINTS in the program prog.asm by the string
‘16’.

-EA<errfil> or
-EW<errfil>

Allows the standard error output file to be reassigned on hosts that do not support error
output redirection from the command line. <errfil> must be present as an argument but can
be any legal operating system filename, including an optional pathname. The -EA option
causes the standard error stream to be written to <errfil>; if <errfil> exists, the output
stream is appended to the end of the file. The -EW option also writes the standard error
stream to <errfil>; if <errfil> exists, it is overwritten.

Example: asm56300 -EWerrors prog.asm

Redirects the standard output to the file errors. If the file already exists, it is overwritten.

-F<argfil> Indicates that the assembler should read command line input from <argfil>, which can be
any legal operation system filename, including an optional pathname. <argfil> is a text file
containing further options, arguments, and filenames to be passed to the assembler. The
arguments in the file need to be separated only by white space. A semicolon on a line
following white space makes the rest of the line a comment.

Example: asm56300 -Fopts.cmd

Invokes the assembler and takes the command line options and source filenames from the
command file opts.cmd.

Assembling the Program

Motorola Example Test Program 2-7

-G Sends the source file line number information to the object file. This option is valid only in
conjunction with the -B command line option. Debuggers can use the generated line
number information to provide source-level debugging.

Example: asm56300 -B -Gmyprog.asm

Assembles the file myprog.asm and sends the source file line number information to the
resulting object file myprog.cln.

-I<pathname> Causes the assembler to look in the directory defined by <pathname> for any include file
not found in the current directory. <pathname> can be any legal operating system
pathname.

Example: asm56300 -I\project\ testprog

Uses IBM PC pathname conventions and causes the assembler to prefix any include files
not found in the current directory with the \project\ pathname.

-L<lstfil> Specifies that a listing file is to be created for assembler output. <lstfil> can be any legal
operating system filename, including an optional pathname. If no <lstfil> is specified, the
assembler uses the basename (filename without extension) of the first filename
encountered in the source input file list and appends .lst to the basename. The -L option is
specified only once.

Example: asm56300 -L filter.asm gauss.asm

Assembles the files filter.asm and gauss.asm together to produce a listing file. Because no
filename is given, the output file is named using the basename of the first source file, in this
case filter, and the listing file is called filter.lst.

-M<pathname> Causes the assembler to look in the directory defined by <pathname> for any macro file not
found in the current directory. <pathname> can be any legal operating system pathname.

Example: asm56300 -Mfftlib\ trans.asm

Uses IBM PC pathname conventions and causes the assembler to look in the fftlib
subdirectory of the current directory for a file with the name of the currently invoked macro
found in the source file, trans.asm.

-V Causes the assembler to report assembly progress to the standard error output stream.

-Z Causes the assembler to strip symbol information from the absolute load file. Normally
symbol information is retained in the object file for symbolic references purposes. This
option is valid only with the -A and -B options.

Note: Multiple options can be used. A typical string might be as follows:

Example: asm56300 -A -B -L -G filename.asm

Table 2-1. Assembler Options (Continued)

Option Description

2-8 DSP56303EVM User’s Manual Motorola

Assembling the Program

2.2.3 Assembler Directives

In addition to the DSP56303 instruction set, the assembly programs can contain
mnemonic directives that specify auxiliary actions to be performed by the assembler.
These are the assembler directives. These directives are not always translated into
machine language. The following sections briefly describe the various types of assembler
directives.

2.2.3.1 Assembler Significant Characters

The following one-and two-character sequences are significant to the assembler:

; Comment delimiter

;; Unreported comment delimiter

\ Line continuation character or macro dummy argument concatenation operator

? Macro value substitution operator

% Macro hex value substitution operator

^ Macro local label override operator

“ Macro string delimiter or quoted string DEFINE expansion character

@ Function delimiter

* Location counter substitution

++ String concatenation operator

[] Substring delimiter

<< I/O short addressing mode force operator

< Short addressing mode force operator

> Long addressing mode force operator

Immediate addressing mode operator

#< Immediate short addressing mode force operator

#> Immediate long addressing mode force operator

Assembling the Program

Motorola Example Test Program 2-9

2.2.3.2 Assembly Control

The directives used for assembly control are as follows:

COMMENT Start comment lines

DEFINE Define substitution string

END End of source program

FAIL Programmer-generated error message

FORCE Set operand forcing mode

HIMEM Set high memory bounds

INCLUDE Include secondary file

LOMEM Set low memory bounds

MODE Change relocation mode

MSG Programmer-generated message

ORG Initialize memory space and location counters

RADIX Change input radix for constants

RDIRECT Remove directive or mnemonic from table

SCSJMP Set structured control branching mode

SCSREG Reassign structured control statement registers

UNDEF Undefine DEFINE symbol

WARN Programmer-generated warning

2.2.3.3 Symbol Definition

The directives used to control symbol definition are as follows:

ENDSEC End section

EQU Equate symbol to a value

GLOBAL Global section symbol declaration

GSET Set global symbol to a value

LOCAL Local section symbol declaration

SECTION Start section

SET Set symbol to a value

XDEF External section symbol definition

XREF External section symbol reference

2-10 DSP56303EVM User’s Manual Motorola

Assembling the Program

2.2.3.4 Data Definition/Storage Allocation

The directives to control constant data definition and storage allocation are as follows:

BADDR— Set buffer address

BSB— Block storage bit-reverse

BSC Block storage of constant

BSM Block storage modulo

BUFFER Start buffer

DC Define constant

DCB Define constant byte

DS Define storage

DSM Define modulo storage

DSR Define reverse carry storage

ENDBUF End buffer

2.2.3.5 Listing Control and Options

The directives to control the output listing are as follows:

LIST List the assembly

LSTCOL Set listing field widths

NOLIST Stop assembly listing

OPT Assembler options

PAGE Top of page/size page

PRCTL Send control string to printer

STITLE Initialize program subtitle

TABS Set listing tab stops

TITLE Initialize program title

Assembling the Program

Motorola Example Test Program 2-11

2.2.3.6 Object File Control

The directives for control of the object file are as follows:

COBJ Comment object code

IDENT Object code identification record

SYMOBJ Write symbol information to object file

2.2.3.7 Macros and Conditional Assembly

The directives for macros and conditional assembly are as follows:

DUP Duplicate sequence of source lines

DUPA Duplicate sequence with arguments

DUPC Duplicate sequence with characters

DUPF Duplicate sequence in loop

ENDIF End of conditional assembly

ENDM End of macro definition

EXITM Exit macro

IF Conditional assembly directive

MACLIB Macro library

MACRO Macro definition

PMACRO Purge macro definition

2.2.3.8 Structured Programming

The directives for structured programming are as follows:

.BREAK Exit from structured loop construct

.CONTINUE Continue next iteration of structured loop

.ELSE Perform following statements when .IF false

.ENDF End of .FOR loop

.ENDI End of .IF condition

.ENDL End of hardware loop

.ENDW End of .WHILE loop

.FOR Begin .FOR loop

.IF Begin .IF condition

2-12 DSP56303EVM User’s Manual Motorola

Motorola DSP Linker

.LOOP Begin hardware loop

.REPEAT Begin .REPEAT loop

.UNTIL End of .REPEAT loop

.WHILE Begin .WHILE loop

2.2.4 Assembling the Example Program

The assembler is an MS-DOS based program; thus, to use the assembler you must exit
Windows or open an MS-DOS Prompt Window. To assemble the example program, type
asm56300 -a -b -l -g example.asm into the evm30xw directory created by the installation
process from Section 2.2.1, "Assembler Command Format," on page 2-5. This creates two
additional files: example.cld and example.lst. The example.cld file is the absolute object
file of the program; it is downloaded into the DSP56303. The example.lst file is the listing
file; it gives full details of where the program and data are placed in the DSP56303
memory.

2.3 Motorola DSP Linker

Though not needed for our simple example, the Motorola DSP linker is also included with
the DSP56303EVM. The Motorola DSP linker is a program that processes relocatable
object files produced by the Motorola DSP assembler, generating an absolute executable
file which can be downloaded to the DSP56303. The Motorola DSP linker is included on
the Motorola Tools CD and can be installed by following the instructions in Section 2.2.1,
"Assembler Command Format," on page 2-5. The general format of the command line to
invoke the linker is

dsplnk [options] <filenames>

where dsplnk is the name of the Motorola DSP linker program, and <filenames> is a list
of the relocatable object files to be linked.

Linker Options

Motorola Example Test Program 2-13

2.4 Linker Options

Table 2-2 describes the linker options. To avoid ambiguity, the option arguments should
immediately follow the option letter with no blanks between them.

Table 2-2. Linker Options

Option Description

-A Auto-aligns circular buffers. Any modulo or reverse-carry buffers defined in the object file
input sections are relocated independently in order to optimize placement in memory.
Code and data surrounding the buffer are packed to fill the space formerly occupied by the
buffer and any corresponding alignment gaps.

Example: dsplnk -A myprog.cln

Links the file myprog.cln and optimally aligns any buffers encountered in the input.

-B<objfil> Specifies that an object file is to be created for linker output. <objfil> can be any legal
operating system filename, including an optional pathname. If no filename is specified, or
if the -B option is not present, the linker uses the basename (filename without extension)
of the first filename encountered in the input file list and appends .cld to the basename. If
the -I option is present (see below), an explicit filename must be given because if the linker
follows the default action, it can overwrite one of the input files. The -B option is specified
only once. If the file named in the -B option already exists, it is overwritten.

Example: dsplnk -Bfilter.cld main.cln fft.cln fio.cln

Links the files main.cln, fft.cln, and fio.cln together to produce the absolute executable file
filter.cld.

-EA<errfil> or
-EW<errfil>

Allows the standard error output file to be reassigned on hosts that do not support error
output redirection from the command line. <errfil> must be present as an argument, but it
can be any legal operating system filename, including an optional pathname. The -EA
option causes the standard error stream to be written to <errfil>; if <errfil> exists, the
output stream is appended to the end of the file. The -EW option also writes the standard
error stream to <errfil>; if <errfil> exists it is overwritten.

Example: dsplnk -EWerrors myprog.cln

Redirects the standard error output to the file errors. If the file already exists, it is
overwritten.

-F<argfil> Indicates that the linker should read command line input from <argfil>, which can be any
legal operating system filename, including an optional pathname. <argfil> is a text file
containing further options, arguments, and filenames to be passed to the linker. The
arguments in the file need be separated only by white space. A semicolon on a line
following white space makes the rest of the line a comment.

Example: dsplnk -Fopts.cmd

This example invokes the linker and takes command line options and input filenames from
the command file opts.cmd.

2-14 DSP56303EVM User’s Manual Motorola

Linker Options

-G Sends source file line number information to the object file. The generated line number
information can be used by debuggers to provide source-level debugging.

Example: dsplnk -B -Gmyprog.cln

Links the file myprog.cln and sends source file line number information to the resulting
object file myprog.cld.

-I The linker ordinarily produces an absolute executable file as output. When the -I option is
given, the linker combines the input files into a single relocatable object file suitable for
reprocessing by the linker. No absolute addresses are assigned and no errors are issued
for unresolved external references. Note that the -B option must be used when performing
incremental linking in order to give an explicit name to the output file. If the filename is
allowed to default, it can overwrite an input file.

Example: dsplnk -I -Bfilter.cln main.cln fft.cln fio.cln

Combines the files main.cln, fft.cln, and fio.cln to produce the relocatable object file
filter.cln.

-L<library> The linker ordinarily processes a list of input files that each contain a single relocatable
code module. Upon encountering the -L option, the linker treats the following argument as
a library file and searches the file for any outstanding unresolved references. If it finds a
module in the library that resolves an outstanding external reference, it reads the module
from the library and includes it in the object file output. The linker continues to search a
library until all external references are resolved or no more references can be satisfied
within the current library. The linker searches a library only once, so the position of the -L
option on the command line is significant.

Example: dsplnk -B filter main fir -Lio

Illustrates linking with a library. The files main.cln and fir.cln are combined with any
needed modules in the library io.lib to create the file filter.cld.

-M<mapfil> Indicates that a map file is to be created. <mapfil> can be any legal operating system
filename, including an optional pathname. If no filename is specified, the linker uses the
basename (filename without extension) of the first filename encountered in the input file
list and append .map to the basename. If the -M option is not specified, then the linker
does not generate a map file. The -M option is specified only once. If the file named in the
-M option already exists, it is overwritten.

Example: dsplnk -M filter.cln gauss.cln

Links the files filter.cln and gauss.cln to produce a map file. Because no filename is given
with the -M option, the output file is named using the basename of the first input file, in this
case filter. The map file is called filter.map.

-N For the linker the case of symbol names is significant. When the -N option is given the
linker ignores case in symbol names; all symbols are mapped to lower case.

Example: dsplnk -N filter.cln fft.cln fio.cln

Links the files filter.cln, fft.cln, and fio.cln to produce the absolute executable file filetr.cld;
Maps all symbol references to lower case.

Table 2-2. Linker Options (Continued)

Option Description

Linker Options

Motorola Example Test Program 2-15

-O<mem>[<ctr>][<
map>]:<origin>

By default, the linker generates instructions and data for the output file beginning at
absolute location zero for all DSP memory spaces. This option allows the programmer to
redefine the start address for any memory space and associated location counter. <mem>
is one of the single-character memory space identifiers (X, Y, L, P). The letter can be
upper-or lowercase. The optional <ctr> is a letter indicating the high (H) or low (L) location
counters. If no counter is specified the default counter is used. <map> is also optional and
signifies the desired physical mapping for all relocatable code in the given memory space.
It can be I for internal memory, E for external memory, R for ROM, A for Port A, and B for
Port B. If <map> is not supplied, then no explicit mapping is presumed. The <origin> is a
hexadecimal number signifying the new relocation address for the given memory space.
The -O option can be specified as many times as needed on the command line. This
option has no effect if incremental linking is being done. (See the -I option.)

Example: dsplnk -Ope:200 myprog -Lmylib

Initializes the default P memory counter to hex 200 and maps the program space to
external memory.

-P<pathname> When the linker encounters input files, it first searches the current directory (or the
directory given in the library specification) for the file. If it is not found and the -P option is
specified, the linker prefixes the filename (and optional pathname) of the file specification
with <pathname> and searches the newly formed directory pathname for the file. The
pathname must be a legal operating system pathname. The -P option can be repeated as
many times as desired.

Example: dsplnk -P\project\ testprog

Uses IBM PC pathname conventions and causes the linker to prefix any library files not
found in the current directory with the \project\ pathname.

-R<ctlfil> Indicates that a memory control file is to be read to determine the placement of sections
into DSP memory and other linker control functions. <ctlfil> can be any legal operating
system filename, including an optional pathname. If a pathname is not specified, an
attempt is made to open the file in the current directory. If no filename is specified, the
linker uses the basename (filename without extension) of the first filename encountered in
the link input file list and append .ctl to the basename. If the -R option is not specified, then
the linker does not use a memory control file. The -R option is specified only once.

Example: dsplnk -Rproj filter.cln gauss.cln

Links the files filter.cln and gauss.cln using the memory file proj.ctl.

-U<symbol> Allows the declaration of an unresolved reference from the command line. <symbol> must
be specified. This option is useful for creating an undefined external reference in order to
force linking entirely from a library.

Example: dsplnk -Ustart -Lproj.lib

Declares the symbol start undefined so that it is resolved by code within the library proj.lib.

-V Causes the linker to report linking progress (beginning of passes, opening and closing of
input files) to the standard error output stream. This is useful to ensure that link editing is
proceeding normally.

Example: dsplnk -V myprog.cln

Links the file myprog.cln and sends progress lines to the standard error output.

Table 2-2. Linker Options (Continued)

Option Description

2-16 DSP56303EVM User’s Manual Motorola

Linker Options

2.4.1 Linker Directives

Similar to the assembler directives, the linker includes mnemonic directives which specify
auxiliary actions to be performed by the linker. Following is a list of the linker directives.

BALIGN Auto-align circular buffers

BASE Set region base address

IDENT Object module identification

INCLUDE Include directive file

MAP Map file format control

MEMORY Set region high memory address

REGION Establish memory region

RESERVE Reserve memory block

SBALIGN Auto-align section buffers

-X<opt>[,<opt>,...,<
opt>]

Provides for link time options that alter the standard operation of the linker. The options
are described below. All options can be preceded by “NO” to reverse their meaning. The
-X<opt> sequence can be repeated for as many options as desired.
Option Meaning

ABC* Perform address bounds checking
AEC* Check form of address expressions
ASC Enable absolute section bounds checking
CSL Cumulate section length data
ESO Do not allocate memory below ordered sections
OVLP Warn on section overlap
RO Allow region overlap
RSC* Enable relative section bounds checking
SVO Preserve object file on errors
WEX Add warning count to exit status

(* means default)

Example: dsplnk -XWEX filter.cln fft.cln fio.cln

Allows the linker to add the warning count to the exit status so that a project build aborts
on warnings as well as errors.

-Z Allows the linker to strip source file line number and symbol information from the output
file. Symbol information normally is retained for debugging purposes. This option has no
effect if incremental linking is being done. (See the -I option.)

Example: dsplnk -Zfilter.cln fft.cln fio.cln

Links the files filter.cln, fft.cln, and fio.cln to produce the absolute object file filter.cln. The
output file contains no symbol or line number information.

Table 2-2. Linker Options (Continued)

Option Description

Introduction to the Debugger Software

Motorola Example Test Program 2-17

SECSIZE Pad section length

SECTION Set section base address

SET Set symbol value

SIZSYM Set size symbol

START Establish start address

SYMBOL Set symbol value

2.5 Introduction to the Debugger Software

This section briefly introduces the Domain Technologies debugger, giving only the details
required to work through this example. For full details on the Debugger and an
informative tutorial, consult the Debug-56K Manual. The Domain Technologies
Debugger is a software development system for the DSP56303. The Domain
Technologies Debugger is included with the DSP56303EVM on the Domain
Technologies CD-ROM, and can be installed following the on-line instructions. If you are
running Windows95 or WindowsNT, the software installer will be launched automatically
when you insert the CD into your drive. To invoke the Debugger, double-click on the icon
labelled evm30xw in the EVM5630x program group created when the Debugger was
installed.

The Debugger display is similar to that shown in Figure 2-2; the screen is divided into
four windows—the command window, the data window, the unassembly window, and the
registers window. The command window is the window selected, which means that key
strokes are placed into the command window. The data window displays DSP56303 data.
The unassembly window displays the DSP56303 programs highlighting the next
instruction to be executed. The registers window shows the contents of the DSP56303
internal registers.

2-18 DSP56303EVM User’s Manual Motorola

Introduction to the Debugger Software

When the command window is selected as in Figure 2-2, the tool-bar at the top of the
screen will change and show buttons for the commands used most often in the command
window. From left to right the commands are”go”, “stop”, “step”, “jump”, “automatic
update”, “reset” and “radix”.

• “Go” runs the DSP56303 from the program counter.

• “Stop” stops the DSP56303.

• “Step” executes a single instruction.

• “Jump” is similar to the step, except that subroutines are treated as one instruction.

• “Automatic update” turns the automatic screen update mode on, so that the
DSP56303 is periodically interrupted to update the data and registers windows.

• “Reset” resets the DSP56303.

• “Radix” can be used to change the radix of the selected window.

Other buttons appear when other windows are selected, and they function as described in
the Debug-56K Manual, which is contained in the Domain Technologies CD-ROM.

Figure 2-2. Example Debugger Window Display

EVM-563xx - COM2

AA1791

Running the Program

Motorola Example Test Program 2-19

2.6 Running the Program

To load the example program into the Debugger, click in the command window and type
load example. The instruction at line 33 is highlighted in the unassembly window because
this is the first instruction to be executed. But, before executing the program, verify that
the values expected in data memory are there. To do this, type display x:0 and display y:0.
The data is displayed in the data window.

To step through the program, type step at the command window prompt. For a shortcut,
click on the step button or type the start of the command and press the space bar, and the
debugger will complete the remainder of the command. To repeat the last command, press
return. As you step through the code, notice that the registers in the registers window are
changed by the instructions. After each cycle, any register that has been changed is
highlighted. Once you have stepped through the program, ensure that the program has
executed correctly by checking that the result in accumulator a is $FE 9F2051 6DFCC2.

Stepping through the program like this is good for short programs, but it is impractical for
large, complex programs. The way to debug large programs is to set breakpoints, which
are user-defined points where execution of the code stops, allowing the user to step
through the section of interest. In the example set a breakpoint, to verify that the values in
r0 and r4 are correct before the do loop, type break p:$106 in the command window. The
line before the loop brightens in the unassembly window, indicating the breakpoint has
been set. To point the DSP56303 back to the start point of the program, type change pc 0.
This changes the program counter so that it points to the reset vector. To run the program
type go or click on the go button. The DSP56303 stops when it reaches the breakpoint, and
you can step through the remainder of the code.

To exit the Debugger, type quit at the command prompt.

2-20 DSP56303EVM User’s Manual Motorola

Running the Program

Motorola DSP56303EVM Technical Summary 3-1

Chapter 3
DSP56303EVM Technical Summary

3.1 DSP56303EVM Description and Features

An overview description of the DSP56303EVM is provided in the DSP56303EVM
Product Brief (DSP56303EVMP/D) included with this kit. The main features of the
DSP56303EVM include the following:

• DSP56303 24-bit digital signal processor

• FSRAM for expansion memory and Flash PEROM for stand-alone operation.

• 16-bit CD-quality audio codec

• Command converter circuitry

3.2 DSP56303 Description

A full description of the DSP56303, including functionality and user information, is
provided in the following documents:

• DSP56303 Technical Data (Document order number DSP56303/D): Provides
features list and specifications including signal descriptions, DC power
requirements, AC timing requirements, and available packaging.

• DSP56303 User’s Manual (Document order number DSP56303UM/AD):
Provides an overview description of the DSP and detailed information about the
on-chip components including the memory and I/O maps, peripheral functionality,
and control and status register descriptions for each subsystem.

• DSP56300 Family Manual (Document order number DSP56300FM/AD):
Provides a detailed description of the core processor including internal status and
control registers and a detailed description of the family instruction set.

Refer to these documents for detailed information about chip functionality and operation.
These documents will be provided in the kit on either CD or hard copy.

3-2 DSP56303EVM User’s Manual Motorola

Memory

Note: A detailed list of known chip errata is also provided with this kit. Refer to the
DSP56303 Chip Errata document for information that has changed since the
publication of the reference documentation listed previously. The latest version
can be obtained on the Motorola DSP worldwide web site at
http://www.mot.com/SPS/DSP/chiperrata/index.html

3.3 Memory

The DSP56303EVM includes the following external memory:

• 64K × 24-bit fast static RAM (FSRAM) for expansion memory

• 128K × 8-bit flash memory for stand-alone operation

Refer to Figure 3-1 for the location of the FSRAM and Flash on the DSP56303EVM.
Figure 3-2 shows a functional block diagram of the DSP56303EVM including the
memory devices.

Figure 3-1. DSP56303EVM Component Layout

CS4218

DSP56303

DSP56002

G
S

71
02

4T

J7

J6

J9

P5

P4

MC74HCT04

HDPHNE

IN

P3

MAX212

LED

LED

MC33269

SW2

SW3

JTAG/

POWER

MC34164

SW1

P1

Serial #

Test

QS3384

J3J1

J4

J5

J2

AT29LV010A

Debug

Power

OnCE

P2

Flash

F
S

R
A

M P6 OUT

LM4880

J8

3.3v

5v

2.5v

LED

AA1928

J10

Memory

Motorola DSP56303EVM Technical Summary 3-3

Figure 3-2. DSP56303EVM Functional Block Diagram

3.3.1 FSRAM

The DSP56303EVM uses one bank of 64K × 24-bit fast static RAM(GS71024T-10,
labelled U4) for memory expansion. The GS71024T-10 uses a single 3.3 V power supply
and has an access time of 10 ns. The following sections detail the operation of the
FSRAM.

3.3.1.1 FSRAM Connections

The basic connection for the FSRAM is shown in Figure 3-3.

Figure 3-3. FSRAM Connections to the DSP56303

CS4218

DSP56303DSP56002

JTAG/

ESSI0

SSISCI

J5

J8

EXTAL

EXTAL

H
O
S
T

FSRAM Flash

Address BusData Bus

In
Headphone

Out

RS-232

12.288 MHz
19.6608 MHz

P
C

SCLK

153.6 kHz

Oscillator

OnCE™Port

128K × 8 64K × 24

J4

ESSI1

ControlData

Oscillator

CLKIN

J3
HOST
PORT

AA1924

H
O
S
T

RS-232

P
C

SCI

J7

J10

FSRAMDSP56303

A0–A15
D0–D23

AA0
RD
WR

A0–A15
IO0–IO23
CE1
OE
WE AA1929

3-4 DSP56303EVM User’s Manual Motorola

Memory

The data input/output pins IO0–IO23 for the FSRAM are connected to the DSP56303
D0–D23 pins. The FSRAM write (WE) and output enable (OE) lines are connected to the
DSP56303 write (WR) and read (RD) lines, respectively. The FSRAM chip enable (CE1)
is generated by the DSP56303 address attribute 0 (AA0). The FSRAM activity is
controlled by AA0 and the corresponding address attribute register 0 (AAR0). The
FSRAM address input pins, A0–A15, are connected to the respective port A address pins
of the DSP. This configuration selects a unified memory map of 64K words. The unified
memory does not contain partitioned X data, Y data, and program memory. Thus, access
to P:$1000, X:$1000, and Y:$1000 istreated as access to the same memory cell and 48-bit
long memory data moves are not possible to or from the external FSRAM.

3.3.1.2 Example: Programming AAR0

As mentioned above, the FSRAM activity is controlled by the DSP56303 pin AA0 and the
corresponding AAR0. AAR0 controls the external access type, the memory type, and
which external memory addresses access the FSRAM. Figure 3-4 shows the memory map
that is attained with the AAR0 settings described in this example.

Note: In this example, the memory switch bit in the operating mode register (OMR) is
cleared and the 16-bit compatibility bit in the status register is cleared.

In Figure 3-4, the FSRAM responds to the 64K of X and Y data memory addresses
between $040000 and $04FFFF. However, with the unified memory map, accesses to the
same external memory location are treated as accesses to the same memory cell.

A priority mechanism exists among the four AAR control registers. AAR3 has the highest
priority and AAR0 had the lowest. Bit 14 of the OMR, the address priority disable (APD)
bit, controls which AA pins are asserted when a selection conflict occurs (i.e. the external
address matches the address and the space that is specified in more than one AAR). If the
APD bit is cleared when a selection conflict occurs, only the highest priority AA pin is
asserted. If the APD bit is set when a selection conflict occurs, the lower priority AA pins
are asserted in addition to the higher priority AA pin. For this example, only one AA pin
must be asserted, AA0. Thus, the APD bit can be cleared.

Memory

Motorola DSP56303EVM Technical Summary 3-5

Figure 3-4. Example Memory Map with the Unified External Memory

Figure 3-5 shows the settings of AAR0 for this example. The external access type bits
(BAT1 and BAT0) are set to 0 and 1, respectively, to denote FSRAM access. The address
attribute polarity bit (BAAP) is cleared to define AA0 as active low. Address multiplexing
is not needed with the FSRAM; therefore, the address multiplexing bit BAM is cleared.
Packing is not needed with the FSRAM; thus, the packing enable bit BPAC is cleared to
disable this option.

Figure 3-5. Address Attribute Register AAR0

Program X Data Y Data

= Internal

$004000

$006000

$FF0000

Memory Map (MS = 0, SC = 0)

$FFFFFF

$000000

 Memory

Unified FSRAM
$040000

$050000

AA1930

BNC3 BNC2 BNC1 BNC0 BPAC BAM BYEN BXEN BPEN BAAP BAT1 BAT0

External Access Type
AA Pin Polarity
Program Space Enable
X Data Space Enable
Y Data Space Enable
Address Multiplexing
Packing Enable
Number of Address

Address to Compare

100 0 0

BAC11 BAC10 BAC9 BAC8 BAC7 BAC6 BAC5 BAC4 BAC3 BAC2 BAC1 BAC0

1 1 0001 0

0 000 1 0 00 0 000

011

1223

X:$FFFFF9

Bits to Compare
AA1931

3-6 DSP56303EVM User’s Manual Motorola

Memory

The P, X data, and Y data space Enable bits (BPEN, BXEN, and BYEN) define whether
the FSRAM is activated during external P, X data, or Y data space accesses, respectively.
For this example, the BXEN and BYEN bits are set, and BPEN is cleared to allow the
FSRAM to respond to X and Y data memory accesses only.

The number of address bits to compare BNC(3:0) and the address to compare bits
BAC(11:0) determine which external memory addresses access the FSRAM. The BNC
bits define the number of upper address bits that are compared between the BAC bits and
the external address to determine if the FSRAM is accessed. For this example, the
FSRAM is assigned to respond to addresses between $040000 and $04FFFF. Thus, the
BNC bits are set to $8 and the BAC bits are set to $040. If the eight most significant bits of
the external address are 00000100, the FSRAM is accessed.

3.3.2 Flash

The DSP56303EVM uses an Atmel AT29LV010A-20TC chip (U3) to provide a
128K× 8-bit CMOS Flash for stand-alone operation (i.e., startup boot operation without
accessing the DSP56303 through the JTAG/OnCE port). The AT29LV010 uses a 3.3 V
power supply and has a read access time of 200 ns.

3.3.2.1 Flash Connections

The basic connection for the Flash is shown in Figure 3-6.

Figure 3-6. Flash Connections

The flash address pins (A0–A16) connect the respective port A address pins on the DSP.
The flash data input/output pins I/O0–I/O7 are connected to the DSP56303 D0–D7 pins.
The flash write enable (WE) and output enable (OE) lines connect the DSP56303 write
(WR) and read (RD) enable lines, respectively. Address attribute 1 (AA1) generates the
flash chip enable CE.

3.3.2.2 Programming for Stand-Alone Operation

The DSP56303 mode pins determine the chip operating mode and start-up procedure
when the DSP56303 exits the reset state. The switch at SW1 resets the DSP56303 by

A0–A16

DSP56303 Flash

D0–D7
AA1

WR

I/O0–I/O7
A0–A16

RD OE
CE

WE
AA1932

Audio Codec

Motorola DSP56303EVM Technical Summary 3-7

asserting and then clearing the RESET pin of the DSP56303. The mode pins MODA,
MODB, MODC, and MODD are sampled as the DSP56303 exits the reset state. The mode
pins for the DSP56303EVM are controlled by jumper block J1 shown in Figure 3-1 on
page 3-2 and Table 3-14 on page 3-16. The DSP56303 boots from the Flash after reset if
there are jumpers connecting pins 3 and 4 and pins 5 and 6 on J1 (Mode 1: MODA and
MODD are set, and MODB and MODC are cleared).

3.4 Audio Codec

The DSP56303EVM analog section uses the Crystal Semiconductor CS4218-KQ for two
channels of 16-bit A/D conversion and two channels of 16-bit D/A conversion. Refer to
Figure 3-1 on page 3-2 for the location of the codec on the DSP56303EVM and to
Figure 3-2 on page 3-3 for a functional diagram of the codec within the evaluation
module. The CS4218 uses a 3.3 V digital power supply and a 5 V analog power supply.

The CS4218 is driven by a 12.288 MHz signal at the codec master clock (CLKIN) input
pin. The oscillator at Y1 creates a 5 V 12.288 MHz signal. The QS3384 at U5 then
converts the 5 V signal to 3.3 V for input to the codec CLKIN pin and the DSP56303
EXTAL pin. Refer to the CS4218 data sheet included with this kit for more information.

The CS4218 is very flexible, offering selectable sampling frequencies between 8 kHz and
48 kHz. The sampling frequency is selected using jumpers on jumper block J9. Table 3-1
shows jumper positions that select the possible sampling frequencies for the
DSP56303EVM.

Table 3-1. CS4218 Sampling Frequency Selection

The codec is connected to the DSP56303 ESSI0 through the shorting jumpers on J4 and J5
shown in Figure 3-1 on page 3-2. Jumper block J4 connects the ESSI1 pins of the

J9 Pins 1–2
(MF6)

J9 Pins 3–4
(MF7)

J9 Pins 5–6
(MF8)

Sampling Frequency
(kHz)

Jumper Jumper Jumper 48.0

Jumper Jumper Open 32.0

Jumper Open Jumper 24.0

Jumper Open Open 19.2

Open Jumper Jumper 16.0

Open Jumper Open 12.0

Open Open Jumper 9.6

Open Open Open 8

3-8 DSP56303EVM User’s Manual Motorola

Audio Codec

DSP56303 to the control pins of the CS4218. Jumper block J5 connects the ESSI0 pins of
the DSP56303 to the data pins of the CS4218. By removing these jumpers, the user has
full access to the ESSI0 and ESSI1 pins of the DSP56303. The following sections describe
the connections for the analog and digital sections of the codec.

3.4.1 Codec Analog Input/Output

The DSP56303EVM contains 1/8-inch stereo jacks for stereo input, output, and
headphones. Figure 3-7 shows the analog circuitry of the codec.

Figure 3-7. Codec Analog Input/Output Diagram

The stereo jack labelled P4/IN on the DSP56303EVM connects to the codec right and left
input pins, RIN2 and LIN2. Standard line level inputs are 2 VPP and the codec requires
that input levels be limited to 1 VPP. Thus, a voltage divider forms a 6 dB attenuator
between P4 and the CS4218.

The codec right and left channel output pins, ROUT and LOUT, provide their output
analog signals, through the stereo jack labelled P6/OUT on the DSP56303EVM. The
outputs of the codec are also connected to the stereo jack labelled P5/HDPHNE on the
DSP56303EVM through National Semiconductor’s LM4880 dual audio power amplifier
at U8. The headphone stereo jack permits direct connection of stereo headphones to the
DSP56303EVM.

3.4.2 Codec Digital Interface

Figure 3-8 shows the digital interface to the codec. Table 3-2 and Table 3-3 show the
jumper selections to Enable/Disable the code’s digital signals.

Headphones

LOUT

ROUT

Stereo

CS4218

RIN2

LIN2

RIN1

LIN1

Stereo

Unused

Input

Output

(P4)

(P5)

(P6)

LM4880

AA1933

Audio Codec

Motorola DSP56303EVM Technical Summary 3-9

Figure 3-8. Codec Digital Interface Connections

Table 3-2. JP5 Jumper Block Options

Table 3-3. JP4 Jumper Block Options

The serial interface of the codec transfers digital audio data and control data into and out
of the device. The codec communicates with the DSP56303 through the ESSI0 for the data
information and through the ESSI1 for the control information. The codec has three modes

JP5 DSP Signal Name Code Signal Name

1—2 SCK0 SCLK

3—4 SC00 RESET

5—6 STD0 SDIN

7—8 SRD0 SDOUT

9—10 SC01 —

11—12 SC02 SSYNC

JP4 DSP Signal Name Code Signal Name

1—2 SCK1 —

3—4 SC10 CCS

5—6 STD1 —

7—8 SRD1 —

9—10 SC12 CDIN

11—12 SC11 CCLK

STD0

SRD0

SCK0

SC00

SC02

SDIN

SDOUT

SCLK

RESET

SSYNC

DSP56303 CS4218

SC10 MF4/CCS

SC11 MF3/CCLK

SC12 MF2/CDIN

AA1934

3-10 DSP56303EVM User’s Manual Motorola

Command Converter

of serial operation that are selected by the serial mode select SMODE1, SMODE2, and
SMODE3 pins. The SMODE pins on the DSP56303EVM are set to enable serial mode 4,
which separates the audio data from the control data. The SMODE pins are also set to
enable the master sub-mode with 32-bit frames, the first 16 bits being the left channel, and
the second 16 bits being the right channel.

The DSP56303 ESSI0 transfers the data information to and from the codec. The
DSP56303 serial transmit data (STD0) pin transmits data to the codec. The DSP56303
serial receive data (SRD0) pin receives data from the codec. These two pins are connected
to the codec serial port data in (SDIN) and serial port data out (SDOUT) pins,
respectively. In master sub-mode, the codec serial port clock (SCLK) pin provides the
serial bit rate clock for the ESSI0 interface. It is connected to the DSP56303 bidirectional
serial clock (SCK0) pin. The DSP56303 serial control 0 (SC00) pin is programmed to
control the codec reset signal RESET. The serial control 2 (SC02) pin is connected to the
codec serial port sync signal (SSYNC) signal. A rising edge on SSYNC indicates that a
new frame is about to start.

The DSP56303 ESSI1 pins are used as general purpose i/o (GPIO) signals to transfer the
control data to the codec. The control data needs to be transferred only when it changes.
The DSP56303 serial control 0 (SC10) pin is programmed to control the codec
multi-function pin 4 or the control data chip select pin, MF4/CCS. This pin must be low
for entering control data. The serial control 1 (SC11) pin connects to the codec
multi-function pin 3 or the control data clock pin, MF3/CCLK. The control data is
inputted on the rising edge of CCLK. The serial control 2 (SC12) pin is connected to the
codec multi-function pin 2 or the control data input pin, MF2/CDIN. This pin contains the
control data for the codec.

3.5 Command Converter

The DSP56303EVM uses Motorola’s DSP56002 to perform JTAG/OnCE command
conversion. The DSP56002 serial communications interface (SCI) communicates with the
host PC through an RS-232 connector. The DSP56002 SCI receives commands from the
host PC. The set of commands may include read data, write data, reset OnCE module,
reset DSP56303 (the HA2 pin of the DSP56002 is then used to reset the DSP56303),
request OnCE module, or release OnCE module. The DSP56002 command converter
software interprets the commands received from the PC and sends a sequence of
instructions to the DSP56303’s JTAG/OnCE port. The DSP56303 may then continue to
receive data or it may transmit data back to the DSP56002. The DSP56002 sends a reply
to the host PC to give status information. The set of replies may include “acknowledge
good”, “acknowledge bad”, “in debug mode”, “out of debug mode”, or “data read”. When
the DSP56303 is in the debug state, the red debug LED (LED2) is illuminated.

Command Converter

Motorola DSP56303EVM Technical Summary 3-11

The DSP56002 connects to the DSP56303 JTAG/OnCE port through the shorting jumper
on J8. Table 3-4 shows the JTAG enable/disable options. The jumper must be present in
J8 to use the DSP56002 as the command converter. Refer to Figure 3-1 on page 3-2 for the
location of J8 on the DSP56303EVM and to Figure 3-2 on page 3-3 for a functional
diagram. Figure 3-9 shows the RS-232 serial interface diagram. Table 3-5 shows the
RS-232 connectors pinout, (P2).

Table 3-4. On-Board JTAG Enable/Disable Option

.

Figure 3-9. RS-232 Serial Interface

Table 3-5. Debug RS-232 Connector (P2) Pinout

Maxim’s 3 V Powered RS-232 Transceiver MAX212 at U11 is used to transmit the
signals between the host PC and the DSP56002. Serial data is transmitted from the host
PC transmitted data (TD) signal and received on the DSP56002 receive data (RXD) pin.
Serial data is similarly transmitted from the DSP56002 transmit data (TXD) signal and
received on the host PC received data (RD) signal. The data terminal ready (DTR) pin
asserts the RESET pin of the DSP56002.

J8 Option Selected

1–2 On–Board Command Converter Enabled

OPEN On–Board Command Converter Disabled

Pin
Number

DSP Signal
Name

Pin Number
DSP Signal

Name

1 — 6 —

2 TxD 7 —

3 RxD 8 —

4 RESET 9 —

5 GND

DSP56002 RS-232 TRANSCEIVER

RXD

TXD

TD

RD

HOST PC

RESET DTR

R4OUT

T2IN

R5OUT

R4IN

T2OUT

R5IN

AA1935

3-12 DSP56303EVM User’s Manual Motorola

Off-Board Interfaces

As an option, the DSP56303EVM 14-pin JTAG/OnCE connector at J6 allows the user to
connect an ADS command converter card directly to the DSP56303EVM, if the
DSP56002 command converter software is not used (J8 jumper removed). Pin 8 has been
removed from J6 so that the cable cannot be connected to the DSP56303EVM incorrectly.
Table 3-6 shows the JTAG/OnCE (J6) connector pinout. The JTAG cable from the ADS
command converter is similarly keyed so that the cable cannot be connected to the
DSP56303EVM incorrectly.

Table 3-6. JTAG/OnCE (J6) Connector Pinout

3.6 Off-Board Interfaces

The DSP56303EVM provides interfaces with off-board devices via its on-chip peripheral
ports. Most of the DSP ports are connected to headers on the EVM to facilitate direct
access to these pins by using connectors or jumpers.

3.6.1 Serial Communication Interface Port (SCI)

Connection to the DSP’s SCI port can be made at J7. Refer to Table 3-7 for pinout. The
signals at J7 are +3.3 V signals straight from the DSP. If RS-232 level signals are required,
jumpers should be installed at J7. Refer to Table 3-8 to route the DSP’s SCI signals
through an RS-232 level converter to P1. The pinout of P1 is shown in Table 3-9.

By installing a jumper at J10, the SCI port will be clocked by the on-board 153.6 kHz
oscillator instead of being clocked externally via the serial port connector, P1, or internally
by an SCI timer. If J10 is installed, jumper 3–4 on J7 must be removed.

Pin Number DSP Signal Name Pin Number DSP Signal Name

1 TDI 2 GND

3 TDO 4 GND

5 TCK 6 GND

7 — 8 KEY-PIN

9 PRESET 10 TMS

11 +3.3 V 12 —

13 DEZ 14 TRST

Off-Board Interfaces

Motorola DSP56303EVM Technical Summary 3-13

Table 3-7. SCI Header (J7) Pinout

Table 3-8. J7 Jumper Options

Table 3-9. DSP Serial Port (P1) Connector Pinout

3.6.2 Enhanced Synchronous Serial Port 0 (ESSI0)

Connection to the DSP’s ESSI0 port can be made at J5. Refer to Table 3-10 for the
header’s pinout.

Pin Number
DSP Signal

Name
Pin Number

DSP Signal
Name

1 RxD 2 —

3 SCLK 4 —

5 TxD 6 —

J7 DSP Signal Name

1—2 RxD

3—4 SCLK

5—6 TxD

Pin Number DSP Signal Name Pin Number DSP Signal Name

1 — 6 —

2 TxD 7 SCLK

3 RxD 8 —

4 — 9 —

5 GND

3-14 DSP56303EVM User’s Manual Motorola

Off-Board Interfaces

Table 3-10. ESSI0 Header (J5) Pinout

3.6.3 Enhanced Synchronous Serial Port 1 (ESSI1)

Connection to the DSP’s ESSI1 port can be made at J4. Refer to Table 3-11 for the
header’s pinout.

Table 3-11. ESSI0 Header (J4) Pinout

3.6.4 Host Port (HI08)

Connection to the DSP’s HI08 port can be made at J3. Refer to Table 3-12 for the header’s
pinout.

Pin Number
DSP Signal

Name
Pin Number

DSP Signal
Name

1 SCK0 2 —

3 SC00 4 —

5 STD0 6 —

7 SRD0 8 —

9 SC01 10 —

11 SC02 12 —

Pin Number DSP Signal Name Pin Number DSP Signal Name

1 SCK1 2 —

3 SC10 4 —

5 STD1 6 —

7 SRD1 8 —

9 SC12 10 —

11 SC11 12 —

Mode Selector

Motorola DSP56303EVM Technical Summary 3-15

Table 3-12. HI08 Header (J3) Pinout

3.6.5 Expansion Bus Control

Connection to the DSP’s expansion BUS control signals can be made at J2. Refer to
Table 3-13 for header’s pinout.

Table 3-13. Expansion Bus Control Signal Header (J2) Pinout

3.7 Mode Selector

Boot Up mode selection for the DSP56303 is made by jumper selections on header J1.
Refer to Table 3-14 for header J1 jumper options.

Pin Number DSP Signal Name Pin Number DSP Signal Name

1 H0 2 H1

3 H2 4 H3

5 H4 6 GND

7 H5 8 H6

9 H7 10 RESET

11 HA0 12 HA1

13 HA2 14 HCS

15 HREQ 16 HDS

17 +3.3 V 18 HACK

19 HRW 20 GND

Pin Number DSP Signal Name Pin Number DSP Signal Name

1 +3.3 V 2 RD

3 WR 4 BG

5 BB 6 BR

7 TA 8 BCLK

9 BCLK 10 CAS

11 CLKOUT 12 AA1

13 AA0 14 AA2

15 AA3 16 GND

3-16 DSP56303EVM User’s Manual Motorola

Mode Selector

Table 3-14. Boot Mode Selection Options

Mode
Number

J1
Boot Mode Selected

D 1-2 C 3-4 B 5-6 A 7-8

8 OPEN JUMP JUMP JUMP Jump to program at $008000

1 OPEN JUMP JUMP OPEN Bootstrap from byte-wide memory

2 OPEN JUMP OPEN JUMP Bootstrap from SCI

4 OPEN OPEN JUMP JUMP HI08 bootstrap in ISA/DSP5630X mode

5 OPEN OPEN JUMP OPEN HI08 Bootstrap in HC11 non-multiplexed bus
mode

6 OPEN OPEN OPEN JUMP HI08 Bootstrap in 8051 multiplexed bus mode.

7 OPEN OPEN OPEN OPEN HI08 Bootstrap in MC68302 bus mode.

Motorola DSP56303EVM Schematics A-1

Appendix A
DSP56303EVM Schematics

A-2 DSP56303EVM User’s Manual MOTOROLA

F
ig

u
re

A
-1

.
 D

S
P

56
30

3

$ $

% %

& &

' '

((

�
�

�
�

�
�

�
�

�
'

&
%

$

%
2
2
7
6
7
5
$
3

)
5
2
0

%
<
7
(
�
:
,
'
(

0
(
0
2
5
<

�
�

�

�
�

�
��

�

�

�

� �

� �

%
2
2
7
6
7
5
$
3

7
+
5
2
8
*
+

6
&
,

+
,
�
�

%
2
2
7
6
7
5
$
3

,
1

,
6
$
�
'
6
3
�
�
�
�
;

5
(
'

7
,
0
(
5

,
5
4
'
?

,
5
4
$
?

5
(
6
(
7
6
:
,7
&
+

0
2
'
(

6
(
/
(
&
7

-
7
$
*
�2
Q
&
(

0
2
'
(
6
H
OH
F
W

(
;
7
%
8
6
&
2
1
7
5
2
/

+
2
6
7

7
'
,

P
X
V
W

E
H

U
R
X
W
H
G

R
Q

W
K
H

J
U
R
X
Q
G

S
O
D
Q
H

Z
�
R

Y
L
D
V

H
[
F
H
S
W

X
Q
G
H
U

W
K
H

3
%
*
$

S
D
U
W

'
6
3
�
�
�
�
�

%

'
6
3
�
�
�
�
�
�'
6
1

7
X
H
V
G
D
\
�
1
R
Y
H
P
E
H
U
�
�
�
�
�
�
�

'
6
3
7
R
R
OV

�
�

�
��

:
LU
H
OH
V
V
6
X
E
V
F
U
LE
H
U
'
LY
LV
LR
Q

�
�
�
�
:
LO
OL
D
P

&
D
Q
Q
R
Q
'
UL
Y
H
:
H
V
W

$
X
V
WL
Q
�
7
;
�
�
�
�
�
�
��
�
�
�

��
�
�
��
�
�
��
�
�
�

)
$
;
�
��
�
�
��
�
�
��
�
�
�

0
'
�2
(
�
�
�

7
LW
OH 6
L]
H

'
R
F
X
P
H
Q
W

1
X
P
E
H
U

'
D
WH
�

'
H
V
LJ
Q
H
U�

5
H
Y
�

6
K
H
H
W

R
I

7
&
.

%
*
?

7
$
?

%
%
?

'
(
?

5
(
6
(
7
?

0
2
'
$

0
2
'
%

0
2
'
&

0
2
'
'

'
$
%
�
�

7
,2
�

7
,2
�

'
$
%
�
�

'
$
%
�

'
$
%
�

'
'
%
�
�

'
'
%
�

'
'
%
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
$
%
�

'
'
%
�

0
2
'
'

'
$
%
�
�

'
$
%
�
�

'
$
%
�

'
$
%
�

'
$
%
�
�

'
'
%
�

'
'
%
�

'
'
%
�
�

'
'
%
�
�

7
,2
�

5
(
6
(
7
?

'
'
%
�
�

'
$
%
�

'
'
%
�
�

0
2
'
&

0
2
'
%

'
$
%
�
�

'
'
%
�

'
$
%
�
�

'
'
%
�

'
$
%
�

'
'
%
�
�

'
'
%
�

'
'
%
�
�

'
'
%
�
�

'
$
%
�

'
'
%
�

'
'
%
�

'
$
%
�
�

'
$
%
�

'
'
%
�
�

'
$
%
�

0
2
'
$

5
(
6
(
7
?

'
(
?

7
'
2

7
'
,

5
(
6
(
7
?

�
�
��
�
�
0
+
=

7
0
6

7
5
6
7
?

'
$
%
>�
��
�
�
@

'
'
%
>�
��
�
�
@

5
'
?

%
5
?

%
&
/
.

&
$
6
?

$
$
�

%
%
?

7
$
?

:
5
?

%
&
/
.
?

&
/
.
2
8
7

$
$
�

$
$
�

%
*
?

+
�

+
�

+
�

+
�

+
�

+
$
�

+
$
�

+
5
:

+
�

+
�

+
�

5
(
6
(
7
?

+
$
�

+
&
6
?

+
'
6
?

+
$
&
.
?

+
5
(
4
?

7
&
.

$
$
�

+
5
:

+
'
6
?

+
�

6
&
.
�

+
�

+
�

6
5
'
�

6
&
/
.

+
&
6
?

&
$
6
?

6
&
.
�

5
;
'

%
*
?

%
%
?

6
7
'
�

7
$
?

%
5
?

%
&
/
.

&
/
.
2
8
7

+
�

$
$
�

7
;
'

$
$
�

%
&
/
.
?

6
5
'
�

$
$
�

$
$
�

6
&
�
�

6
7
'
�

:
5
?

+
$
�

+
�

+
$
�

+
5
(
4
?

+
$
�

5
'
?

6
&
�
�

6
&
�
�

6
&
�
�

+
$
&
.
?

+
�

+
�

+
�

6
&
�
�

6
&
�
�

�
�
��
9

�
�
��
9

�
�
��
9

�
�
��
9

�
�
��
9 &
R
UH
9

&
R
UH
9

�
�
��
9

5
�

�
.

5
�
�

�
�
�

-
� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

&
�
�

�
��
8
)

�
��
9

6
:
�

6
:
�

6
:
�

-
� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

-
� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

5
�
�

�
�
.

5
�
�

�
�
.

5
�

�
�
.

5
�

�
�
.

5
�
�

�
�
.

5
�
�

�
�
.

5
�
�

�
�
.

5
�

�
�
.

5
�

�
�
.

5
�

�
�
.

8
�

0
&
�
�
�
�
�
'
��

5
(
6
(
7

�

*
1
'

�
,1

�

7
3
� �

7
3
� �

/
(
'
�

&
�
�

�
��
�
8
)

-
�

�
�

�
�

�
�

�
�

8
�

'
6
3
�
�
�
�
�
*
&
�
�
�

+
5
:

-
�

+
$
�

0
�

+
'
6

-
�

+
�

1
�

+
&
6

/
�

+
$
�

0
�

+
5
(
4

.
�

7
,2
�

.
�

+
$
&
.

-
�

+
$
�

0
�

&
/
.
2
8
7

0
�

+
�

1
�

3
,1
,7

'
�

5
(
6
(
7

1
�

3
&
$
3

3
�

+
�

3
�

7
,2
�

/
�

+
�

1
�

$
�
�

(
�
�

+
�

3
�

7
,2
�

/
�

+
�

1
�

0
2
'
'

%
�

+
�

3
�

'
�
�

$
�

+
�

0
�

0
2
'
&

&
�

$
�
�

(
�
�

0
2
'
%

$
�

5
'

0
�
�

0
2
'
$

&
�

$
�
�

)
�
�

'
�
�

&
�

$
�
�

)
�
�

:
5

0
�
�

$
�
�

*
�
�

'
�
�

%
�

$
�
�

*
�
�

'
�
�

%
�

$
�
�

+
�
�

$
$
�

1
�

$
�
�

+
�
�

'
�
�

$
�

$
�
�

-
�
�

$
$
�

3
�

$
�
�

-
�
�

'
�
�

&
�

$
�
�

-
�
�

'
�
�

%
�

$
�
�

.
�
�

$
$
�

3
�
�

$
�
�

.
�
�

'
�
�

$
�

$
�
�

/
�
�

$
$
�

1
�
�

$
�
�

/
�
�

'
�
�

%
�

$
�
�

0
�
�

'
�
�

$
�
�

$
�
�

0
�
�

7
$

3
�
�

$
�
�

1
�
�

'
�
�

%
�
�

%
5

1
�
�

'
�
�

&
�
�

'
�
�

$
�
�

%
*

3
�
�

'
�
�

%
�
�

%
%

3
�
�

'
�
�

$
�
�

'
�
�

%
�
�

&
$
6

1
�

'
�
�

$
�
�

%
&
/
.

1
�
�

'
�
�

&
�
�

'
�
�

%
�
�

%
&
/
.

0
�
�

'
�
�

&
�
�

6
&
�
�

)
�

'
�
�

&
�
�

'
�
�

'
�
�

6
&
�
�

'
�

'
�
�

'
�
�

6
&
�
�

&
�

'
�
�

(
�
�

6
&
.
�

+
�

6
5
'
�

(
�

6
7
'
�

(
�

6
&
�
�

)
�

6
&
�
�

$
�

6
&
�
�

%
�

6
&
.
�

*
�

6
5
'
�

%
�

6
7
'
�

&
�

5
;
'

)
�

7
;
'

*
�

6
&
/
.

*
�

7
'
,

%
�

7
'
2

$
�

7
&
.

&
�

'
(

'
�

7
5
6
7

%
�

7
0
6

$
�

;
7
$
/

3
�

(
;
7
$
/

0
�

8
�
�

*
1
'

'
�

*
1
'

'
�

*
1
'

'
�

*
1
'

'
�

*
1
'

'
�

*
1
'

'
�

*
1
'

'
�
�

*
1
'

'
�
�

*
1
'

(
�

*
1
'

(
�

*
1
'

(
�

*
1
'

(
�

*
1
'

(
�

*
1
'

(
�

*
1
'

(
�
�

*
1
'

(
�
�

*
1
'

)
�

*
1
'

)
�

*
1
'

)
�

*
1
'

)
�

*
1
'

)
�

*
1
'

)
�

*
1
'

)
�
�

*
1
'

)
�
�

*
1
'

*
�

*
1
'

*
�

*
1
'

*
�

*
1
'

*
�

*
1
'

*
�

*
1
'

*
�

*
1
'

*
�
�

*
1
'

*
�
�

*
1
'

+
�

*
1
'

+
�

*
1
'

+
�

*
1
'

+
�

*
1
'

+
�

*
1
'

+
�

*
1
'

+
�
�

*
1
'

+
�
�

*
1
'

-
�

*
1
'

-
�

*
1
'

-
�

*
1
'

-
�

*
1
'

-
�

*
1
'

-
�

*
1
'

-
�
�

*
1
'

-
�
�

*
1
'

.
�

*
1
'

.
�

*
1
'

.
�

*
1
'

.
�

*
1
'

.
�

*
1
'

.
�

*
1
'

.
�
�

*
1
'

.
�
�

*
1
'

/
�

*
1
'

/
�

*
1
'

/
�

*
1
'

/
�

*
1
'

/
�

*
1
'

/
�

*
1
'

/
�
�

*
1
'

/
�
�

*
1
'

1
�

*
1
'

3
�

9
&
&

+
�
�

9
&
&

.
�
�

9
&
&

/
�
�

9
&
&

1
�
�

9
&
&

3
�

9
&
&

$
�

9
&
&

&
�

9
&
&

&
�
�

9
&
&

'
�
�

9
&
&

0
�

9
&
&

0
�

9
&
&

)
�
�

9
&
&

+
�

9
&
&

0
�

9
&
&

&
�

9
&
&

*
�
�

9
&
&

+
�

9
&
&

1
�

9
&
&

(
�

9
&
&

.
�

MOTOROLA DSP56303EVM User’s Manual A-3

F
ig

u
re

A
-2

.
 E

xt
er

n
al

 M
em

o
ry

$ $

% %

& &

' '

((

�
�

�
�

�
�

�
�

(
[
WH
UQ
D
O
0
H
P
R
U\

%

'
6
3
�
�
�
�
�
�'
6
1

7
X
H
V
G
D
\
�
1
R
Y
H
P
E
H
U
�
�
�
�
�
�
�

'
6
3
7
R
R
OV

�
�

�
��

:
LU
H
OH
V
V
6
X
E
V
F
UL
E
H
U
'
LY
LV
LR
Q

�
�
�
�
:
LO
OL
D
P

&
D
Q
Q
R
Q
'
UL
Y
H
:
H
V
W

$
X
V
WL
Q
�
7
;
�
�
�
�
�
�
��
�
�
�

��
�
�
��
�
�
��
�
�
�

)
$
;
�
��
�
�
��
�
�
��
�
�
�

0
'
�2
(
�
�
�

7
LW
OH 6
L]
H

'
R
F
X
P
H
Q
W

1
X
P
E
H
U

'
D
WH
�

'
H
V
LJ
Q
H
U�

5
H
Y
�

6
K
H
H
W

R
I

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�
�

'
'
%
�

'
'
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
$
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
�

'
'
%
>�
��
�
�
@

'
$
%
>�
��
�
�
@

'
'
%
>�
��
�
�
@

'
$
%
>�
��
�
�
@

:
5
?

5
'
?

$
$
�

$
$
�

:
5
?

5
'
?

�
�
��
9

�
�
��
9

�
�
��
9

8
�

$
7
�
�
/
9
�
�
�
$
��
�
7
&

'
�

�
�

$
�
�

�
�

'
�

�
�

$
�
�

�
�

'
�

�
�

$
�
�

�

'
�

�
�

$
�
�

�

'
�

�
�

$
�
�

�
�

'
�

�
�

$
�
�

�

'
�

�
�

$
�
�

�
�

'
�

�
�

$
�
�

�

$
�
�

�

$
�
�

�
�

$
�
�

�
�

$
�
�

�
�

$
�
�

�
�

$
�
�

�
�

$
�
�

�
�

$
�
�

�
�

$
�
�

�
�

:
(

�

2
(

�
�

&
(

�
�

9
&
&

�

*
1
'

�
�

8
�
�

9
&
&

�
�

9
&
&

�
�

9
&
&

�
�

9
&
&

�
�

9
&
&

�
�

9
&
&

�
�

9
&
&

�
�

9
&
&

�
�

*
1
'

�
�

*
1
'

�
�

*
1
'

�
�

*
1
'

�
�

*
1
'

�
�

*
1
'

�
�

*
1
'

�
�

*
1
'

�
�

8
� *
6
�
�
�
�
�
7
��
�

$
�

�
�

$
�

�
�

$
�

�
�

$
�

�
�

$
�

�
�

$
�

�
�

$
�

�
�

$
�

�
�

$
�

�
�

$
�

�
�

$
�
�

�
�

$
�
�

�
�

$
�
�

�
�

$
�
�

�
�

$
�
�

�
�
�

$
�
�

�
�

9
�6

�
�

:
(

�
�

&
(
�

�
�

&
(
�

�
�

2
(

�
�

'
�

�
�

'
�

�
�

'
�

�
�

'
�

�
�

'
�

�
�

'
�

�
�

'
�

�
�

'
�

�
�

'
�

�
�

'
�

�
�

'
�
�

�
�

'
�
�

�
�

'
�
�

�

'
�
�

�

'
�
�

�

'
�
�

�

'
�
�

�
�

'
�
�

�
�

'
�
�

�
�

'
�
�

�
�

'
�
�

�
�

'
�
�

�
�

'
�
�

�
�

'
�
�

�
�

;
�<

�
�

A-4 DSP56303EVM User’s Manual MOTOROLA

F
ig

u
re

A
-3

.
 R

S
23

2
In

te
rf

ac
e

$ $

% %

& &

' '

((

�
�

�
�

�
�

�
�

'
6
3
6
&
,
WR
5
6
�
�
�
(
Q
D
E
OH

'
(
%
8
*
6
(
5
,$
/
3
2
5
7

'
6
3
6
(
5
,$
/
3
2
5
7

9
H
U
V
L
R
Q

�
�
�

R
I

V
F
K
H
P
D
W
L
F

U
H
P
R
Y
H
G

5
H
V
H
W

V
L
J
Q
D
O

I
U
R
P

S
L
Q

�
R
I

G
H
Y
L
F
H

8
�
�
�

5
H
P
R
Y
H
G

V
L
J
Q
D
O

F
R
Q
Q
H
F
W
L
Q
J

S
L
Q

�
R
I

3
�

D
Q
G

S
L
Q

�
�

R
I

8
�
�
�

*
U
R
X
Q
G
H
G

S
L
Q

�
�

R
I

8
�
�

5
6
�
�
�
,Q
WH
U
ID
F
H

%

'
6
3
�
�
�
�
�
�'
6
1

7
X
H
V
G
D
\
�
1
R
Y
H
P
E
H
U
�
�
�
�
�
�
�

'
6
3
7
R
R
OV

�
�

�
��

:
LU
H
OH
V
V
6
X
E
V
F
U
LE
H
U
'
LY
LV
LR
Q

�
�
�
�
:
LO
OL
D
P

&
D
Q
Q
R
Q
'
UL
Y
H
:
H
V
W

$
X
V
WL
Q
�
7
;
�
�
�
�
�
�
��
�
�
�

��
�
�
��
�
�
��
�
�
�

)
$
;
�
��
�
�
��
�
�
��
�
�
�

0
'
�2
(
�
�
�

7
LW
OH 6
L]
H

'
R
F
X
P
H
Q
W

1
X
P
E
H
U

'
D
WH
�

'
H
V
LJ
Q
H
U�

5
H
Y
�

6
K
H
H
W

R
I

5
;
'

6
&
/
.

5
;
'
B
�
�
�

5
(
6
(
7
B
�
�
�
?

7
;
'

7
;
'
B
�
�
�

�
�
��
9 �
�
��
9

�
�
��
9

/
�

�
�
X
+

&
�
�

�
��
�
X
)

&
�
�

�
��
�
X
)

&
�
�

�
��
X
)

3
�

�

�

�

�

�

�

�

�

�

5
�
�

�
��
.

-
�

�
�

�
�

�
�

3
�

�

�

�

�

�

�

�

�

�

0
$
;
�
�
�
&
$
*

8
�
�

5
�
2
8
7

�
5
�
,1

�
�

5
�
2
8
7

�

7
�
2
8
7

�
�

5
�
2
8
7

�
5
�
,1

�
�

5
�
2
8
7

�

7
�
,1

�
�

5
�
2
8
7

�
�

5
�
,1

�
�

7
�
2
8
7

�
�

5
�
,1

�
�

9
�

�
�

5
�
,1

�
�

7
�
2
8
7

�
�

7
�
,1

�
�

9
�

�
�

7
�
,1

�
�

9
&
&

�

*1'
��

6
'

�

(
1

�

/1
�

/3
�

8
�
$

0
&
�
�
+
&
7
�
�
$
'

�
�

8
�
%

0
&
�
�
+
&
7
�
�
$
'

�
�

'
�

�
1
�
�
�
�

'
�

�
1
�
�
�
�

8
�
'

0
&
�
�
+
&
7
�
�
$
'

�
�

8
�
&

0
&
�
�
+
&
7
�
�
$
'

�
�

8
�
(

0
&
�
�
+
&
7
�
�
$
'

�
�

�
�

8
�
)

0
&
�
�
+
&
7
�
�
$
'

�
�

�
�

MOTOROLA DSP56303EVM User’s Manual A-5

F
ig

u
re

A
-4

.
 C

o
m

m
an

d
 C

o
n

ve
rt

er

$ $

% %

& &

' '

((

�
�

�
�

�
�

�
�

5
(
'

'
(
%
8
*

�
�
��
�
�
�
0
+
]
2
V
F
LO
OD
WR
U

�
�
��
�
�
0
+
]
2
V
F
LO
OD
WR
U

2
1
�%
2
$
5
'

&
2
0
0
$
1
'
&
2
1
9
(
5
7
(
5

(
1
$
%
/
(
-
8
0
3
(
5

(
Q
D
E
O
H

6
\
Q
F
K
U
R
Q
R
X
V

&
O
R
F
N

X
V
H
G

G
X
U
L
Q
J

'
6
3
�
�
�
�
�

%
2
2
7

�
�
�
�
�
�
0
+
]

�
�
�
�
�
.
+
]

&
R
P
P
D
Q
G
&
R
Q
Y
H
U
WH
U

%

'
6
3
�
�
�
�
�
�'
6
1

7
X
H
V
G
D
\
�
1
R
Y
H
P
E
H
U
�
�
�
�
�
�
�

'
6
3
7
R
R
OV

�
�

�
��

:
LU
H
OH
V
V
6
X
E
V
F
U
LE
H
U
'
LY
LV
LR
Q

�
�
�
�
:
LO
OL
D
P

&
D
Q
Q
R
Q
'
UL
Y
H
:
H
V
W

$
X
V
WL
Q
�
7
;
�
�
�
�
�
�
��
�
�
�

��
�
�
��
�
�
��
�
�
�

)
$
;
�
��
�
�
��
�
�
��
�
�
�

0
'
�2
(
�
�
�

7
LW
OH 6
L]
H

'
R
F
X
P
H
Q
W

1
X
P
E
H
U

'
D
WH
�

'
H
V
LJ
Q
H
U�

5
H
Y
�

6
K
H
H
W

R
I

�
�
��
�
�
�
0
+
]

�
�
�
��
.
+
]

&
.
2
8
7

5
(
6
(
7
?

5
(
6
(
7
B
�
�
�
?

5
;
'
B
�
�
�

7
'
2

7
;
'
B
�
�
�

7
0
6

7
5
6
7
?

7
'
,

'
(
?

7
&
.

�
�
��
�
�
0
+
=

6
&
/
.

�
�
9

�
�
9

�
�
9

�
�
9

�
�
9

�
�
9

�
�
9

�
�
9

�
�
9

�
�
9

�
�
9

&
�
�
�

�
��
X
)

&
�
� �
�
�
S
)

5
�
�

�
�
.

5
�
�

�
�
.

5
�
�

�
�
.

5
�
�

�
�
.

5
�
�

�
�
.

5
�
�

�
�
.

5
�
�

�
.

&
�
�
�

�
��
X
)

5
�
�

�
�
.

7
3
�

�

<
�

*
1
'

�
*
1
'

�

9
&
&

�
9
&
&

�

9
&
&

�
9
&
&

�

9
&
&

�
9
&
&

�

8
�

'
6
3
�
�
�
�
�
3
9
�
�

3,17
��

&.3
��

3&$3
��

(;7$/
��

&.287
�

5;'�3&�
��

7;'�3&�
��

6&/.�3&�
��

65'�3&�
��

6&��3&�
��

67'�3&�
��

6&��3&�
��

6&.�3&�
��

&2�3&�
��

:
7

�
�

%
5

�
�

+
(
1
�3
%
�
�

�
�

+
$
�
�3
%
�
�

�
�

0
2
'
&
�1
0
,

�

0
2
'
%
�,
5
4
%

�

+
$
�
�3
%
�

�
�

0
2
'
$
�,
5
4
$

�

+
$
�
�3
%
�

�
�

+
5
�:

�
�

5
(
6
(
7

�
�

7
,2

�
�

'
5

�
�

'
6
&
.
�2
6
�

�
�

'
6
,�
2
6
2

�
�

'
6
2

�
�

8
�

4
6
�
�
�
�
4

%
�

�
$
�

�

%
�

�
$
�

�

%
�

�
$
�

�

%
�

�
$
�

�

%
�

�
�

$
�

�
�

$
�

�
�

%
�

�
�

$
�

�
�

$
�

�
�

$
�

�
�

$
�

�
�

%
(
$

�

%
(
%

�
�

*1'
��

9&&
��

%
�

�
�

%
�

�
�

%
�

�
�

%
�

�
�

8
�
�

*
1
'
&
.

�

*
1
'
3

�
�

*
1
'
4

�
�

*
1
'
+

�
�

*
1
'
+

�
�

*
1
'
+

�
�

*
1
'
+

�
�

*
1
'
6

�
�

*
1
'
6

�
�

*
1
'
4

�
�

*
1
'
&

�
�

*
1
'
1

�
�

*
1
'
4

�
�

*
1
'
1

�
�

*
1
'
'

�
�
�

*
1
'
4

�
�
�

*
1
'
'

�
�
�

*
1
'
'

�
�
�

*
1
'
'

�
�
�

*
1
'
'

�
�
�

*
1
'
1

�
�
�

*
1
'
1

�
�

*
1
'
1

�
�

*
1
'
'

�
�
�

9
F
F
F
N

�

9
F
F
S

�
�

9
F
F
T

�
�

9
F
F
K

�
�

9
F
F
K

�
�

9
F
F
V

�
�

9
F
F
T

�
�

9
F
F
F

�
�

9
F
F
Q

�
�

9
F
F
T

�
�

9
F
F
Q

�
�

9
F
F
Q

�
�
�

9
F
F
G

�
�
�

9
F
F
T

�
�
�

9
F
F
G

�
�
�

9
F
F
G

�
�
�

<
�

(
Q
D
E
OH

�

*
1
'

�
2
X
W

�

9
F
F

�

/
(
'
�

'
�

)
0
�
�
�
�

-
�

��

-
�
� � �

A-6 DSP56303EVM User’s Manual MOTOROLA

F
ig

u
re

A
-5

.
 A

u
d

io
 C

o
d

ec

$ $

% %

& &

' '

((

�
�

�
�

�
�

�
�

0
)
�

0
)
�

0
)
�

)
6

�
.
+
=
�

�
�

�

�
�

�
�

�

�
�

�

��

� �
� �

� �

�
� �

�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

6
(
5
,
$
/

0
2
'
(

�
6
(
/
(
&
7
(
'

0
$
6
7
(
5
�

�
�
%
,
7
6

3
(
5

)
5
$
0
(

/L
QH

2
XW

6
WH
UH
R
-D
FN

+
HD

GS
KR

QH
2
XW

6
WH
UH
R
-D
FN

/L
QH

,Q

6
WH
UH
R
-D
FN

6
DP

SO
H
6
HO
HF
W

(
6
6
,�

(
6
6
,�

$
X
G
LR
&
R
G
H
F

%

'
6
3
�
�
�
�
�
�'
6
1

7
X
H
V
G
D
\
�
1
R
Y
H
P
E
H
U
�
�
�
�
�
�
�

'
6
3
7
R
R
OV

�
�

�
��

:
LU
H
OH
V
V
6
X
E
V
F
U
LE
H
U
'
LY
LV
LR
Q

�
�
�
�
:
LO
OL
D
P

&
D
Q
Q
R
Q
'
UL
Y
H
:
H
V
W

$
X
V
WL
Q
�
7
;
�
�
�
�
�
�
��
�
�
�

��
�
�
��
�
�
��
�
�
�

)
$
;
�
��
�
�
��
�
�
��
�
�
�

0
'
�2
(
�
�
�

7
LW
OH 6
L]
H

'
R
F
X
P
H
Q
W

1
X
P
E
H
U

'
D
WH
�

'
H
V
LJ
Q
H
U�

5
H
Y
�

6
K
H
H
W

R
I

5
,1
*
B
,1

7
,3
B
2
8
7

5
,1
*
B
3
+
1

7
,3
B
3
+
1

0
)
�

7
,3
B
,1

0
)
�

0
)
�

5
,1
*
B
2
8
7

&
'
,1

6
&
�
�

6
&
�
�

&
2
'
(
&
B
6
&
/
.

6
5
'
�

6
&
�
�

&
2
'
(
&
B
6
'
,1

&
2
'
(
&
B
)
6
<
1
&�
�
��
�
�
0
+
=

&
2
'
(
&
B
6
&
/
.

&
2
'
(
&
B
5
(
6
(
7

&
&
6
?

&
&
6
?

6
&
�
�

&
&
/
.

6
7
'
�

&
&
/
.

6
&
.
�

6
&
�
�

&
2
'
(
&
B
6
'
2
8
7

6
7
'
�

6
&
.
�

&
2
'
(
&
B
5
(
6
(
7

&
2
'
(
&
B
6
'
2
8
7

&
2
'
(
&
B
)
6
<
1
&

&
2
'
(
&
B
6
'
,1

6
&
�
�

&
'
,1

6
5
'
�

�
�
9

�
�
��
9

�
�
��
9

�
�
��
9

�
�
��
9 �
�
��
9

�
�
��
9

�
�
��
9

�
�
9
$

�
�
��
9

�

&
�
�

�
�
�
X
)

�
��
9

5
�
�

�
��
�
.

�
�

�

&
�
�

�
�
X
)

�
��
9
'
&

�

&
�
�

�
X
)

�
�
9

5
�
�

�
�
��
.

�
�

&
�
�

�
��
�
X
)

5
�
�

�
�
��
.

-
� �

�
�

�
�

�

5
�
�

�
�
.

�
&
�
�

�
X
)

�
�
9

3
�

�
��
P
P

5
�
�

�
�
��
.

�
�

&
�
�

�
X
)

�
�
9

5
�
�

�
��
�
.

�
�

&
�
�

�
��
�
X
)

5
�
�

�
�
.

-
� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

&
�
�

�
�
�
S
)

�

&
�
�

�
�
�
X
)

�
��
9

5
�
�

�
�
��
.

�
�

5
�
�

�
��
�
.

�
�

&
�
�

�
��
�
�
�
X
)

5
�
�

�
�
��
.

&
�
�

�
��
�
X
)

3
�

�
��
P
P

&
�
�

�
�
�
S
)

&
�
�

�
��
�
�
�
X
)

5
�
�

�
�
.

5
�
�

�
�
.

-
� �

�
�

�
�

�
�

�
�

�
�

�
�

�
�

5
�
�

�
��
�
.

�
�

&
�
�

�
��
X
)

�

&
�
�

�
X
)

�
�
9

5
�
�

�
�
��
.

�
�

&
�
�

�
��
�
X
)

3
�

�
��
P
P

&
�
�

�
��
�
X
)

5
�
�

�
�
.

5
�
�

�
�
.

&
�
�

�
X
)

�
�
9

&
�
�

�
��
X
)

8
�

/
0
�
�
�
�
0

,1
B
$

�

,1
B
%

�

2
8
7
B
$

�

2
8
7
B
%

�

9''
�

*1'
�

6+87'1
�

%<3$66
�

8
�

&
6
�
�
�
�
�.
4

:)�
��

6:2'(�
��

:)�
��

&
/
.
,1

�
�

:)�
��

6:2'(�
��

0
)
�

�
�

6:2'(�
��

5
(
6
(
7

�
�

0
)
�

�
�

3
'
1

�

6
6
<
1
&

�
�

0
)
�

�
�

6
&
/
.

�
�

0
)
�

�
�

6
'
2
8
7

�
�

6
'
,1

�
�

0
)
�

�
�

5()%<
��

5()*1'
��

5
2
8
7

�

/
2
8
7

�
�

5
,1
�

�
�

/
,1
�

�
�

/
,1
�

�
�

5
,1
�

�
�

5
(
)
%
8
)

�
�

9
$

�
�

$
*
1
'

�
�

9
'

�
�

'
*
1
'

�
�

MOTOROLA DSP56303EVM User’s Manual A-7

F
ig

u
re

A
-6

.
 P

o
w

er
 S

u
p

p
ly

$ $

% %

& &

' '

((

�
�

�
�

�
�

�
�

*
5
(
(
1

3
2
:
(
5

$
&
�'
&
3
2
:
(
5
-
$
&
.

&
H
Q
W
H
U

3
L
Q

�
�

&
R
U
H

Y
R
O
W
D
J
H

V
H
O
H
F
W
R
U

3
R
Z
H
U
6
X
S
S
O\

%

'
6
3
�
�
�
�
�
�'
6
1

7
X
H
V
G
D
\
�
1
R
Y
H
P
E
H
U
�
�
�
�
�
�
�

'
6
3
7
R
R
OV

�
�

�
��

:
LU
H
OH
V
V
6
X
E
V
F
UL
E
H
U
'
LY
LV
LR
Q

�
�
�
�
:
LO
OL
D
P

&
D
Q
Q
R
Q
'
UL
Y
H
:
H
V
W

$
X
V
WL
Q
�
7
;
�
�
�
�
�
�
��
�
�
�

��
�
�
��
�
�
��
�
�
�

)
$
;
�
��
�
�
��
�
�
��
�
�
�

0
'
�2
(
�
�
�

7
LW
OH 6
L]
H

'
R
F
X
P
H
Q
W

1
X
P
E
H
U

'
D
WH
�

'
H
V
LJ
Q
H
U�

5
H
Y
�

6
K
H
H
W

R
I

�
�
9
$

�
�
9

�
�
��
9

�
�
��
9

9
&
&

�
�
��
9

�
�
��
9

&
R
U
H
9

&
�

�
��
�
X
)

�

&
�

�
�
�
�
X
)

�
�
9
'
&

&
�

�
��
�
X
)

�
&
�

�
�
X
)

�
�
9
'
&

/
�

)
(
5
5
,7
(
%
(
$
'

�
&
�

�
�
X
)

�
�
9
'
&

/
�

)
(
5
5
,7
(
%
(
$
'

/
�

)
(
5
5
,7
(
%
(
$
'

&
�

�
��
�
X
)

&
�

�
��
X
)

/
�

)
(
5
5
,7
(
%
(
$
'

5
�
�

�
�
�
�
�

5
�
�

�
�
�
�
�

�
&
�
�
�

�
�
X
)

�
��
9
'
&

/
�

)
(
5
5
,7
(
%
(
$
'

�
&
�
�
�

�
�
X
)

�
��
9
'
&

5
�

�
.

3
�

�
��
P
P� � �

8
�
�

0
&
�
�
�
�
�
'
7
�
�
��

9
,1

�

287
�

*1'
�

287
�

8
�
�

0
&
�
�
�
�
�
'
7
�
�
��

9
,1

�

*1'
�

287
�

287
�

8
�
� 0
&
�
�
�
�
�
'
7

9,1
�

*
1
'

�
2
8
7

�

2
8
7

�

&
�

�
�
X
)

�
�
9
'
&

&
�

�
�
X
)

�
�
9
'
&

'
�

)
0
�
�
�
�

'
�

)
0
�
�
�
�

'
�

)
0
�
�
�
�

'
�

)
0
�
�
�
�

/
(
'
�

-
�
� � � �

A-8 DSP56303EVM User’s Manual MOTOROLA

F
ig

u
re

A
-7

.
 B

yp
as

s
C

ap
ac

it
o

rs

$ $

% %

& &

' '

((

�
�

�
�

�
�

�
�

1
2
7
(
�

'
6
3
�
�
�
�
�

1
2
7
(
�

'
6
3
�
�
�
�
�

1
2
7
(
�

6
5
$
0

1
2
7
(
�

)
/
$
6
+

1
2
7
(
�

&
2
'
(
&

1
2
7
(
�

,
1
9
(
5
7
(
5

%
\
S
D
V
V
&
D
S
D
F
LW
R
UV

%

'
6
3
�
�
�
�
�
�'
6
1

7
X
H
V
G
D
\
�
1
R
Y
H
P
E
H
U
�
�
�
�
�
�
�

'
6
3
7
R
R
OV

�
�

�
��

:
LU
H
OH
V
V
6
X
E
V
F
UL
E
H
U
'
LY
LV
LR
Q

�
�
�
�
:
LO
OL
D
P

&
D
Q
Q
R
Q
'
UL
Y
H
:
H
V
W

$
X
V
WL
Q
�
7
;
�
�
�
�
�
�
��
�
�
�

��
�
�
��
�
�
��
�
�
�

)
$
;
�
��
�
�
��
�
�
��
�
�
�

0
'
�2
(
�
�
�

7
LW
OH 6
L]
H

'
R
F
X
P
H
Q
W

1
X
P
E
H
U

'
D
WH
�

'
H
V
LJ
Q
H
U�

5
H
Y
�

6
K
H
H
W

R
I

�
�
��
9

&
R
U
H
9

�
�
9

�
�
9

�
�
��
9

�
�
9
$

�
�
��
9

�
�
9

&
�
�
�

�
��
�
X
)

&
�
�
�

�
��
�
X
)

&
�
�
�

�
��
�
X
)

&
�
�
�

�
��
�
X
)

&
�
�
�

�
��
�
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
�
X
)

&
�
�

�
��
�
X
)

&
�
�

�
��
�
X
)

&
�
�

�
��
�
X
)

&
�
�

�
��
�
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�

�
��
�
X
)

&
�
�

�
��
�
X
)

&
�
�

�
��
�
X
)

&
�
�

�
��
X
)

&
�
�

�
��
X
)

&
�
�
�

�
��
X
)

&
�
�
�

�
��
X
)

&
�
�
�

�
��
X
)

&
�
�
�

�
��
X
)

&
�
�
�

�
��
X
)

&
�
�

�
��
�
X
)

�
&
�
�
�

�
X
)

�
�
9

�
&
�
�
�

�
X
)

�
�
9

Motorola DSP56303EVM Parts List B-1

Appendix B
DSP56303EVM Parts List

B.1 Parts Listing

The following table contains information on the parts and devices on the DSP56303EVM.

Table B-1. DSP56303EVM Parts List

Designator Manufacturer Part Number Description

U1 Motorola DSP56303GC100 DSP

U2 Motorola DSP56002PV80 DSP (JTAG/OnCE)

U4 GSI GS71024T-10 FSRAM

U3 Atmel AT29LV010A-20TC Flash

U5 Quality
Semiconductor

QS3384Q Bus Switch

U6 Motorola MC34164D-3 Power-On-Reset

U7 Crystal
Semiconductor

CS4218-KQ Audio Codec

U8 Pioneer LM4880M Audio Amplifier

U9 Motorola MC74HCT04AD Hex Inverter

U11 Maxim MAX212CAG RS-232 Transceiver

U23 Motorola MC33269DT-3.3 3.3 V Regulator

U24 Motorola MC33269DT-5.0 5 V Regulator

U25 Motorola MC33269DT Adj Regulator

D1 D2 D3 D4 D5 Rectron FM4001 IN4001 Diode

D6 D7 Motorola MMBD6050LT1 IN6050 Diode

LED1 Quality
Technologies

HLMP1790 Green LED

LED2 LED3 Quality
Technologies

HLMP1700 Red LED

B-2 DSP56303EVM User’s Manual Motorola

Parts Listing

Y1 MMD MC100CA-12.288MHZ 12.288 MHz Oscillator

Y2 ECS OECS-196.6-3-C3X1A 19.6608 MHz /153.6
kHz Oscillator

SW1 SW2 SW3 Panasonic EVQ-QS205K 6 mm Switch

P1 P2 Mouser 152-3409 DB-9 Female
Connector

P3 Switchcraft RAPC-722 2.1 mm DC Power
Jack

P4 P5 P6 Switchcraft 35RAPC4BHN2 3.5 mm Miniature
Stereo Jack

J1 Robinson Nugent NSH-8DB-S2-TG Header 8 pin double
row

J2 Robinson Nugent NSH-16DB-S2-TG Header 16 pin double
row

J3 Robinson Nugent NSH-20DB-S2-TG Header 20 pin double
row

J4 J5 Robinson Nugent NSH-12DB-S2-TG Header 12 pin double
row

J6 Robinson Nugent NHS-14DB-S2-TG Header 14 pin double
row

J7 J9 Robinson Nugent NSH-6SB-S2-TG Header 6 pin double
row

J8 Robinson Nugent NSH-2SB-S2-TG Header 2 pin single
row

C99 C120 C121 Panasonic PCS1106CT 10 µF Capacitor, 6.3 V
dc

C28 C29 C30 C31 C34
C124 C126

Murata GRM42-6Y5V105Z025BL 1.0 µF Capacitor, 25 V
dc

C9 C12 C13 C14 C15 C17
C18 C35 C37 C50 C51
C52 C53 C54 C61 C62
C64 C79 C80 C96 C101
C104 C105 C106 C110
C122 C123 C125

Murata GRM40-X7R104K025BL 0.1 µF Capacitor

C16 C40 C55 C56 C57
C58 C60 C65 C67 C68
C102 C103 C107 C108
C109

Murata GRM40-X7R103K050BL 0.01 µF Capacitor

Table B-1. DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description

Parts Listing

Motorola DSP56303EVM Parts List B-3

C10 Panasonic PCS1475CT 4.7 µF Capacitor,
6.3 V dc

C2 C3 C4 C23 C24 C39 Murata GRM42-6Y5V334Z025BL 0.33 µF Capacitor

C21 C22 C25 Murata GRM42-6Y5V474Z025BL 0.47 µF Capacitor

C38 Murata GRM42-6Y5V684Z025BL 0.68 µF Capacitor

C19 C20 Xicon 140-CC501N331J 330 pF Capacitor

C26 C27 Murata GRM40-COG222J050BL 2200 pF Capacitor

C63 Murata GRM40-X7R821K050BL 820 pF Capacitor

C5 C6 C7 C8 AVX TPSV476-025R0300 47 µF Capacitor, 10 V
dc

C32 C33 Panasonic PCE3028CT 470 µF Capacitor,
6.3 V dc

C1 Xicon XAL16V1000 1000 µF Capacitor,
16 V dc

L1 L2 L3 L4 L5 Murata BL01RN1-A62 Ferrite Bead

L6 Murata LQH4N150K04M00 Inductor

R1 R37 NIC NRC12RF1001TR 1 KΩ Resistor

R3 Xicor 260-5K 5 KΩ Resistor

R4 R6 R7 R8 R9 R11 R12
R13 R14 R15 R18 R19
R20 R21 R22 R31 R32
R33 R34 R35 R36 R38
R39

NIC NRC12RF1002TR 10 KΩ Resistor

R25 R26 R27 R28 Xicor 260-20K 20 KΩ Resistor

R23 R24 NIC NRC12RF3922TR 39.2 KΩ Resistor

R16 R17 R29 R30 Xicor 260-5.6K 5.6 KΩ Resistor

R10 NIC NRC12RF6040TR 604 Ω Resistor

R79 R80 Panasonic ERJ-6GEYJ240 240 Ω Resistor

R81 NIC 260-4.7K 4.7 KΩ Resistor

Table B-1. DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description

B-4 DSP56303EVM User’s Manual Motorola

Parts Listing

Motorola Motorola Assembler Notes C-1

Appendix C
Motorola Assembler Notes

C.1 Introduction

This appendix supplements information in Chapter 3 of this document and provides a
detailed description of the following components used with the Motorola Assembler:

• Special characters significant to the assembler

• Assembler directives

• Structure control statements

C.2 Assembler Significant Characters

Several one- and two-character sequences are significant to the assembler. The following
subsections define these characters and their use.

C.2.1 ; Comment Delimiter Character

Any number of characters preceded by a semicolon (;), but not part of a literal string, is
considered a comment. Comments are not significant to the assembler, but you can use
them to document the source program. Comments are reproduced in the assembler output
listing. Comments are normally preserved in macro definitions, but this option can be
turned off. (See the OPT directive.)

Comments can occupy an entire line or can be placed after the last assembler-significant
field in a source statement. A comment starting in the first column of the source file is
aligned with the label field in the listing file. Otherwise, the comment is shifted right and
aligned with the comment field in the listing file.

Example C-1. Example of Comment Delimiter

; THIS COMMENT BEGINS IN COLUMN 1 OF THE SOURCE FILE
LOOP JSR COMPUTE ; THIS IS A TRAILING COMMENT

; THESE TWO COMMENTS ARE PRECEDED
; BY A TAB IN THE SOURCE FILE

C-2 DSP56303EVM User’s Manual Motorola

Assembler Significant Characters

C.2.2 ;; Unreported Comment Delimiter Characters

Unreported comments are any number of characters preceded by two consecutive
semicolons (;;) that are not part of a literal string. Unreported comments are not
considered significant by the assembler and can be included in the source statement,
following the same rules as normal comments. However, unreported comments are never
reproduced on the assembler output listing and are never saved as part of macro
definitions.

Example C-2. Example of Unreported Comment Delimiter

;; THESE LINES WILL NOT BE REPRODUCED
;; IN THE SOURCE LISTING

C.2.3 \ Line Continuation or Macro Argument Concatenation
Character

The following subsections define how the \ character can be used in two different
instances.

C.2.3.1 Line Continuation

The backslash character (\), if used as the last character on a line, indicates to the
assembler that the source statement continues on the following line. The continuation line
is concatenated to the previous line of the source statement, and the result is processed by
the assembler as if it were a single-line source statement. The maximum source statement
length (the first line and any continuation lines) is 512 characters.

Example C-3. Example of Line Continuation Character

; THIS COMMENT \
EXTENDS OVER \
THREE LINES

C.2.3.2 Macro Argument Concatenation

The backslash (\) is also used to cause the concatenation of a macro dummy argument with
other adjacent alphanumeric characters. For the macro processor to recognize dummy
arguments, they must normally be separated from other alphanumeric characters by a
non-symbol character. However, sometimes it is desirable to concatenate the argument
characters with other characters. If an argument is to be concatenated in front of or behind
some other symbol characters, then it must be followed by or preceded by the backslash,
respectively.

Assembler Significant Characters

Motorola Motorola Assembler Notes C-3

Example C-4. Example of Macro Concatenation

Suppose the source input file contained the following macro definition:

SWAP_REG MACRO REG1,REG2 ;swap REG1,REG2 using D4.L as temp
MOVE R\REG1,D4.L
MOVE R\REG2,R\REG1
MOVE D4.L,R\REG2
ENDM

The concatenation operator (\) indicates to the macro processor that the substitution
characters for the dummy arguments are to be concatenated in both cases with the
character R. If this macro were called with the statement,

SWAP_REG 0,1

the resulting expansion would be as follows:

MOVE R0,D4.L
MOVE R1,R0
MOVE D4.L,R1

C.2.4 ? Return Value of Symbol Character

The ?<symbol> sequence, when used in macro definitions, is replaced by an ASCII string
representing the value of <symbol>. This operator may be used in association with the
backslash (\) operator. The value of <symbol> must be an integer (not floating point).

Example C-5. Example of Use of Return Value Character

Consider the following macro definition

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1

 MOVE D4.L,R\?REG2
ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1

SWAP_SYM AREG,BREG

the resulting expansion would appear as follows on the source listing:

MOVE R0,D4.L
MOVE R1,R0
MOVE D4.L,R1

C-4 DSP56303EVM User’s Manual Motorola

Assembler Significant Characters

C.2.5 % Return Hex Value of Symbol Character

The %<symbol> sequence, when used in macro definitions, is replaced by an ASCII
string representing the hexadecimal value of <symbol>. This operator may be used in
association with the backslash (\) operator. The value of <symbol> must be an integer (not
floating point).

Example C-6. Example of Return Hex Value Symbol Character

Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL STMT

ENDM

If this macro were called as follows,

NUM SET 10
GEN_LAB HEX,NUM,’NOP’

the resulting expansion would appear as follows in the listing file:

HEXA NOP

C.2.6 ^ Macro Local Label Override

The circumflex (^), when used as a unary expression operator in a macro expansion,
causes any local labels in its associated term to be evaluated at normal scope rather than
macro scope. This means that any underscore labels in the expression term following the
circumflex will not be searched for in the macro local label list. The operator has no effect
on normal labels or outside of a macro expansion. The circumflex operator is useful for
passing local labels as macro arguments to be used as referents in the macro.

Note: The circumflex is also used as the binary exclusive OR operator.

Example C-7. Example of Local Label Override Character

Consider the following macro definition:

LOAD MACRO ADDR
MOVE P:^ADDR,R0
ENDM

If this macro were called as follows,

_LOCAL
LOAD _LOCAL

the assembler would ordinarily issue an error since _LOCAL is not defined within the
body of the macro. With the override operator the assembler recognizes the _LOCAL
symbol outside the macro expansion and uses that value in the MOVE instruction.

Assembler Significant Characters

Motorola Motorola Assembler Notes C-5

C.2.7 " Macro String Delimiter or Quoted String DEFINE Expansion
Character

The following subsections define how the " character can be used in two different
instances.

C.2.7.1 Macro String

The double quote ("), when used in macro definitions, is transformed by the macro
processor into the string delimiter, the single quote (’). The macro processor examines the
characters between the double quotes for any macro arguments. This mechanism allows
the use of macro arguments as literal strings.

Example C-8. Example of a Macro String Delimiter Character

Using the following macro definition,

CSTR MACRO STRING
DC "STRING"
ENDM

and a macro call,

CSTR ABCD

the resulting macro expansion would be

DC ’ABCD’

C.2.7.2 Quoted String DEFINE Expansion

A sequence of characters which matches a symbol created with a DEFINE directive is not
expanded if the character sequence is contained within a quoted string. Assembler strings
generally are enclosed in single quotes (’). If the string is enclosed in double quotes (")
then DEFINE symbols are expanded within the string. In all other respects, usage of
double quotes is equivalent to that of single quotes.

C-6 DSP56303EVM User’s Manual Motorola

Assembler Significant Characters

Example C-9. Example of a Quoted String DEFINE Expression

Consider the source fragment below:

DEFINE LONG ’short’
STR_MAC MACRO STRING

MSG ’This is a LONG STRING’
MSG "This is a LONG STRING"
ENDM

If this macro were invoked as follows,

STR_MAC sentence

then the resulting expansion would be as follows

MSG ’This is a LONG STRING’
MSG ’This is a short sentence’

C.2.8 @ Function Delimiter

All assembler built-in functions start with the (@) symbol.

Example C-10. Example of a Function Delimiter Character

SVAL EQ @SQT(FVAL) ; OBTAIN SQUARE ROOT

C.2.9 * Location Counter Substitution

When used as an operand in an expression, the asterisk (*) represents the current integer
value of the runtime location counter.

Example C-11. Example of a Location Counter Substitution

ORG X:$100
XBASE EQU *+$20 ; XBASE = $120

C.2.10 ++ String Concatenation Operator

Any two strings can be concatenated with the string concatenation operator (++). The two
strings must each be enclosed by single or double quotes, and there must be no intervening
blanks between the string concatenation operator and the two strings.

Example C-12. Example of a String Concatenation Operator

’ABC’++’DEF’ = ’ABCDEF’

Assembler Significant Characters

Motorola Motorola Assembler Notes C-7

C.2.11 [] Substring Delimiter [<string>,<offset><length>]

Square brackets delimit a substring operation. The <string> argument is the source string.
<offset> is the substring starting position within <string>. <length> is the length of the
desired substring. <string> may be any legal string combination, including another
substring. An error is issued if either <offset> or <length> exceed the length of <string>.

Example C-13. Example of a Substring Delimiter

DEFINE ID [’DSP56000’,3,5]; ID = ’56000’

C.2.12 << I/O Short Addressing Mode Force Operator

Many DSP instructions allow an I/O short form of addressing. If the value of an absolute
address is known to the assembler on pass one, then the assembler will always pick the
shortest form of addressing consistent with the instruction format. If the absolute address
is not known to the assembler on pass one (that is, the address is a forward or external
reference), then the assembler picks the long form of addressing by default. If this is not
desired, then the I/O short form of addressing can be forced by preceding the absolute
address by the I/O short addressing mode force operator (<<).

Example C-14. Example of an I/O Short Addressing Mode Force Operator

Since the symbol IOPORT is a forward reference in the following sequence of source
lines, the assembler would pick the long absolute form of addressing by default:

BTST #4,Y:IOPORT
IOPORT EQU Y:$FFF3

Because the long absolute addressing mode would cause the instruction to be two words
long instead of one word for the I/O short absolute addressing mode, it would be desirable
to force the I/O short absolute addressing mode as shown below:

BTST #4,Y:<<IOPORT
IOPORT EQU Y:$FFF3

C.2.13 < Short Addressing Mode Force Operator

Many DSP instructions allow a short form of addressing. If the value of an absolute
address is known to the assembler on pass one, or the FORCE SHORT directive is active,
then the assembler will always pick the shortest form of addressing consistent with the
instruction format. If the absolute address is not known to the assembler on pass one (that
is, the address is a forward or external reference), then the assembler picks the long form
of addressing by default. If this is not desired, then the short absolute form of addressing

C-8 DSP56303EVM User’s Manual Motorola

Assembler Significant Characters

can be forced by preceding the absolute address by the short addressing mode force
operator (<).

Example C-15. Example of a Short Addressing Mode Force Operator

Since the symbol DATAST is a forward reference in the following sequence of source
lines, the assembler would pick the long absolute form of addressing by default:

MOVE D0.L,Y:DATAST
DATAST EQU Y:$23

Because the long absolute addressing mode would cause the instruction to be two words
long instead of one word for the short absolute addressing mode, it would be desirable to
force the short absolute addressing mode as shown below:

MOVE D0.L,:<DATAST
DATAST EQU Y:$23

C.2.14 > Long Addressing Mode Force Operator

Many DSP instructions allow a long form of addressing. If the value of an absolute
address is known to the assembler on pass one, then the assembler will always pick the
shortest form of addressing consistent with the instruction format, unless the FORCE
LONG directive is active. If this is not desired, then the long absolute form of addressing
can be forced by preceding the absolute address by the long addressing mode force
operator (>).

Example C-16. Example of a Long Addressing Mode Force Operator

Since the symbol DATAST is a not a forward reference in the following sequence of
source lines, the assembler would pick the short absolute form of addressing:

DATAST EQU Y:$23
MOVE D0.L,Y:DATAST

If this is not desirable, then the long absolute addressing mode can be forced as shown
below:

DATAST EQU Y:$23
MOVE D0.L,Y:>DATAST

Assembler Significant Characters

Motorola Motorola Assembler Notes C-9

C.2.15 # Immediate Addressing Mode

The pound sign (#) is used to indicate to the assembler to use the immediate addressing
mode.

Example C-17. Example of Immediate Addressing Mode

CNST EQU $5
MOVE #CNST,D0.L

C.2.16 #< Immediate Short Addressing Mode Force Operator

Many DSP instructions allow a short immediate form of addressing. If the immediate data
is known to the assembler on pass one (not a forward or external reference) or the FORCE
SHORT directive is active, then the assembler will always pick the shortest form of
immediate addressing consistent with the instruction. If the immediate data is a forward or
external reference, then the assembler picks the long form of immediate addressing by
default. If this is not desired, then the short form of addressing can be forced using the
immediate short addressing mode force operator (#<).

Example C-18. Example of Immediate Short Addressing Mode Force Operator

In the following sequence of source lines, the symbol CNST is not known to the assembler
on pass one, and therefore, the assembler would use the long immediate addressing form
for the MOVE instruction.

MOVE #CNST,D0.L
CNST EQU $5

Because the long immediate addressing mode makes the instruction two words long
instead of one word for the immediate short addressing mode, it may be desirable to force
the immediate short addressing mode as shown below:

MOVE #<CNST,D0.L
CNST EQU $5

C.2.17 #> Immediate Long Addressing Mode Force Operator

Many DSP instructions allow a long immediate form of addressing. If the immediate data
is known to the assembler on pass one (not a forward or external reference), then the
assembler will always pick the shortest form of immediate addressing consistent with the
instruction, unless the FORCE LONG directive is active. If this is not desired, then the
long form of addressing can be forced using the immediate long addressing mode force
operator (#>).

C-10 DSP56303EVM User’s Manual Motorola

Assembler Directives

Example C-19. Example of an Immediate Long Addressing Mode Operator

In the following sequence of source lines, the symbol CNST is known to the assembler on
pass one, and therefore, the assembler would use the short immediate addressing form for
the MOVE instruction.

CNST EQU $5
MOVE #CNST,D0.L

If this is not desirable, then the long immediate form of addressing can be forced as shown
below:

CNST EQU $5
MOVE #>CNST,D0.L

C.3 Assembler Directives

The following subsections define each directive and its use.

C.3.1 BADDR Set Buffer Address
BADDR <M | R>,<expression>

The BADDR directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in words is equal to the value of <expression>. The buffer
type may be either modulo or reverse-carry. If the runtime location counter is not zero, this
directive first advances the runtime location counter to a base address that is a multiple of
2k, where 2k >= <expression>. An error is issued if there is insufficient memory remaining
to establish a valid base address. Unlike other buffer allocation directives, the runtime
location counter is not advanced by the value of the integer expression in the operand
field; the location counter remains at the buffer base address. The block of memory
intended for the buffer is not initialized to any value.

The result of <expression> may have any memory space attribute but must be an absolute
integer greater than zero and cannot contain any forward references (symbols that have not
yet been defined). If a modulo buffer is specified, the expression must fall within the range
2 ≤ <expression> ≤ m, where m is the maximum address of the target DSP. If a
reverse-carry buffer is designated and <expression> is not a power of two, a warning is
issued. A label is not allowed with this directive.

Note: See also BSM, BSB, BUFFER, DSM, DSR.

Example C-20. Example BADDR Directive

ORG X:$100
M_BUF BADDR M,24 ; CIRCULAR BUFFER MOD 24

Assembler Directives

Motorola Motorola Assembler Notes C-11

C.3.2 BSB Block Storage Bit-Reverse
[<label>] BSB <expression>[,<expression>]

The BSB directive causes the assembler to allocate and initialize a block of words for a
reverse-carry buffer. The number of words in the block is given by the first expression,
which must evaluate to an absolute integer. Each word is assigned the initial value of the
second expression. If there is no second expression, an initial value of zero is assumed. If
the runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2k, where 2k is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references) or if the expression has a value of less than or
equal to zero. Also, if the first expression is not a power of two a warning is generated.
Both expressions can have any memory space attribute.

<label>, if present, is assigned the value of the runtime location counter after a valid base
address has been established.

Only one word of object code is shown on the listing, regardless of how large the first
expression is. However, the runtime location counter is advanced by the number of words
generated.

Note: See also BSC, BSM, DC.

Example C-21. Buffer Directive

BUFFER BSB BUFSIZ ; INITIALIZE BUFFER TO ZEROS

C.3.3 BSC Block Storage of Constant
[<label>] BSC <expression>[,<expression>]

The BSC directive causes the assembler to allocate and initialize a block of words. The
number of words in the block is given by the first expression, which must evaluate to an
absolute integer. Each word is assigned the initial value of the second expression. If there
is no second expression, an initial value of zero is assumed. If the first expression contains
symbols that are not yet defined (forward references) or if the expression has a value of
less than or equal to zero, an error is generated. Both expressions can have any memory
space attribute.

<label>, if present, is assigned the value of the runtime location counter at the start of the
directive processing.

Only one word of object code is shown on the listing, regardless of how large the first
expression is. However, the runtime location counter is advanced by the number of words
generated.

C-12 DSP56303EVM User’s Manual Motorola

Assembler Directives

Note: See also BSM, BSB, DC.

Example C-22. Block Storage of Constant Directive

UNUSED BSC $2FFF-@LCV(R),$FFFFFFFF; FILL UNUSED EPROM

C.3.4 BSM Block Storage Modulo
[<label>] BSM <expression>[,<expression>]

The BSM directive causes the assembler to allocate and initialize a block of words for a
modulo buffer. The number of words in the block is given by the first expression, which
must evaluate to an absolute integer. Each word is assigned the initial value of the second
expression. If there is no second expression, an initial value of zero is assumed. If the
runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2k, where 2k is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references), has a value of less than or equal to zero, or
falls outside the range 2 ≤ <expression> ≤ m, where m is the maximum address of the
target DSP. Both expressions may have any memory space attribute.

<label>, if present, is assigned the value of the runtime location counter after a valid base
address has been established.

Only one word of object code is shown on the listing, regardless of how large the first
expression is. However, the runtime location counter is advanced by the number of words
generated.

Note: See also BSC, BSB, DC.

Example C-23. Block Storage Modulo Directive

BUFFER BSM BUFSIZ,$FFFFFFFF; INITIALIZE BUFFER TO ALL ONES

C.3.5 BUFFER Start Buffer
 BUFFER <M | R>,<expression>

The BUFFER directive indicates the start of a buffer of the given type. Data is allocated
for the buffer until an ENDBUF directive is encountered. Instructions and most data
definition directives may appear between the BUFFER and ENDBUF pair, although
BUFFER directives may not be nested and certain types of directives such as MODE,
ORG, SECTION, and other buffer allocation directives may not be used. The
<expression> represents the buffer size. If less data is allocated than the size of the buffer,
the remaining buffer locations are uninitialized. If more data is allocated than the specified
size of the buffer, an error is issued.

Assembler Directives

Motorola Motorola Assembler Notes C-13

The BUFFER directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in words is equal to the value of <expression>. The buffer
type may be either modulo or reverse-carry. If the runtime location counter is not zero, this
directive first advances the runtime location counter to a base address that is a multiple of
2k, where 2k >= <expression>. An error is issued if there is insufficient memory remaining
to establish a valid base address. Unlike other buffer allocation directives, the runtime
location counter is not advanced by the value of the integer expression in the operand
field; the location counter remains at the buffer base address.

The result of <expression> may have any memory space attribute but must be an absolute
integer greater than zero and cannot contain any forward references (symbols that have not
yet been defined). If a modulo buffer is specified, the expression must fall within the range
2 ≤ <expression> ≤ m, where m is the maximum address of the target DSP. If a
Reverse-carry buffer is designated and <expression> is not a power of two a warning is
issued.

Note: A label is not allowed with this directive. See also BADDR, BSM, BSB, DSM, DSR,
ENDBUF.

Example C-24. Buffer Directive

ORG X:$100
BUFFER M,24 ; CIRCULAR BUFFER MOD 24

M_BUF DC 0.5,0.5,0.5,0.5
DS 20 ; REMAINDER UNINITIALIZED
ENDBUF

C.3.6 COBJ Comment Object File
COBJ <string>

The COBJ directive is used to place a comment in the object code file. The <string> is put
in the object file as a comment.

Note: A label is not allowed with this directive. See also IDENT.

Example C-25. COBM Directive

COBJ ’Start of filter coefficients’

C-14 DSP56303EVM User’s Manual Motorola

Assembler Directives

C.3.7 COMMENT Start Comment Lines
COMMENT <delimiter>
.
.
<delimiter>

The COMMENT directive is used to define one or more lines as comments. The first
non-blank character after the COMMENT directive is the comment delimiter. The two
delimiters are used to define the comment text. The line containing the second comment
delimiter is considered the last line of the comment. The comment text can include any
printable characters and the comment text is reproduced in the source listing as it appears
in the source file.

Note: A label is not allowed with this directive.

Example C-26. COMMENT Directive

COMMENT + This is a one line comment +
COMMENT * This is a multiple line comment. Any

number of lines can be placed between the
two delimiters.

 *

C.3.8 DC Define Constant
<label>] DC <arg>[,<arg>,...,<arg>]

The DC directive allocates and initializes a word of memory for each <arg> argument.
<arg> may be a numeric constant, a single or multiple character string constant, a symbol,
or an expression. The DC directive may have one or more arguments separated by
commas. Multiple arguments are stored in successive address locations. If multiple
arguments are present, one or more of them can be null (two adjacent commas), in which
case the corresponding address location is filled with zeros. If the DC directive is used in
L memory, the arguments are evaluated and stored as long word quantities. Otherwise, an
error occurs if the evaluated argument value is too large to represent in a single DSP word.

<label>, if present, is assigned the value of the runtime location counter at the start of the
directive processing.

Integer arguments are stored as is; floating point numbers are converted to binary values.
Single and multiple character strings are handled in the following manner:

• Single character strings are stored in a word whose lower seven bits represent the
ASCII value of the character.

Assembler Directives

Motorola Motorola Assembler Notes C-15

Example C-27. Single Character String Definition

’R’ = $000052

• Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of
characters is not an even multiple of the number of bytes per DSP word, then the
last word will have the remaining characters left aligned and the rest of the word is
zero-filled. If the NOPS option is given, each character in the string is stored in a
word whose lower seven bits represent the ASCII value of the character.

Example C-28. Multiple Character String Definition

’ABCD’ = $414243
$440000

Note: See also BSC, DCB.

Example C-29. DC Directive

TABLE DC 1426,253,$2662,’ABCD’
CHARS DC ’A’,’B’,’C’,’D’

C.3.9 DCB Define Constant Byte
[<label>] DCB <arg>[,<arg>,...,<arg>]

The DCB directive allocates and initializes a byte of memory for each <arg> argument.
<arg> may be a byte integer constant, a single or multiple character string constant, a
symbol, or a byte expression. The DCB directive may have one or more arguments
separated by commas. Multiple arguments are stored in successive byte locations. If
multiple arguments are present, one or more of them can be null (two adjacent commas),
in which case the corresponding byte location is filled with zeros.

<label>, if present, is assigned the value of the runtime location counter at the start of the
directive processing.

Integer arguments are stored as is but must be byte values (i.e., within the range 0–255);
floating point numbers are not allowed. Single and multiple character strings are handled
in the following manner:

• Single character strings are stored in a word whose lower seven bits represent the ASCII
value of the character. (See Example C-27.)

• Multiple character strings represent words whose bytes are composed of concatenated
sequences of the ASCII representation of the characters in the string (unless the NOPS
option is specified; see the OPT directive). If the number of characters is not an even
multiple of the number of bytes per DSP word, then the last word will have the remaining

C-16 DSP56303EVM User’s Manual Motorola

Assembler Directives

characters left aligned and the rest of the word is zero-filled. If the NOPS option is given,
each character in the string is stored in a word whose lower seven bits represent the ASCII
value of the character.(See Example C-28.)

Note: See also BSC, DC.

Example C-30. DCB Directive

TABLE DCB ’two’,0,’strings’,0
CHARS DCB ’A’,’B’,’C’,’D’

C.3.10 DEFINE Define Substitution String
DEFINE <symbol> <string>

The DEFINE directive is used to define substitution strings that are used on all following
source lines. All succeeding lines are searched for an occurrence of <symbol>, which is
replaced by <string>. This directive is useful for providing better documentation in the
source program. <symbol> must adhere to the restrictions for non-local labels. That is, it
cannot exceed 512 characters, the first of which must be alphabetic, and the remainder of
which must be either alphanumeric or the underscore(_). A warning results if a new
definition of a previously defined symbol is attempted. The assembler output listing will
show lines after the DEFINE directive has been applied and therefore redefined symbols
are replaced by their substitution strings unless the NODXL option is in effect. See C.3.42,
"OPT Assembler Options," on page C-34

Macros represent a special case. DEFINE directive translations are applied to the macro
definition as it is encountered. When the macro is expanded any active DEFINE directive
translations are applied again.

DEFINE directive symbols that are defined within a section will only apply to that section.
See the SECTION directive.

Note: A label is not allowed with this directive. See also UNDEF.

Example C-31. DEFINE Directive

If the following DEFINE directive occurred in the first part of the source program:

DEFINE ARRAYSIZ ’10 * SAMPLSIZ’

then the source line below:

DS ARRAYSIZ

would be transformed by the assembler to the following:

DS 10 * SAMPLSIZ

Assembler Directives

Motorola Motorola Assembler Notes C-17

C.3.11 DS Define Storage
[<label>] DS <expression>

The DS directive reserves a block of memory the length of which in words is equal to the
value of <expression>. This directive causes the runtime location counter to be advanced
by the value of the absolute integer expression in the operand field. <expression> can have
any memory space attribute. The block of memory reserved is not initialized to any value.
The expression must be an integer greater than zero and cannot contain any forward
references (symbols that have not yet been defined).

<label>, if present, is assigned the value of the runtime location counter at the start of the
directive processing.

Note: See also DSM, DSR.

Example C-32. DS Directive

S_BUF DS 12 ; SAMPLE BUFFER

C.3.12 DSM Define Modulo Storage
[<label>] DSM <expression>

The DSM directive reserves a block of memory the length of which in words is equal to
the value of <expression>. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2k, where
2k >= <expression>. An error is issued if there is insufficient memory remaining to
establish a valid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved is not initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any
forward references (symbols that have not yet been defined). The expression also must fall
within the range:

2 ≤ <expression> ≤ m,
where m is the maximum address of the target DSP.

<label>, if present, is assigned the value of the runtime location counter after a valid base
address has been established.

Note: See also DS, DSR.

Example C-33. DSM Directive

ORG X:$100
M_BUF DSM 24 ; CIRCULAR BUFFER MOD 24

C-18 DSP56303EVM User’s Manual Motorola

Assembler Directives

C.3.13 DSR Define Reverse Carry Storage
[<label>] DSR <expression>

The DSR directive reserves a block of memory the length of which in words is equal to the
value of <expression>. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2k, where
2k ≥ <expression>. An error is issued if there is insufficient memory remaining to
establish a valid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved is not initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any
forward references (symbols that have not yet been defined). Because the DSR directive is
useful mainly for generating FFT buffers, a warning is generated if <expression> is not a
power of two .

<label>, if present, is assigned the value of the runtime location counter after a valid base
address has been established.

Note: See also DS, DSM.

Example C-34. DSR Directive

ORG X:$100
R_BUF DSR 8 ; REVERSE CARRY BUFFER FOR 16 POINT FFT

C.3.14 DUP Duplicate Sequence of Source Lines
[<label>] DUP <expression>

.

.
 ENDM

The sequence of source lines between the DUP and ENDM directives is duplicated by the
number specified by the integer <expression>. <expression> can have any memory space
attribute. If the expression evaluates to a number less than or equal to zero, the sequence of
lines will not be included in the assembler output. The expression result must be an
absolute integer and cannot contain any forward references (symbols that have not already
been defined). The DUP directive may be nested to any level.

<label>, if present, is assigned the value of the runtime location counter at the start of the
DUP directive processing.

Note: See also DUPA, DUPC, DUPF, ENDM, MACRO.

Assembler Directives

Motorola Motorola Assembler Notes C-19

Example C-35. DUP Directive

The sequence of source input statements,

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR D0
ENDM

would generate the following in the source listing:

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR D0
ASR D0
ASR D0
ENDM

Note that the lines

DUP COUNT ;ASR BY COUNT
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

ASR D0
ASR D0
ASR D0

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD and MEX
options.

C.3.15 DUPA Duplicate Sequence With Arguments
[<label>] DUPA <dummy>,<arg>[<,<arg>,...,<arg>]

.

.
ENDM

The block of source statements defined by the DUPA and ENDM directives are repeated
for each argument. For each repetition, every occurrence of the dummy parameter within
the block is replaced with each succeeding argument string. If the argument string is a
null, then the block is repeated with each occurrence of the dummy parameter removed. If
an argument includes an embedded blank or other assembler-significant character, it must
be enclosed with single quotes.

<label>, if present, is assigned the value of the runtime location counter at the start of the
DUPA directive processing.

Note: See also DUP, DUPC, DUPF, ENDM, MACRO.

C-20 DSP56303EVM User’s Manual Motorola

Assembler Directives

Example C-36. DUPA Directive

If the input source file contained the following statements,

DUPA VALUE,12,32,34
DC VALUE
ENDM

then the assembled source listing would show

DUPA VALUE,12,32,34
DC 12
DC 32
DC 34
ENDM

Note that the lines

DUPA VALUE,12,32,34
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 12
DC 32
DC 34

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD and MEX
options.

C.3.16 DUPC Duplicate Sequence With Characters
[<label>] DUPC <dummy>,<string>

.

.
 ENDM

The block of source statements defined by the DUPC and ENDM directives are repeated
for each character of <string>. For each repetition, every occurrence of the dummy
parameter within the block is replaced with each succeeding character in the string. If the
string is null, then the block is skipped.

<label>, if present, is assigned the value of the runtime location counter at the start of the
DUPC directive processing.

Note: See also DUP, DUPA, DUPF, ENDM, MACRO.

Assembler Directives

Motorola Motorola Assembler Notes C-21

Example C-37. DUPC Directive

If input source file contained the following statements,

DUPC VALUE,’123’
DC VALUE
ENDM

then the assembled source listing would show:

DUPC VALUE,’123’
DC 1
DC 2
DC 3
ENDM

Note that the lines

DUPC VALUE,’123’
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 1
DC 2
DC 3

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD and MEX
options.

C.3.17 DUPF Duplicate Sequence in Loop
[<label>] DUPF <dummy>,[<start>],<end>[,<increment>]

.

.
 ENDM

The block of source statements defined by the DUPF and ENDM directives are repeated in
general (<end> − <start>) + 1 times when <increment> is 1. <start> is the starting value
for the loop index; <end> represents the final value. <increment> is the increment for the
loop index; it defaults to 1 if omitted (as does the <start> value). The <dummy> parameter
holds the loop index value and may be used within the body of instructions.

<label>, if present, is assigned the value of the runtime location counter at the start of the
DUPF directive processing.

Note: See also DUP, DUPA, DUPC, ENDM, MACRO.

C-22 DSP56303EVM User’s Manual Motorola

Assembler Directives

Example C-38. DUPF Directive

If input source file contained the following statements,

DUPF NUM,0,7
MOVE #0,R\NUM
ENDM

then the assembled source listing shows:

DUPF NUM,0,7
MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7
ENDM

Note that the lines

DUPF NUM,0,7
ENDM

are only shown on the source listing if the MD option is enabled. The lines

MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7

are only shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD and MEX
options.

C.3.18 END End of Source Program
END [<expression>]

The optional END directive indicates that the logical end of the source program has been
encountered. Any statements following the END directive are ignored. The optional
expression in the operand field can be used to specify the starting execution address of the

Assembler Directives

Motorola Motorola Assembler Notes C-23

program. <expression> may be absolute or relocatable but must have a memory space
attribute of Program or None. The END directive cannot be used in a macro expansion.

Note: A label is not allowed with this directive.

Example C-39. END Directive

END BEGIN ; BEGIN is the starting execution address

C.3.19 ENDBUF End Buffer
ENDBUF

The ENDBUF directive is used to signify the end of a buffer block. The runtime location
counter will remain just beyond the end of the buffer when the ENDBUF directive is
encountered.

Note: A label is not allowed with this directive. See also BUFFER.

Example C-40. ENDBUF Directive

ORG X:$100
BUF BUFFER R,64 ; uninitialized reverse-carry buffer

ENDBUF

C.3.20 ENDIF End of Conditional Assembly
ENDIF

The ENDIF directive is used to signify the end of the current level of conditional
assembly. Conditional assembly directives can be nested to any level, but the ENDIF
directive always refers to the most previous IF directive.

Note: A label is not allowed with this directive. (See C.3.31, "IF Conditional Assembly
Directive," on page C-28.)

Example C-41. ENDIF Directive

IF @REL()
SAVEPC SET * ; Save current program counter

ENDIF

C.3.21 ENDM End of Macro Definition
ENDM

Every MACRO, DUP, DUPA, and DUPC directive must be terminated by an ENDM
directive.

Note: A label is not allowed with this directive. See also DUP, DUPA, DUPC, MACRO.

C-24 DSP56303EVM User’s Manual Motorola

Assembler Directives

Example C-42. ENDM Directive

SWAP_SYM MACRO REG1,REG ;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1

 MOVE D4.L,R\?REG2
ENDM

C.3.22 ENDSEC End Section
ENDSEC

Every SECTION directive must be terminated by an ENDSEC directive.

Note: A label is not allowed with this directive. See also SECTION.

Example C-43. ENDSEC Directive

SECTION COEFF
ORG Y:

VALUES BSC $100 ; Initialize to zero
ENDSEC

C.3.23 EQU Equate Symbol to a Value
<label> EQU [{X: | Y: | L: | P: | E:}]<expression>

The EQU directive assigns the value and memory space attribute of <expression> to the
symbol <label>. If <expression> has a memory space attribute of None, then it can
optionally be preceded by any of the indicated memory space qualifiers to force a memory
space attribute. An error will occur if the expression has a memory space attribute other
than None and it is different than the forcing memory space attribute. The optional forcing
memory space attribute is useful to assign a memory space attribute to an expression that
consists only of constants but is intended to refer to a fixed address in a memory space.

The EQU directive is one of the directives that assigns a value other than the program
counter to the label. The label cannot be redefined anywhere else in the program (or
section, if SECTION directives are being used). The <expression> may be relative or
absolute but cannot include a symbol that is not yet defined (no forward references are
allowed).

Note: See also SET.

Assembler Directives

Motorola Motorola Assembler Notes C-25

Example C-44. EQU Directive

A_D_PORT EQU X:$4000

This assigns the value $4000 with a memory space attribute of X to the symbol
A_D_PORT.

COMPUTE EQU @LCV(L)

@LCV(L) is used to refer to the value and memory space attribute of the load location
counter. This value and memory space attribute is assigned to the symbol COMPUTE.

C.3.24 EXITM Exit Macro
EXITM

The EXITM directive will cause immediate termination of a macro expansion. It is useful
when used with the conditional assembly directive IF to terminate macro expansion when
error conditions are detected.

Note: A label is not allowed with this directive. See also DUP, DUPA, DUPC, MACRO.

Example C-45. EXITM Directive

CALC MACRO XVAL,YVAL
IF XVAL<0
FAIL ’Macro parameter value out of range’
EXITM ; Exit macro
ENDIF
.
.
.
ENDM

C.3.25 FAIL Programmer Generated Error
FAIL [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The FAIL directive will cause an error message to be output by the assembler. The total
error count is incremented as with any other error. The FAIL directive is normally used in
conjunction with conditional assembly directives for exceptional condition checking. The
assembly proceeds normally after the error has been printed. An arbitrary number of
strings and expressions, in any order but separated by commas with no intervening white
space, can be specified optionally to describe the nature of the generated error.

Note: A label is not allowed with this directive. See also MSG, WARN.

C-26 DSP56303EVM User’s Manual Motorola

Assembler Directives

Example C-46. FAIL Directive

FAIL ’Parameter out of range’

C.3.26 FORCE Set Operand Forcing Mode
FORCE {SHORT | LONG | NONE}

The FORCE directive causes the assembler to force all immediate, memory, and address
operands to the specified mode as if an explicit forcing operator were used. Note that if a
relocatable operand value forced short is determined to be too large for the instruction
word, an error will occur at link time, not during assembly. Explicit forcing operators
override the effect of this directive.

Note: A label is not allowed with this directive. See also <, >, #<, #>.

Example C-47. FORCE Directive

FORCE SHORT ; force operands short

C.3.27 GLOBAL Global Section Symbol Declaration
GLOBAL <symbol>[,<symbol>,...,<symbol>]

The GLOBAL directive is used to specify that the list of symbols is defined within the
current section, and that those definitions should be accessible by all sections. This
directive is only valid if used within a program block bounded by the SECTION and
ENDSEC directives. If the symbols that appear in the operand field are not defined in the
section, an error is generated.

Note: A label is not allowed with this directive. See also SECTION, XDEF, XREF.

Example C-48. GLOBAL Directive

SECTION IO
GLOBAL LOOPA ; LOOPA will be globally accessible by other sections
.
.
.
ENDSEC

C.3.28 GSET Set Global Symbol to a Value
<label> GSET <expression>

GSET <label> <expression>

The GSET directive is used to assign the value of the expression in the operand field to the
label. The GSET directive functions somewhat like the EQU directive. However, labels
defined via the GSET directive can have their values redefined in another part of the
program (but only through the use of another GSET or SET directive). The GSET

Assembler Directives

Motorola Motorola Assembler Notes C-27

directive is useful for resetting a global SET symbol within a section, where the SET
symbol would otherwise be considered local. The expression in the operand field of a
GSET must be absolute and cannot include a symbol that is not yet defined. (No forward
references are allowed.)

Note: See also EQU, SET.

Example C-49. GSET Directive

COUNT GSET 0 ; INITIALIZE COUNT

C.3.29 HIMEM Set High Memory Bounds
HIMEM <mem>[<rl>]:<expression>[,...]

The HIMEM directive establishes an absolute high memory bound for code and data
generation. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl> is
one of the letters R for runtime counter or L for load counter. The <expression> is an
absolute integer value within the address range of the machine. If during assembly the
specified location counter exceeds the value given by <expression>, a warning is issued.

Note: A label is not allowed with this directive. See also LOMEM.

Example C-50. HIMEM Directive

HIMEM XR:$7FFF,YR:$7FFF ; SET X/Y RUN HIGH MEM
BOUNDS

C.3.30 IDENT Object Code Identification Record
[<label>] IDENT <expression1>,<expression2>

The IDENT directive is used to create an identification record for the object module. If
<label> is specified, it is used as the module name. If <label> is not specified, then the
filename of the source input file is used as the module name. <expression1> is the version
number; <expression2> is the revision number. The two expressions must each evaluate to
an integer result. The comment field of the IDENT directive is also passed on to the object
module.

Note: See also COBJ.

C-28 DSP56303EVM User’s Manual Motorola

Assembler Directives

Example C-51. IDENT Directive

If the following line was included in the source file,

FFILTER IDENT 1,2 ; FIR FILTER MODULE

then the object module identification record includes the module name (FFILTER), the
version number (1), the revision number (2), and the comment field (; FIR FILTER
MODULE).

C.3.31 IF Conditional Assembly Directive
IF <expression>
.
.
[ELSE] (the ELSE directive is optional)
.
.
ENDIF

Part of a program that is to be conditionally assembled must be bounded by an IF-ENDIF
directive pair. If the optional ELSE directive are not present, then the source statements
following the IF directive and up to the next ENDIF directive is included as part of the
source file being assembled only if the <expression> has a nonzero result. If the
<expression> has a value of zero, the source file is assembled as if those statements
between the IF and the ENDIF directives were never encountered. If the ELSE directive is
present and <expression> has a nonzero result, then the statements between the IF and
ELSE directives are assembled, and the statements between the ELSE and ENDIF
directives are skipped. Alternatively, if <expression> has a value of zero, then the
statements between the IF and ELSE directives are skipped, and the statements between
the ELSE and ENDIF directives are assembled.

The <expression> must have an absolute integer result and is considered true if it has a
nonzero result. The <expression> is false only if it has a result of zero. Because of the
nature of the directive, <expression> must be known on pass one (no forward references
allowed). IF directives can be nested to any level. The ELSE directive will always refer to
the nearest previous IF directive as will the ENDIF directive.

Note: A label is not allowed with this directive. See also ENDIF.

Assembler Directives

Motorola Motorola Assembler Notes C-29

Example C-52. IF Directive

IF @LST>0
DUP @LST ; Unwind LIST directive stack
NOLIST
ENDM
ENDIF

C.3.32 INCLUDE Include Secondary File
INCLUDE <string> | <<string>>

This directive is inserted into the source program at any point where a secondary file is to
be included in the source input stream. The string specifies the filename of the secondary
file. The filename must be compatible with the operating system and can include a
directory specification. If no extension is given for the filename, a default extension of
.ASM is supplied.

The file is searched for first in the current directory, unless the <<string>> syntax is used,
or in the directory specified in <string>. If the file is not found, and the -I option was used
on the command line that invoked the assembler, then the string specified with the -I
option is prefixed to <string> and that directory is searched. If the <<string>> syntax is
given, the file is searched for only in the directories specified with the -I option.

Note: A label is not allowed with this directive. See also MACLIB.

Example C-53. INCLUDE Directive

INCLUDE ’headers/io.asm’; Unix example
INCLUDE ’storage\mem.asm’; MS-DOS example
INCLUDE <data.asm> ; Do not look in current directory

C.3.33 LIST List the Assembly
LIST

Print the listing from this point on. The LIST directive is not printed, but the subsequent
source lines are output to the source listing. The default is to print the source listing. If the
IL option has been specified, the LIST directive has no effect when encountered within the
source program.

The LIST directive actually increments a counter that is checked for a positive value and is
symmetrical with respect to the NOLIST directive.

C-30 DSP56303EVM User’s Manual Motorola

Assembler Directives

Note the following sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was issued.

Note: A label is not allowed with this directive. See also NOLIST, OPT.

Example C-54. LIST Directive

IF LISTON
LIST ; Turn the listing back on
ENDIF

C.3.34 LOCAL Local Section Symbol Declaration
LOCAL <symbol>[,<symbol>,...,<symbol>]

The LOCAL directive is used to specify that the list of symbols is defined within the
current section, and that those definitions are explicitly local to that section. It is useful in
cases where a symbol is used as a forward reference in a nested section where the
enclosing section contains a like-named symbol. This directive is only valid if used within
a program block bounded by the SECTION and ENDSEC directives. The LOCAL
directive must appear before <symbol> is defined in the section. If the symbols that appear
in the operand field are not defined in the section, an error is generated.

Note: A label is not allowed with this directive. See also SECTION, XDEF, XREF.

Example C-55. LOCAL Directives

SECTION IO
LOCAL LOOPA ; LOOPA local to this section
.
.
.
ENDSEC

C.3.35 LOMEM Set Low Memory Bounds
LOMEM <mem>[<rl>]:<expression>[,...]

The LOMEM directive establishes an absolute low memory bound for code and data
generation. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl> is
one of the letters R for runtime counter or L for load counter. The <expression> is an
absolute integer value within the address range of the machine. If during assembly the

Assembler Directives

Motorola Motorola Assembler Notes C-31

specified location counter falls below the value given by <expression>, a warning is
issued.

Note: A label is not allowed with this directive. See also HIMEM.

Example C-56. LOMEM Directive

LOMEM XR:$100,YR:$100; SET X/Y RUN LOW MEM BOUNDS

C.3.36 LSTCOL Set Listing Field Widths
LSTCOL [<labw>[,<opcw>[,<oprw>[,<opc2w>[,<opr2w>[,<xw>[,<yw>]]]]]]]

Sets the width of the output fields in the source listing. Widths are specified in terms of
column positions. The starting position of any field is relative to its predecessor except for
the label field, which always starts at the same position relative to page left margin,
program counter value, and cycle count display. The widths may be expressed as any
positive absolute integer expression. However, if the width is not adequate to
accommodate the contents of a field, the text is separated from the next field by at least
one space.

Any field for which the default is desired may be null. A null field can be indicated by two
adjacent commas with no intervening space or by omitting any trailing fields altogether. If
the LSTCOL directive is given with no arguments all field widths are reset to their default
values.

Note: A label is not allowed with this directive. See also PAGE.

Example C-57. LSTCOL Directive

LSTCOL 40,,,,,20,20; Reset label, X, and Y data field widths

C.3.37 MACLIB Macro Library
MACLIB <pathname>

This directive is used to specify the <pathname> (as defined by the operating system) of a
directory that contains macro definitions. Each macro definition must be in a separate file,
and the file must be named the same as the macro with the extension .ASM added. For
example, BLOCKMV.ASM would be a file that contained the definition of the macro
called BLOCKMV.

If the assembler encounters a directive in the operation field that is not contained in the
directive or mnemonic tables, the directory specified by <pathname> is searched for a file
of the unknown name (with the .ASM extension added). If such a file is found, the current
source line is saved, and the file is opened for input as an INCLUDE file. When the end of
the file is encountered, the source line is restored and processing is resumed. Because the

C-32 DSP56303EVM User’s Manual Motorola

Assembler Directives

source line is restored, the processed file must have a macro definition of the unknown
directive name or else an error will result when the source line is restored and processed.
However, the processed file is not limited to macro definitions and can include any legal
source code statements.

Multiple MACLIB directives may be given, in which case the assembler will search each
directory in the order in which it is encountered.

Note: A label is not allowed with this directive. See also INCLUDE.

Example C-58. MACLIB Directive

MACLIB ’macros\mymacs\’; IBM PC example
MACLIB ’fftlib/’ ; UNIX example

C.3.38 MACRO Macro Definition
<label> MACRO [<dummy argument list>]

.

.
<macro definition statements>
.
.
ENDM

The dummy argument list has the following form

[<dumarg>[,<dumarg>,...,<dumarg>]]

The required label is the symbol by which the macro is called. If the macro is named the
same as an existing assembler directive or mnemonic, a warning is issued. This warning
can be avoided with the RDIRECT directive.

The definition of a macro consists of three parts: the header, which assigns a name to the
macro and defines the dummy arguments; the body, which consists of prototype or
skeleton source statements; and the terminator. The header is the MACRO directive, its
label, and the dummy argument list. The body contains the pattern of standard source
statements. The terminator is the ENDM directive.

The dummy arguments are symbolic names that the macro processor replaces with
arguments when the macro is expanded (called). Each dummy argument must obey the
same rules as symbol names. Dummy argument names that are preceded by an underscore
are not allowed. Within each of the three dummy argument fields, the dummy arguments
are separated by commas. The dummy argument fields are separated by one or more
blanks.

Assembler Directives

Motorola Motorola Assembler Notes C-33

Macro definitions may be nested but the nested macro is not defined until the primary
macro is expanded.

Note: See also DUP, DUPA, DUPC, DUPF, ENDM.

Example C-59. MACRO Directive

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using X0 as temp
MOVE R\?REG1,X0
MOVE R\?REG2,R\?REG1
MOVE X0,R\?REG2
ENDM

C.3.39 MODE Change Relocation Mode
MODE <ABS[OLUTE] | REL[ATIVE]>

The MODE directive causes the assembler to change to the designated operational mode.
This directive may be given at any time in the assembly source to alter the set of location
counters used for section addressing. Code generated while in absolute mode is placed in
memory at the location determined during assembly. Relocatable code and data are based
from the enclosing section start address. The MODE directive has no effect when the
command line -A option is issued.

Note: A label is not allowed with this directive. See also ORG.

Example C-60. MODE Directive

MODE ABS ; Change to absolute mode

C.3.40 MSG Programmer Generated Message
MSG [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The MSG directive causes a message to be output by the assembler. The error and warning
counts are not affected. The MSG directive is normally used in conjunction with
conditional assembly directives for informational purposes. The assembly proceeds
normally after the message has been printed. An arbitrary number of strings and
expressions, in any order but separated by commas with no intervening white space, can
be specified optionally to describe the nature of the message.

Note: A label is not allowed with this directive. See also FAIL, WARN.

Example C-61. MSG Directive

MSG ’Generating sine tables’

C-34 DSP56303EVM User’s Manual Motorola

Assembler Directives

C.3.41 NOLIST Stop Assembly Listing
NOLIST

Do not print the listing from this point on (including the NOLIST directive). Subsequent
source lines will not be printed.

The NOLIST directive actually decrements a counter that is checked for a positive value
and is symmetrical with respect to the LIST directive. Note the following sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still is not disabled until another NOLIST directive is issued.

Note: A label is not allowed with this directive. See also LIST, OPT.

Example C-62. NOLIST Directive

IF LISTOFF
NOLIST ; Turn the listing off
ENDIF

C.3.42 OPT Assembler Options
OPT <option>[,<option>,...,<option>][<comment>]

The OPT directive is used to designate the assembler options. Assembler options are given
in the operand field of the source input file and are separated by commas. Options also
may be specified using the command line -O option. All options have a default condition.
Some options are reset to their default condition at the end of pass one. Some are allowed
to have the prefix NO attached to them, which then reverses their meaning.

Note: A label is not allowed with this directive.

Options can be grouped by function into five different types:

• Listing format control

• Reporting options

• Message control

• Symbol options

• Assembler operation

Assembler Directives

Motorola Motorola Assembler Notes C-35

C.3.42.1 Listing Format Control

The following options control the format of the listing file.

FC Fold trailing comments

FF Form feeds for page ejects

FM Format messages

PP Pretty print listing

RC Relative comment spacing

C.3.42.2 Reporting Options

The following options control what is reported in the listing file.

CEX Print DC expansions

CL Print conditional assembly directives

CRE Print symbol cross-reference

DXL Expand DEFINE directive strings in listing

HDR Generate listing headers

IL Inhibit source listing

LOC Print local labels in cross-reference

MC Print macro calls

MD Print macro definitions

MEX Print macro expansions

MU Print memory utilization report

NL Print conditional assembly and section nesting levels

S Print symbol table

U Print skipped conditional assembly lines

C.3.42.3 Message Control

The following options control the types of assembler messages that are generated.

AE Check address expressions

MSW Warn on memory space incompatibilities

UR Flag unresolved references

W Display warning messages

C-36 DSP56303EVM User’s Manual Motorola

Assembler Directives

C.3.42.4 Symbol Options

The following options deal with the handling of symbols by the assembler.

DEX Expand DEFINE symbols within quoted strings

IC Ignore case in symbol names

NS Support symbol scoping in nested sections

SCL Scope structured control statement labels

SCO Structured control statement labels to listing/object file

SO Write symbols to object file

XLL Write local labels to object file

XR Recognize XDEFed symbols without XREF

C.3.42.5 Assembler Operation

The following are miscellaneous options having to do with internal assembler operation.

CC Enable cycle counts

CK Enable checksumming

CM Preserve comment lines within macros

CONST Make EQU symbols assembly time constants

CONTCK Continue checksumming

DLD Do not restrict directives in loops

GL Make all section symbols global

GS Make all sections global static

INTR Perform interrupt location checks

LB Byte increment load counter

LDB Listing file debug

MI Scan MACLIB directories for include files

PS Pack strings

PSM Programmable short addressing mode

RP Generate NOP to accommodate pipeline delay

RSV Check reserve data memory locations

SI Interpret short immediate as long or sign extended

SVO Preserve object file on errors

Assembler Directives

Motorola Motorola Assembler Notes C-37

Following are descriptions of the individual options. The parenthetical inserts specify
default if the option is the default condition and reset if the option is reset to its default
state at the end of pass one.

AE (default, reset) Check address expressions for appropriate arithmetic
operations. For example, this will check that only valid add or subtract
operations are performed on address terms.

CC Enable cycle counts and clear total cycle count. Cycle counts are shown on
the output listing for each instruction. Cycle counts assume a full instruction
fetch pipeline and no wait states.

CEX Print DC expansions.

CK Enable checksumming of instruction and data values and clear cumulative
checksum. The checksum value can be obtained using the @CHK()
function.

CL (default, reset) Print the conditional assembly directives.

CM (default, reset) Preserve comment lines of macros when they are defined.
Note that any comment line within a macro definition that starts with two
consecutive semicolons (;;) is never preserved in the macro definition.

CONST EQU symbols are maintained as assembly time constants and will not be
sent to the object file. This option, if used, must be specified before the first
symbol in the source program is defined.

CONTC Reenable cycle counts. Does not clear total cycle counts. The cycle count for
each instruction is shown on the output listing.

CONTCKReenable checksumming of instructions and data. Does not clear cumulative
checksum value.

CRE Print a cross reference table at the end of the source listing. This option, if
used, must be specified before the first symbol in the source program is
defined.

DEX Expand DEFINE symbols within quoted strings. Can also be done on a
case-by-case basis using double-quoted strings.

DLD Do not restrict directives in DO loops. The presence of some directives in
DO loops does not make sense, including some OPT directive variations.
This option suppresses errors on particular directives in loops.

DXL (default, reset) Expand DEFINE directive strings in listing.

C-38 DSP56303EVM User’s Manual Motorola

Assembler Directives

FC Fold trailing comments. Any trailing comments that are included in a source
line are folded underneath the source line and aligned with the opcode field.
Lines that start with the comment character are aligned with the label field in
the source listing. The FC option is useful for displaying the source listing
on 80 column devices.

FF Use form feeds for page ejects in the listing file.

FM Format assembler messages so that the message text is aligned and broken at
word boundaries.

GL Make all section symbols global. This has the same effect as declaring every
section explicitly GLOBAL. This option must be given before any sections
are defined explicitly in the source file.

GS (default, reset in absolute mode) Make all sections global static. All section
counters and attributes are associated with the GLOBAL section. This
option must be given before any sections are defined explicitly in the source
file.

HDR (default, reset) Generate listing header along with titles and subtitles.

IC Ignore case in symbol, section, and macro names. This directive must be
issued before any symbols, sections, or macros are defined.

IL Inhibit source listing. This option will stop the assembler from producing a
source listing.

INTR (default, reset in absolute mode) Perform interrupt location checks. Certain
DSP instructions may not appear in the interrupt vector locations in program
memory. This option enables the assembler to check for these instructions
when the program counter is within the interrupt vector bounds.

LB Increment load counter (if different from runtime) by number of bytes in
DSP word to provide byte-wide support for overlays in bootstrap mode.
This option must appear before any code or data generation.

LDB Use the listing file as the debug source file rather than the assembly
language file. The -L command line option to generate a listing file must be
specified for this option to take effect.

LOC Include local labels in the symbol table and cross-reference listing. Local
labels are not normally included in these listings. If neither the S or CRE
options are specified, then this option has no effect. The LOC option must
be specified before the first symbol is encountered in the source file.

MC (default, reset) Print macro calls.

MD (default, reset) Print macro definitions.

Assembler Directives

Motorola Motorola Assembler Notes C-39

MEX Print macro expansions.

MI Scan MACLIB directory paths for include files. The assembler ordinarily
looks for included files only in the directory specified in the INCLUDE
directory or in the paths given by the -I command line option. If the MI
option is used the assembler also looks for included files in any designated
MACLIB directories.

MSW (default, reset) Issue warning on memory space incompatibilities.

MU Include a memory utilization report in the source listing. This option must
appear before any code or data generation.

NL Display conditional assembly (IF-ELSE-ENDIF) and section nesting levels
on listing.

NOAE Do not check address expressions.

NOCC (default, reset) Disable cycle counts. Does not clear total cycle count.

NOCEX (default, reset) Do not print DC expansions.

NOCK (default, reset) Disable checksumming of instruction and data values.

NOCL Do not print the conditional assembly directives.

NOCM Do not preserve comment lines of macros when they are defined.

NODEX (default, reset) Do not expand DEFINE symbols within quoted strings.

NODLD (default, reset) Restrict use of certain directives in DO loop.

NODXL Do not expand DEFINE directive strings in listing.

NOFC (default, reset) Inhibit folded comments.

NOFF (default, reset) Use multiple line feeds for page ejects in the listing file.

NOFM (default, reset) Do not format assembler messages.

NOGS (default, reset in relative mode) Do not make all sections global static.

NOHDR Do not generate listing header. This also turns off titles and subtitles.

NOINTR (default, reset in relative mode) Do not perform interrupt location checks.

NOMC Do not print macro calls.

NOMD Do not print macro definitions.

NOMEX (default, reset) Do not print macro expansions.

NOMI (default, reset) Do not scan MACLIB directory paths for include files.

NOMSW Do not issue warning on memory space incompatibilities.

NONL (default, reset) Do not display nesting levels on listing.

C-40 DSP56303EVM User’s Manual Motorola

Assembler Directives

NONS Do not allow scoping of symbols within nested sections.

NOPP Do not pretty print listing file. Source lines are sent to the listing file as they
are encountered in the source, with the exception that tabs are expanded to
spaces and continuation lines are concatenated into a single physical line for
printing.

NOPS Do not pack strings in DC directive. Individual bytes in strings are stored
one byte per word.

NORC (default, reset) Do not space comments relatively.

NORP (default, reset) Do not generate instructions to accommodate pipeline delay.

NOSCL Do not maintain the current local label scope when a structured control
statement label is encountered.

NOU (default, reset) Do not print the lines excluded from the assembly due to a
conditional assembly directive.

NOUR (default, reset) Do not flag unresolved external references.

NOW Do not print warning messages.

NS (default, reset) Allow scoping of symbols within nested sections.

PP (default, reset) Pretty print listing file. The assembler attempts to align fields
at a consistent column position without regard to source file formatting.

PS (default, reset) Pack strings in DC directive. Individual bytes in strings are
packed into consecutive target words for the length of the string.

RC Space comments relatively in listing fields. By default, the assembler always
places comments at a consistent column position in the listing file. This
option allows the comment field to float: on a line containing only a label
and opcode, the comment begins in the operand field.

RP Generate NOP instructions to accommodate pipeline delay. If an address
register is loaded in one instruction then the contents of the register is not
available for use as a pointer until after the next instruction. Ordinarily when
the assembler detects this condition it issues an error message. The RP
option will cause the assembler to output a NOP instruction into the output
stream instead of issuing an error.

S Print symbol table at the end of the source listing. This option has no effect
if the CRE option is used.

Assembler Directives

Motorola Motorola Assembler Notes C-41

SCL (default, reset) Structured control statements generate non-local labels that
ordinarily are not visible to the programmer. This can create problems when
local labels are interspersed among structured control statements. This
option causes the assembler to maintain the current local label scope when a
structured control statement label is encountered.

SCO Send structured control statement labels to object and listing files. Normally
the assembler does not externalize these labels. This option must appear
before any symbol definition.

SO Write symbol information to object file. This option is recognized but
performs no operation in COFF assemblers.

SVO Preserve object file on errors. Normally any object file produced by the
assembler is deleted if errors occur during assembly. This option must be
given before any code or data is generated.

U Print the unassembled lines skipped due to failure to satisfy the condition of
a conditional assembly directive.

UR Generate a warning at assembly time for each unresolved external reference.
This option works only in relocatable mode.

W (default, reset) Print all warning messages.

WEX Add warning count to exit status. Ordinarily the assembler exits with a count
of errors. This option causes the count of warnings to be added to the error
count.

XLL Write underscore local labels to object file. This is primarily used to aid
debugging. This option, if used, must be specified before the first symbol in
the source program is defined.

XR Causes XDEFed symbols to be recognized within other sections without
being XREFed. This option, if used, must be specified before the first
symbol in the source program is encountered.

Example C-63. OPT Directive

OPT CEX,MEX ; Turn on DC and macro expansions
OPT CRE,MU ; Cross reference, memory utilization

C-42 DSP56303EVM User’s Manual Motorola

Assembler Directives

C.3.43 ORG Initialize Memory Space and Location Counters
ORG <rms>[<rlc>][<rmp>]:[<exp1>][,<lms>[<llc>][<lmp>]:[<exp2>]]
ORG <rms>[<rmp>][(<rce>)]:[<exp1>][,<lms>[<lmp>][(<lce>)]:[<exp2>]]

The ORG directive is used to specify addresses and to indicate memory space and
mapping changes. It also can designate an implicit counter mode switch in the assembler
and serves as a mechanism for initiating overlays.

Note: A label is not allowed with this directive.

The parameters used with the ORG directive are as follows

<rms> Which memory space (X, Y, L, P, or E) is used as the runtime memory
space. If the memory space is L, any allocated datum with a value greater
than the target word size is extended to two words; otherwise, it is truncated.
If the memory space is E, then depending on the memory space qualifier,
any generated words are split into bytes, one byte per word, or a 16/8-bit
combination.

<rlc> Which runtime counter H, L, or default (if neither H or L is specified), that
is associated with the <rms> is used as the runtime location counter.

<rmp> Indicates the runtime physical mapping to DSP memory: I—internal,
E—external, R—ROM, A—port A, B—port B. If not present, no explicit
mapping is done.

<rce> Non-negative absolute integer expression representing the counter number
to be used as the runtime location counter. Must be enclosed in parentheses.
Should not exceed the value 65535.

<exp1> Initial value to assign to the runtime counter used as the <rlc>. If <exp1> is
a relative expression the assembler uses the relative location counter. If
<exp1> is an absolute expression the assembler uses the absolute location
counter. If <exp1> is not specified, then the last value and mode that the
counter had is used.

<lms> Which memory space (X, Y, L, P, or E) is used as the load memory space. If
the memory space is L, any allocated datum with a value greater than the
target word size is extended to two words; otherwise, it is truncated. If the
memory space is E, then depending on the memory space qualifier, any
generated words are split into bytes, one byte per word, or a 16/8-bit
combination.

<llc> Which load counter, H, L, or default (if neither H or L is specified), that is
associated with the <lms> is used as the load location counter.

Assembler Directives

Motorola Motorola Assembler Notes C-43

<lmp> Indicates the load physical mapping to DSP memory: I—internal,
E—external, R—ROM, A—port A, B—port B. If not present, no explicit
mapping is done.

<lce> Non-negative absolute integer expression representing the counter number
to be used as the load location counter. Must be enclosed in parentheses.
Should not exceed the value 65535.

<exp2> Initial value to assign to the load counter used as the <llc>. If <exp2> is a
relative expression the assembler uses the relative location counter. If
<exp2> is an absolute expression the assembler uses the absolute location
counter. If <exp2> is not specified, then the last value and mode that the
counter had is used.

If the last half of the operand field in an ORG directive dealing with the load memory
space and counter is not specified, then the assembler assumes that the load memory space
and load location counter are the same as the runtime memory space and runtime location
counter. In this case, object code is being assembled to be loaded into the address and
memory space where it is when the program is run; it is not an overlay.

If the load memory space and counter are given in the operand field, then the assembler
always generates code for an overlay. Whether the overlay is absolute or relocatable
depends upon the current operating mode of the assembler and whether the load counter
value is an absolute or relative expression. If the assembler is running in absolute mode, or
if the load counter expression is absolute, then the overlay is absolute. If the assembler is
in relative mode and the load counter expression is relative, the overlay is relocatable.
Runtime relocatable overlay code is addressed relative to the location given in the runtime
location counter expression. This expression, if relative, may not refer to another overlay
block.

Note: See also MODE.

Example C-64. ORG Directive

ORG P:$1000

Sets the runtime memory space to P. Selects the default runtime counter (counter 0)
associated with P space to use as the runtime location counter and initializes it to $1000.
The load memory space is implied to be P, and the load location counter is assumed to be
the same as the runtime location counter.

C-44 DSP56303EVM User’s Manual Motorola

Assembler Directives

Example C-64. ORG Directive (Continued)

ORG PHE:

Sets the runtime memory space to P. Selects the H load counter (counter 2) associated
with P space to use as the runtime location counter. The H counter will not be initialized,
and its last value is used. Code generated hereafter is mapped to external (E) memory. The
load memory space is implied to be P, and the load location counter is assumed to be the
same as the runtime location counter.

ORG PI:OVL1,Y:

Indicates code is generated for an overlay. The runtime memory space is P, and the default
counter is used as the runtime location counter. It is reset to the value of OVL1. If the
assembler is in absolute mode via the -A command line option then OVL1 must be an
absolute expression. If OVL1 is an absolute expression the assembler uses the absolute
runtime location counter. If OVL1 is a relocatable value the assembler uses the relative
runtime location counter. In this case OVL1 must not itself be an overlay symbol (i.e.,
defined within an overlay block). The load memory space is Y. Since neither H, L, nor any
counter expression was specified as the load counter, the default load counter (counter 0)
is used as the load location counter. The counter value and mode are whatever they were
the last time they were referenced.

ORG XL:,E8:

Sets the runtime memory space to X. Selects the L counter (counter 1) associated with X
space to use as the runtime location counter. The L counter is not initialized, and its last
value is used. The load memory space is set to E, and the qualifier 8 indicates a bytewise
RAM configuration. Instructions and data are generated eight bits per output word with
byte-oriented load addresses. The default load counter is used, and there is no explicit load
origin.

ORG P(5):,Y:$8000

Indicates code is generated for an absolute overlay. The runtime memory space is P, and
the counter used as the runtime location counter is counter 5. It will not be initialized, and
the last previous value of counter 5 is used. The load memory space is Y. Since neither H,
L, nor any counter expression was specified as the load counter, the default load counter
(counter 0) is used as the load location counter. The default load counter is initialized to
$8000.

Assembler Directives

Motorola Motorola Assembler Notes C-45

C.3.44 PAGE Top of Page/Size Page
PAGE [<exp1>[,<exp2>...,<exp5>]]

The PAGE directive has two forms:

1. If no arguments are supplied, then the assembler advances the listing to the top of
the next page. In this case, the PAGE directive is not output.

2. The PAGE directive with arguments can be used to specify the printed format of
the output listing. Arguments may be any positive absolute integer expression.
The arguments in the operand field (as explained below) are separated by
commas. Any argument can be left as the default or last set value by omitting the
argument and using two adjacent commas. The PAGE directive with arguments
will not cause a page eject and is printed in the source listing.

Note: A label is not allowed with this directive.

The arguments in order are as follows:

1. PAGE_WIDTH <exp1>—Page width in terms of number of output columns per
line (default 80, min 1, max 255).

2. PAGE_LENGTH <exp2>—Page length in terms of total number of lines per page
(default 66, min 10, max 255). As a special case a page length of zero turns off all
headers, titles, subtitles, and page breaks.

3. BLANK_TOP <exp3>—Blank lines at top of page (default 0, min 0, max see
below).

4. BLANK_BOTTOM <exp4>—Blank lines at bottom of page (default 0, min 0, max
see below).

5. BLANK_LEFT <exp5>—Blank left margin. Number of blank columns at the left
of the page (default 0, min 0, max see below).

The following relationships must be maintained:

BLANK_TOP + BLANK_BOTTOM <= PAGE_LENGTH - 10
BLANK_LEFT < PAGE_WIDTH

Note: See also LSTCOL.

Example C-65. PAGE Directive

PAGE 132,,3,3 ; Set width to 132, 3 line top/bottom margins
PAGE ; Page eject

C.3.45 PMACRO Purge Macro Definition
PMACRO <symbol>[,<symbol>,...,<symbol>]

The specified macro definition is purged from the macro table, allowing the macro table
space to be reclaimed.

C-46 DSP56303EVM User’s Manual Motorola

Assembler Directives

Note: A label is not allowed with this directive. See also MACRO.

Example C-66. PMACRO Directive

PMACRO MAC1,MAC2

This statement would cause the macros named MAC1 and MAC2 to be purged.

C.3.46 PRCTL Send Control String to Printer
PRCTL <exp>I<string>,...,<exp>I<string>

PRCTL simply concatenates its arguments and ships them to the listing file. (The directive
line itself is not printed unless there is an error.) <exp> is a byte expression and <string> is
an assembler string. A byte expression would be used to encode non-printing control
characters, such as ESC. The string may be of arbitrary length, up to the maximum
assembler-defined limits.

PRCTL may appear anywhere in the source file and the control string is output at the
corresponding place in the listing file. However, if a PRCTL directive is the last line in the
last input file to be processed, the assembler insures that all error summaries, symbol
tables, and cross-references have been printed before sending out the control string. This is
so a PRCTL directive can be used to restore a printer to a previous mode after printing is
done. Similarly, if the PRCTL directive appears as the first line in the first input file, the
control string is output before page headings or titles.

The PRCTL directive only works if the -L command line option is given; otherwise it is
ignored.

Note: A label is not allowed with this directive.

Example C-67. PRCTL Directive

PRCTL $1B,’E’ ; Reset HP LaserJet printer

C.3.47 RADIX Change Input Radix for Constants
RADIX <expression>

Changes the input base of constants to the result of <expression>. The absolute integer
expression must evaluate to one of the legal constant bases (2, 10, or 16). The default radix
is 10. The RADIX directive allows the programmer to specify constants in a preferred
radix without a leading radix indicator. The radix prefix for base 10 numbers is the grave
accent (‘). Note that if a constant is used to alter the radix, it must be in the appropriate
input base at the time the RADIX directive is encountered.

Note: A label is not allowed with this directive.

Assembler Directives

Motorola Motorola Assembler Notes C-47

Example C-68. RADIX Directive

_RAD10 DC 10 ; Evaluates to hex A
RADIX 2

_RAD2 DC 10 ; Evaluates to hex 2
RADIX ‘16

_RAD16 DC 10 ; Evaluates to hex 10
RADIX 3 ; Bad radix expression

C.3.48 RDIRECT Remove Directive or Mnemonic from Table
RDIRECT <direc>[,<direc>,...,<direc>]

The RDIRECT directive is used to remove directives from the assembler directive and
mnemonic tables. If the directive or mnemonic that has been removed is later encountered
in the source file, it is assumed to be a macro. Macro definitions that have the same name
as assembler directives or mnemonics will cause a warning message to be output unless
the RDIRECT directive has been used to remove the directive or mnemonic name from
the assembler’s tables. Additionally, if a macro is defined through the MACLIB directive
with the same name as an existing directive or opcode, it will not automatically replace
that directive or opcode as previously described. In this case, the RDIRECT directive must
be used to force the replacement.

Since the effect of this directive is global, it cannot be used in an explicitly-defined
section. (See SECTION directive.) An error results if the RDIRECT directive is
encountered in a section.

Note: A label is not allowed with this directive.

Example C-69. RDIRECT Directive

RDIRECT PAGE,MOVE

This causes the assembler to remove the PAGE directive from the directive table and the
MOVE mnemonic from the mnemonic table.

C.3.49 SCSJMP Set Structured Control Statement Branching Mode
SCSJMP {SHORT | LONG | NONE}

The SCSJMP directive is analogous to the FORCE directive, but it only applies to
branches generated automatically by structured control statements. (See Section C.4,
"Structured Control Statements," on page C-54.) There is no explicit way, as with a
forcing operator, to force a branch short or long when it is produced by a structured
control statement. This directive causes all branches resulting from subsequent structured
control statements to be forced to the specified mode.

C-48 DSP56303EVM User’s Manual Motorola

Assembler Directives

Just like the FORCE pseudo-op, errors can result if a value is too large to be forced short.
For relocatable code, the error may not occur until the linking phase.

Note: See also FORCE, SCSREG. A label is not allowed with this directive.

Example C-70. SCSJMP Directive

SCSJMP SHORT ; force all subsequent SCS jumps short

C.3.50 SCSREG Reassign Structured Control Statement Registers
SCSREG [<srcreg>[,<dstreg>[,<tmpreg>[,<extreg>]]]]

The SCSREG directive reassigns the registers used by structured control statement (SCS)
directives. It is convenient for reclaiming default SCS registers when they are needed as
application operands within a structured control construct. <srcreg> is ordinarily the
source register for SCS data moves. <dstreg> is the destination register. <tmpreg> is a
temporary register for swapping SCS operands. <extreg> is an extra register for complex
SCS operations. With no arguments, SCSREG resets the SCS registers to their default
assignments.

The SCSREG directive should be used judiciously to avoid register context errors during
SCS expansion. Source and destination registers may not necessarily be used strictly as
source and destination operands. The assembler does no checking of reassigned registers
beyond validity for the target processor. Errors can result when a structured control
statement is expanded and an improper register reassignment has occurred. It is
recommended that the MEX option (see the OPT directive) be used to examine structured
control statement expansion for relevant constructs to determine default register usage and
applicable reassignment strategies.

Note: See also OPT (MEX), SCSJMP. A label is not allowed with this directive.

Example C-71. SCSREG Directive

SCSREG Y0,B ; reassign SCS source and dest. registers

C.3.51 SECTION Start Section
SECTION <symbol> [GLOBAL | STATIC | LOCAL]
.
.
<section source statements>
.
.
ENDSEC

The SECTION directive defines the start of a section. All symbols that are defined within
a section have the <symbol> associated with them as their section name. This serves to

Assembler Directives

Motorola Motorola Assembler Notes C-49

protect them from like-named symbols elsewhere in the program. By default, a symbol
defined inside any given section is private to that section unless the GLOBAL or LOCAL
qualifier accompanies the SECTION directive.

Any code or data inside a section is considered an indivisible block with respect to
relocation. Code or data associated with a section is independently relocatable within the
memory space to which it is bound, unless the STATIC qualifier follows the SECTION
directive on the instruction line.

Symbols within a section are generally distinct from other symbols used elsewhere in the
source program, even if the symbol name is the same. This is true as long as the section
name associated with each symbol is unique, the symbol is not declared public
(XDEF/GLOBAL), and the GLOBAL or LOCAL qualifier is not used in the section
declaration. Symbols that are defined outside of a section are considered global symbols
and have no explicit section name associated with them. Global symbols may be
referenced freely from inside or outside of any section, as long as the global symbol name
does not conflict with another symbol by the same name in a given section.

If the GLOBAL qualifier follows the <section name> in the SECTION directive, then all
symbols defined in the section until the next ENDSEC directive are considered global.
The effect is as if every symbol in the section were declared with GLOBAL. This is useful
when a section needs to be independently relocatable, but data hiding is not desired.

If the STATIC qualifier follows the <section name> in the SECTION directive, then all
code and data defined in the section until the next ENDSEC directive are relocated in
terms of the immediately enclosing section. The effect with respect to relocation is as if all
code and data in the section were defined within the parent section. This is useful when a
section needs data hiding, but independent relocation is not required.

If the LOCAL qualifier follows the <section name> in the SECTION directive, then all
symbols defined in the section until the next ENDSEC directive are visible to the
immediately enclosing section. The effect is as if every symbol in the section were defined
within the parent section. This is useful when a section needs to be independently
relocatable, but data hiding within an enclosing section is not required.

The division of a program into sections controls not only labels and symbols but also
macros and DEFINE directive symbols. Macros defined within a section are private to that
section and are distinct from macros defined in other sections even if they have the same
macro name. Macros defined outside of sections are considered global and may be used
within any section. Similarly, DEFINE directive symbols defined within a section are
private to that section and DEFINE directive symbols defined outside of any section are
globally applied. There are no directives that correspond to XDEF for macros or DEFINE

C-50 DSP56303EVM User’s Manual Motorola

Assembler Directives

symbols, and therefore, macros and DEFINE symbols defined in a section can never be
accessed globally. If global accessibility is desired, the macros and DEFINE symbols
should be defined outside of any section.

Sections can be nested to any level. When the assembler encounters a nested section, the
current section is stacked and the new section is used. When the ENDSEC directive of the
nested section is encountered, the assembler restores the old section and uses it. The
ENDSEC directive always applies to the most previous SECTION directive. Nesting
sections provides a measure of scoping for symbol names, in that symbols defined within
a given section are visible to other sections nested within it. For example, if section B is
nested inside section A, then a symbol defined in section A can be used in section B
without XDEFing in section A or XREFing in section B. This scoping behavior can be
turned off and on with the NONS and NS options respectively. (See the OPT directive.)

Sections may also be split into separate parts. That is, <section name> can be used
multiple times with SECTION and ENDSEC directive pairs. If this occurs, then these
separate (but identically named) sections can access each others symbols freely without
the use of the XREF and XDEF directives. If the XDEF and XREF directives are used
within one section, they apply to all sections with the same section name. The reuse of the
section name is allowed to permit the program source to be arranged in an arbitrary
manner (e.g., all statements that reserve X space storage locations grouped together) but
retain the privacy of the symbols for each section.

When the assembler operates in relative mode (the default), sections act as the basic
grouping for relocation of code and data blocks. For every section defined in the source, a
set of location counters is allocated for each DSP memory space. These counters are used
to maintain offsets of data and instructions relative to the beginning of the section. At link
time, sections can be relocated to an absolute address, loaded in a particular order, or
linked contiguously as specified by the programmer. Sections which are split into parts or
among files are logically recombined so that each section can be relocated as a unit.

Sections may be relocatable or absolute. In the assembler absolute mode (command line
-A option) all sections are considered absolute. A full set of locations counters is reserved
for each absolute section unless the GS option is given. (See the OPT directive.) In relative
mode, all sections are initially relocatable. However, a section or a part of a section may
be made absolute either implicitly by using the ORG directive or explicitly through use of
the MODE directive.

Note: A label is not allowed with this directive. See also MODE, ORG, GLOBAL, LOCAL,
XDEF, XREF.

Assembler Directives

Motorola Motorola Assembler Notes C-51

Example C-72. SECTION Directive

SECTION TABLES ; TABLES will be the section name

C.3.52 SET Set Symbol to a Value
<label> SET <expression>

SET <label> <expression>

The SET directive is used to assign the value of the expression in the operand field to the
label. The SET directive functions somewhat like the EQU directive. However, labels
defined via the SET directive can have their values redefined in another part of the
program (but only through the use of another SET directive). The SET directive is useful
in establishing temporary or reusable counters within macros. The expression in the
operand field of a SET must be absolute and cannot include a symbol that is not yet
defined. (No forward references are allowed.)

Note: See also EQU, GSET.

Example C-73. SET Directive

COUNT SET 0 ; INITIALIZE COUNT

C.3.53 STITLE Initialize Program Sub-Title
STITLE [<string>]

The STITLE directive initializes the program subtitle to the string in the operand field.
The subtitle is printed on the top of all succeeding pages until another STITLE directive is
encountered. The subtitle is initially blank. The STITLE directive will not be printed in the
source listing. An STITLE directive with no string argument causes the current subtitle to
be blank.

Note: A label is not allowed with this directive. See also TITLE.

Example C-74. STITLE Directive

STITLE ’COLLECT SAMPLES’

C.3.54 SYMOBJ Write Symbol Information to Object File
SYMOBJ <symbol>[,<symbol>,...,<symbol>]

The SYMOBJ directive causes information for each <symbol> to be written to the object
file. This directive is recognized but currently performs no operation in COFF assemblers.

Note: A label is not allowed with this directive.

C-52 DSP56303EVM User’s Manual Motorola

Assembler Directives

Example C-75. SYMOBJ

SYMOBJ XSTART,HIRTN,ERRPROC

C.3.55 TABS Set Listing Tab Stops
TABS <tabstops>

The TABS directive allows resetting the listing file tab stops from the default value of 8.

Note: A label is not allowed with this directive. See also LSTCOL.

Example C-76. TABS Directive

TABS 4 ; Set listing file tab stops to 4

C.3.56 TITLE Initialize Program Title
TITLE [<string>]

The TITLE directive initializes the program title to the string in the operand field. The
program title is printed on the top of all succeeding pages until another TITLE directive is
encountered. The title is initially blank. The TITLE directive is not printed in the source
listing. A TITLE directive with no string argument causes the current title to be blank.

Note: A label is not allowed with this directive. See also STITLE.

Example C-77. TITLE Directive

TITLE ’FIR FILTER’

C.3.57 UNDEF Undefine DEFINE Symbol
UNDEF [<symbol>]

The UNDEF directive causes the substitution string associated with <symbol> to be
released, and <symbol> will no longer represent a valid DEFINE substitution. See the
DEFINE directive for more information.

Note: A label is not allowed with this directive. See also DEFINE.

Example C-78. UNDEF Directive

UNDEF DEBUG; UNDEFINES THE DEBUG SUBSTITUTION STRING

C.3.58 WARN Programmer Generated Warning
WARN [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The WARN directive causes a warning message to be output by the assembler. The total
warning count is incremented as with any other warning. The WARN directive is

Assembler Directives

Motorola Motorola Assembler Notes C-53

normally used in conjunction with conditional assembly directives for exceptional
condition checking. The assembly proceeds normally after the warning has been printed.
An arbitrary number of strings and expressions, in any order but separated by commas
with no intervening white space, can be specified optionally to describe the nature of the
generated warning.

Note: A label is not allowed with this directive. See also FAIL, MSG.

Example C-79. WARN Directive

WARN ’parameter too large’

C.3.59 XDEF External Section Symbol Definition
XDEF <symbol>[,<symbol>,...,<symbol>]

The XDEF directive is used to specify that the list of symbols is defined within the current
section, and that those definitions should be accessible by sections with a corresponding
XREF directive. This directive is only valid if used within a program section bounded by
the SECTION and ENDSEC directives. The XDEF directive must appear before
<symbol> is defined in the section. If the symbols that appear in the operand field are not
defined in the section, an error is generated.

Note: A label is not allowed with this directive. See also SECTION, XREF.

Example C-80. XDEF Directive

SECTION IO
XDEF LOOPA ; LOOPA will be accessible by sections with XREF
.
.
.
ENDSEC

C.3.60 XREF External Section Symbol Reference
XREF <symbol>[,<symbol>,...,<symbol>]

The XREF directive is used to specify that the list of symbols is referenced in the current
section but is not defined within the current section. These symbols must either have been
defined outside of any section or declared as globally accessible within another section
using the XDEF directive. If the XREF directive is not used to specify that a symbol is
defined globally and the symbol is not defined within the current section, an error is
generated, and all references within the current section to such a symbol are flagged as
undefined. The XREF directive must appear before any reference to <symbol> in the
section.

Note: A label is not allowed with this directive. See also SECTION, XDEF.

C-54 DSP56303EVM User’s Manual Motorola

Structured Control Statements

Example C-81. XREF Directive

SECTION FILTER
XREF AA,CC,DD ; XDEFed symbols within section
.
.
.
ENDSEC

C.4 Structured Control Statements

An assembly language provides an instruction set for performing certain rudimentary
operations. These operations in turn may be combined into control structures such as loops
(FOR, REPEAT, WHILE) or conditional branches (IF-THEN, IF-THEN-ELSE). The
assembler, however, accepts formal, high-level directives that specify these control
structures, generating the appropriate assembly language instructions for their efficient
implementation. This use of structured control statement directives improves the
readability of assembly language programs without compromising the desirable aspects of
programming in an assembly language.

C.4.1 Structured Control Directives

The following directives are used for structured control. Note the leading period, which
distinguishes these keywords from other directives and mnemonics. Structured control
directives may be specified in either upper or lower case, but they must appear in the
opcode field of the instruction line (i.e., they must be preceded either by a label, a space,
or a tab).

.BREAK .ENDI .LOOP

.CONTINUE .ENDL .REPEAT

.ELSE .ENDW .UNTIL

.ENDF .FOR .WHILE

.IF

In addition, the following keywords are used in structured control statements:

AND DOWNTO TO
BY OR
DO THEN

Note: AND, DO, and OR are reserved assembler instruction mnemonics.

Structured Control Statements

Motorola Motorola Assembler Notes C-55

C.4.2 Syntax

The formats for the “.BREAK”, “.CONTINUE”, “.FOR”, “.IF”, “.LOOP”, “.REPEAT”,
and “.WHILE” statements are given in sections C.4.2.1 through C.4.2.7. Syntactic
variables used in the formats are defined as follows:

• <expression>—A simple or compound expression (Section C.4.3).

• <stmtlist>—Zero or more assembler directives, structured control statements, or
executable instructions.

Note: An assembler directive occurring within a structured control statement is examined
exactly once—at assembly time. Thus the presence of a directive within a .FOR,
.LOOP, .REPEAT, or .WHILE statement does not imply repeated occurrence of an
assembler directive; nor does the presence of a directive within an .IF-THEN-.ELSE
structured control statement imply conditional assembly.

• <op1>—A user-defined operand whose register/memory location holds the .FOR
loop counter. The effective address must use a memory alterable addressing mode
(i.e., it cannot be an immediate value).

• <op2>—The initial value of the .FOR loop counter. The effective address may be
any mode and may represent an arbitrary assembler expression.

• <op3>—The terminating value of the .FOR loop counter. The effective address
may be any mode and may represent an arbitrary assembler expression.

• <op4>—The step (increment/decrement) of the .FOR loop counter each time
through the loop. If not specified, it defaults to a value of #1. The effective address
may be any mode and may represent an arbitrary assembler expression.

• <cnt>—The terminating value in a .LOOP statement. This can be any arbitrary
assembler expression.

All structured control statements may be followed by normal assembler comments on the
same logical line.

C.4.2.1 .BREAK Statement
.BREAK

The .BREAK statement causes an immediate exit from the innermost enclosing loop
construct (.WHILE, .REPEAT, .FOR, .LOOP). A .BREAK statement does not exit an
.IF-THEN-.ELSE construct. If a .BREAK is encountered with no loop statement active, a
warning is issued.

Note: .BREAK should be used with care near .ENDL directives or near the end of DO loops.
It generates a jump instruction which is illegal in those contexts.

C-56 DSP56303EVM User’s Manual Motorola

Structured Control Statements

Example C-82. .BREAK Statement

.WHILE x:(r1)+ <GT> #0;loop until zero is found

.

.

.

.IF <cs>

.BREAK ;causes exit from WHILE loop

.ENDI

.

. ;any instructions here are skipped

.

.ENDW
;execution resumes here after .BREAK

C.4.2.2 .CONTINUE Statement
.CONTINUE

The .CONTINUE statement causes the next iteration of a looping construct (“.WHILE”,
“.REPEAT”, “.FOR”, “.LOOP”) to begin. This means that the loop expression or operand
comparison is performed immediately, bypassing any subsequent instructions. If a
.CONTINUE is encountered with no loop statement active, a warning is issued.

Note: .CONTINUE should be used with care near .ENDL directives or near the end of DO
loops. It generates a jump instruction which is illegal in those contexts. One or more
.CONTINUE directives inside a .LOOP construct will generate a NOP instruction just
before the loop address.

Example C-83. .CONTINUE Statement

.REPEAT

.

.

.

.IF <cs>

.CONTINUE ;causes immediate jump to .UNTIL

.ENDI

.

. ;any instructions here are skipped

.

.UNTIL x:(r1)+ <EQ> #0;evaluation here after .CONTINUE

C.4.2.3 .FOR Statement
.FOR <op1> = <op2> {TO | DOWNTO} <op3> [BY <op4>] [DO]
<stmtlist>
.ENDF

Initialize <op1> to <op2> and perform <stmtlist> until <op1> is greater (TO) or less than
(DOWNTO) <op3>. Makes use of a user-defined operand, <op1>, to serve as a loop
counter. .FOR-TO allows counting upward, while .FOR-DOWNTO allows counting

Structured Control Statements

Motorola Motorola Assembler Notes C-57

downward. The programmer may specify an increment/decrement step size in <op4>, or
elect the default step size of #1 by omitting the BY clause. A .FOR-TO loop is not
executed if <op2> is greater than <op3> upon entry to the loop. Similarly, a
.FOR-DOWNTO loop is not executed if <op2> is less than <op3>.

<op1> must be a writable register or memory location. It is initialized at the beginning of
the loop and updated at each pass through the loop. Any immediate operands must be
preceded by a pound sign (#). Memory references must be preceded by a memory space
qualifier (X:, Y:, or P:). L memory references are not allowed. Operands must be or refer
to single-word values.

The logic generated by the .FOR directive makes use of several DSP data registers. In fact,
two data registers are used to hold the step and target values, respectively, throughout the
loop; they are never reloaded by the generated code. It is recommended that these registers
not be used within the body of the loop, or that they be saved and restored prior to loop
evaluation.

Note: The DO keyword is optional.

Example C-84. .FOR Statement

.FOR X:CNT = #0 TO Y:(targ*2)+114; loop on X:CNT

.

.

.

.ENDF

C.4.2.4 .IF Statement
.IF <expression>[THEN]
<stmtlist>
[.ELSE
<stmtlist>]
.ENDI

If <expression> is true, execute <stmtlist> following THEN (the keyword THEN is
optional); if <expression> is false, execute <stmtlist> following .ELSE, if present;
otherwise, advance to the instruction following .ENDI.

Note: In the case of nested .IF-THEN-.ELSE statements, each .ELSE refers to the most
recent .IF-THEN sequence.

Example C-85. .IF Statement

.IF <EQ> ; zero bit set?

.

.

.

.ENDI

C-58 DSP56303EVM User’s Manual Motorola

Structured Control Statements

C.4.2.5 .LOOP Statement
.LOOP <cnt>
<stmtlist>
.ENDL

Execute <stmtlist> <cnt> times. This is similar to the “.FOR” loop construct, except that
the initial counter and step value are implied to be #1. It is actually a shorthand method for
setting up a hardware DO loop on the DSP without having to worry about addressing
modes or label placement.

Since the .LOOP statement generates instructions for a hardware DO loop, the same
restrictions apply as to the use of certain instructions near the end of the loop, nesting
restrictions, etc. One or more “.CONTINUE” directives inside a .LOOP construct generate
a NOP instruction just before the loop address.

Example C-86. .LOOP Statement

.LOOP LPCNT ; hardware loop LPCNT times

.

.

.

.ENDL

C.4.2.6 .REPEAT Statement
.REPEAT
<stmtlist>
.UNTIL <expression>

<stmtlist> is executed repeatedly until <expression> is true. When expression becomes
true, advance to the next instruction following .UNTIL. The <stmtlist> is executed at least
once, even if <expression> is true upon entry to the .REPEAT loop.

Example C-87. .REPEAT Statement

.REPEAT

.

.

.

.UNTIL x:(r1)+ <EQ> #0; loop until zero is found

C.4.2.7 .WHILE Statement
.WHILE <expression>[DO]
<stmtlist>
.ENDW

The <expression> is tested before execution of <stmtlist>. While <expression> remains
true, <stmtlist> is executed repeatedly. When <expression> evaluates false, advance to the

Structured Control Statements

Motorola Motorola Assembler Notes C-59

instruction following the “.ENDW” statement. If <expression> is false upon entry to the
.WHILE loop, <stmtlist> is not executed; execution continues after the .ENDW directive.

Note: The DO keyword is optional.

Example C-88. .WHILE Statement

.WHILE x:(r1)+ <GT> #0; loop until zero is found

.

.

.

.ENDW

C.4.3 Simple and Compound Expressions

Expressions are an integral part of “.IF”, “.REPEAT”, and “.WHILE” statements.
Structured control statement expressions should not be confused with the assembler
expressions. The latter are evaluated at assembly time and are referred to here as
"assembler expressions;” they can serve as operands in structured control statement
expressions. The structured control statement expressions described below are evaluated
at run time and are referred to in the following discussion simply as “expressions”.

A structured control statement expression may be simple or compound. A compound
expression consists of two or more simple expressions joined by either AND or OR (but
not both in a single compound expression).

C.4.3.1 Simple Expressions

Simple expressions are concerned with the bits of the condition code register (CCR).
These expressions are of two types. The first type merely tests conditions currently
specified by the contents of the CCR. (See Section C.4.3.2.) The second type sets up a
comparison of two operands to set the condition codes and afterwards tests the codes.

C.4.3.2 Condition Code Expressions

A variety of tests (identical to those in the Jcc instruction) may be performed, based on the
CCR condition codes. The condition codes, in this case, are preset by either a
user-generated instruction or a structured operand-comparison expression. Each test is
expressed in the structured control statement by a mnemonic enclosed in angle brackets.

When processed by the assembler, the expression generates an inverse conditional jump to
beyond the matching .ENDx/.UNTIL directive.

C-60 DSP56303EVM User’s Manual Motorola

Structured Control Statements

Example C-89. Condition Code Expression

.IF <EQ> ;zero bit set?
+ bne Z_L00002 ;code generated by assembler

CLR D1 ;user code
.ENDI

+ Z_L00002 ;assembler-generated label
.REPEAT ;subtract until D0 < D7

+ Z_L00034 ;assembler-generated label
SUB D7,D0 ;user code
.UNTIL <LT>

+ bge Z_L00034 ;code generated by assembler

C.4.3.3 Operand Comparison Expressions

Two operands may be compared in a simple expression, with subsequent transfer of
control based on that comparison. Such a comparison takes the form

<op1> <cc> <op2>

where <cc> is a condition mnemonic enclosed in angle brackets (as described in section
C.4.3.2), and <op1> and <op2> are register or memory references, symbols, or assembler
expressions. When processed by the assembler, the operands are arranged such that a
compare/jump sequence of the following form always results

CMP <reg1>,<reg2>
(J|B)cc <label>

where the jump conditional is the inverse of <cc>. Ordinarily <op1> is moved to the
<reg1> data register and <op2> is moved to the <reg2> data register prior to the compare.
This is not always the case, however. If <op1> happens to be <reg2> and <op2> is
<reg1>, an intermediate register is used as a scratch register. In any event, worstcase code
generation for a given operand comparison expression is generally two moves, a compare,
and a conditional jump.

Jumps or branches generated by structured control statements are forced long because the
number and address of intervening instructions between a control statement and its
termination are not known by the assembler. The programmer may circumvent this
behavior by use of the SCSJMP directive.

Any immediate operands must be preceded by a pound sign (#). Memory references must
be preceded by a memory space qualifier (X:, Y:, or P:). L memory references are not
allowed. Operands must be or refer to single-word values.

Note that values in the <reg1> and <reg2> data registers are not saved before expression
evaluation. This means that any user data in those registers are overwritten each time the
expression is evaluated at runtime. The programmer should take care either to save needed

Structured Control Statements

Motorola Motorola Assembler Notes C-61

contents of the registers, reassign data registers using the SCSREG directive, or not use
them at all in the body of the particular structured construct being executed.

C.4.3.4 Compound Expressions

A compound expression consists of two or more simple expressions (See Section C.4.3.1.)
joined by a logical operator (AND or OR). The boolean value of the compound expression
is determined by the boolean values of the simple expressions and the nature of the logical
operator. Note that the result of mixing logical operators in a compound expression is
undefined:

.IF X1 <GT> B AND <LS> AND R1 <NE> R2;this is OK

.IF X1 <LE> B AND <LC> OR R5 <GT> R6;undefined

The simple expressions are evaluated left to right. Note that this means the result of one
simple expression could have an impact on the result of subsequent simple expressions,
because of the condition code settings stemming from the assembler-generated compare.

If the compound expression is an AND expression and one of the simple expressions is
found to be false, any further simple expressions are not evaluated. Likewise, if the
compound expression is an OR expression and one of the simple expressions is found to
be true, any further simple expressions are not evaluated. In these cases, the compound
expression is either false or true, respectively, and the condition codes reflect the result of
the last simple expression evaluated.

C.4.3.5 Statement Formatting

The format of structured control statements differs somewhat from normal assembler
usage. Whereas a standard assembler line is split into fields separated by blanks or tabs
with no white space inside the fields, structured control statement formats vary depending
on the statement being analyzed. In general, all structured control directives are placed in
the opcode field (with an optional label in the label field) and white space separates all
distinct fields in the statement. Any structured control statement may be followed by a
comment on the same logical line.

C.4.3.6 Expression Formatting

Given an expression of the form

<op1> <LT> <op2> OR <op3> <GE> <op4>

there must be white space (blank, tab) between all operands and their associated operators,
including boolean operators in compound expressions. Moreover, there must be white
space between the structured control directive and the expression, and between the
expression and any optional directive modifier (THEN, DO). An assembler expression

C-62 DSP56303EVM User’s Manual Motorola

Structured Control Statements

used as an operand in a structured control statement expression must not have white space
in it, since it is parsed by the standard assembler evaluation routines:

.IF #@CVI(@SQT(4.0)) <GT> #2; no white space in first operand

C.4.3.7 .FOR/.LOOP Formatting

The .FOR and .LOOP directives represent special cases. The .FOR structured control
statement consists of several fields:

.FOR <op1> = <op2> TO <op3> BY <op4> DO

There must be white space between all operands and other syntactic entities such as “=”,
“TO”, “BY”, and “DO”. As with expression formatting, an assembler expression used as
an operand must not have white space in it:

.FOR X:CNT = #0 TO Y:(targ*2)+1 BY #@CVI(@POW(2.0,@CVF(R)))

In the example above, the .FOR loop operands represented as assembler expressions
(symbol, function) do not have embedded white space, whereas the loop operands are
always separated from structured control statement keywords by white space.

The count field of a .LOOP statement must be separated from the .LOOP directive by
white space. The count itself may be any arbitrary assembler expression and therefore
must not contain embedded blanks.

C.4.4 Assembly Listing Format

Structured control statements begin with the directive in the opcode field; any optional
label is output in the label field. The rest of the statement is left as is in the operand field,
except for any trailing comment; the X and Y data movement fields are ignored.
Comments following the statement are output in the comment field (unless the unreported
comment delimiter is used).

Statements are expanded using the macro facilities of the assembler. Thus the generated
code can be sent to the listing by specifying the MEX assembler option, either via the OPT
directive or the -O command line option.

C.4.5 Effects on the Programmer’s Environment

During assembly, global labels beginning with “Z_L” are generated. They are stored in the
symbol table and should not be duplicated in user-defined labels. Because these non-local
labels ordinarily are not visible to the programmer, there can be problems when local
(underscore) labels are interspersed among structured control statements. The SCL option

Structured Control Statements

Motorola Motorola Assembler Notes C-63

(see the OPT directive) causes the assembler to maintain the current local label scope
when a structured control statement label is encountered.

In the.FOR loop, <op1> is a user-defined symbol. When exiting the loop, the
memory/register assigned to this symbol contains the value which caused the exit from the
loop.

A compare instruction is produced by the assembler whenever two operands are tested in a
structured statement. At runtime, these assembler-generated instructions set the condition
codes of the CCR (in the case of a loop, the condition codes are set repeatedly). Any
user-written code either within or following a structured statement that references CCR
directly (move) or indirectly (conditional jump/transfer) should be attentive to the effect of
these instructions.

Jumps or branches generated by structured control statements are forced long because the
number and address of intervening instructions between a control statement and its
termination are not known by the assembler. The programmer may circumvent this
behavior by use of the SCSJMP directive. In all structured control statements except those
using only a single condition code expression, registers are used to set up the required
counters and comparands. In some cases, these registers are effectively reserved; the .FOR
loop uses two data registers to hold the step and target values, respectively, and performs
no save/restore operations on these registers. The assembler, in fact, does no save/restore
processing in any structured control operation; it simply moves the operands into
appropriate registers to execute the compare. The SCSREG directive may be used to
reassign structured control statement registers. The MEX assembler option (see the OPT
directive) may be used to send the assembler-generated code to the listing file for
examination of possible register use conflicts.

C-64 DSP56303EVM User’s Manual Motorola

Structured Control Statements

Motorola Codec Programming Tutorial D-1

Appendix D
Codec Programming Tutorial

D.1 Introduction

The DSP56300 family is capable of many different types of activities. Through
mathematical algorithms implemented on the DSP, various of tasks and different kinds of
digital signal processing can be accomplished. However, in order to obtain useful
information, it is often necessary to interact with external events in the outside world.

To satisfy this requirement, Motorola engineers integrated the CS4218 16-bit Audio codec
CMOS device with the current DSP5630x evaluation modules. Their design opened the
DSP to numerous applications, as the CS4218 codec has many critical components
needing to interface with the outside world. The codec will perform analog-to-digital
(A/D) and digital-to-analog (D/A) conversion, filtering, and level setting.

A sample program is included with this document to demonstrate the use of the CS4218
codec with a Motorola DSP. The program explains the steps necessary to interface the
Motorola DSP with the CS4218 codec. More specifically, the sample program explains in
detail the use of the enhanced synchronous serial interface ports (ESSI) and how the
DSP’s ESSI ports interface, initialize, and transport data between the DSP and CS4218
codec.

The following source code files are provided to the programmer to assist in programming
the codec. The following source-code files can be found on Motorola’s DSP website on
the Internet at

www.mot.com/SPS/DSP/documentation/DSP56300.html.

• Ioequ.asm: Contains important I/O equates for the DSP5630xEVM modules.

• Intequ.asm: Contains interrupt equates for the DSP5630x EVM modules.

• Ada_equ.asm: Contains equates used to initialize the codec.

• Ada_Init.asm: Contains initialization code for the ESSI and codec.

• Vectors.asm: Contains the vector table for the DSP5630xEVM modules.

• Echo.asm: Example of codec programming.

Motorola DSP56303EVM User’s Manual D-2

Codec Background

Throughout this appendix, the sample code, used to demonstrate the use of the codec,
references equates found in Ada_equ.asm, Ioequ.asm, and Intequ.asm.

D.2 Codec Background

D.2.1 Codec Device

The CS4218 stereo audio codec is comprised of many devices designed to perform A/D
and D/A conversion built into a single chip. The chip consists of two delta-sigma A/D
converters, two delta-sigma D/A converters, input anti-aliasing filters, output smoothing
filters, programmable input gain, and programmable output attenuators. These separate
components built into the codec allow the DSP to receive data from the codec, to process
the data, and to eventually transmit processed data back to the codec. The data travels
through special serial ports using the DSP’s ESSI ports and the codec’s specialized pins.

D.2.2 Codec Modes

The codec has many modes of operation. These modes are configured by setting certain
pins on the codec high or low, specifically SMODE1, SMODE2, and SMODE3 pins. The
mode in which the DSP5630x evaluation modules are physically set to is Serial Mode 4
(SM4). SM4 allows the control information for the codec to be separated from the data
information. In effect, this reduces the bandwidth needed by the data serial ports and
simplifies the programming procedures.

Within the SM4 mode exist four sub modes. These secondary modes specify two things:
whether the codec functions in the master mode or the slave mode, and the number of bits
per frame. With the DSP evaluation boards that are discussed in this appendix, the
secondary modes are physically configured to sub mode 0. Sub mode 0 dictates the codec
to function in the master mode and sets the frame size to be 32 bits.

In essence, by setting the codec to operate in the master mode, the codec is responsible for
sending the serial bit clock and sending frame synchronization pulses to indicate the start
and stop of a data frame. In addition, sub mode zero specifies that each frame consist of
two 16-bit words, a left-channel 16 bit word and a right-channel 16 bit word. The left and
right channels are sent to and from the codec with the most significant bits (MSBs) first.

This information will be important in the sections to follow in this appendix. These
properties apply to both the input data going into the codec (SDIN) and the output data
coming from the codec (SDOUT). Please refer to Figure D-1.

ESSI Ports Background

Motorola Codec Programming Tutorial D-3

Figure D-1. Data Format of Codec

In the SM4 mode, the control information is separated from the data information. The
control information is thus sent to codec on a different serial interface than the data
information. The control information consists of a list of attributes that need to be
specified in order to dictate certain properties such as level settings. Although 31 bits must
be set in the control information, only 23 bits are useful. The other 8 bits are set to zero.

For more information on the CS4218 codec, please refer to the Crystal CS4218 codec
Datasheet.

D.3 ESSI Ports Background

The Motorola DSP5630x evaluation modules referred to in this appendix have two ESSI
ports. ESSI0 and ESSI1, which form one of the major serial interfaces to external
peripherals. Each port consists of six unique pins that allow performance of a multitude of
functions, depending on how certain pins are configured. Each port can function as either
an ESSI or a General Purpose Input/Output port (GPIO).

While the ESSI mode has some constraints, by using the ESSI port in the ESSI mode, the
programmer can synchronize his tasks with a master clock. In addition, certain control
actions and direction flow are set automatically. On the other hand, by using the ESSI port
in the GPIO mode, the programmer is given the option of specifying exactly how data is
transferred and what direction the data will flow. The drawback to using the GPIO mode is
that the programmer must understand exactly how the GPIO ports are used when
programming the GPIO ports. In the example given in this appendix, both modes of
operation are used.

When working with ESSI ports, the programmer needs to know in detail of the registers
and pins available on the ESSI port. Although it is not the purpose of this appendix to
discuss the ESSI port in great detail, a brief description of each pin and register is
included.

SSYNC

SDOUT

 Frame 32-bits

16-bits

Left Channel Word

Left Channel WordSDIN Right Channel Word

Right Channel Word

Motorola DSP56303EVM User’s Manual D-4

ESSI/GPIO pins

D.4 ESSI/GPIO pins

The ESSI port uses six pins to allow transfer of information. Each pin can be configured to
function in the ESSI mode or the GPIO mode by modifying the port control registers.
Please refer to Table D-1.

Table D-1. ESSI Pin Definition

D.5 ESSI Port Registers

The ESSI port can be configured to work in the ESSI mode or the GPIO mode. However,
in either the ESSI mode or the GPIO mode there are certain registers that apply
specifically to each mode, with the exception of two registers. The two registers, port
control register C (PCRC) and port control register D (PCRD), determine how the ESSI
ports will be used. port control register C configures the ESSI0’s functionality mode,
while port control register D configures the ESSI1’s functionality mode.

Setting the corresponding bit/pin on the port control register to 1 configures the pin to
operate in the ESSI mode. On the other hand setting the corresponding bit/pin to 0
configures the pin to function in the GPIO mode. Notice that each pin is individually
configured to be in the ESSI mode or the GPIO mode.

D.5.1 ESSI/GPIO Shared Registers

Table D-2 lists and describes the functions of the ESSI/GPIO shared registers.

 Pin Name Pin Function

Serial Control 0 (SC0/PC0) Has a multitude of functions depending on how control registers are set.

Serial Control 1 (SC1/PC1) Has a multitude of functions depending on how control registers are set.

Serial Control 2 (SC2/PC2) Has a multitude of functions depending on how control registers are set.

Serial Clock (SCK/PC3) Serves as a provider or a receiver of the serial bit rate clock.

Serial Receive Data (SRD/PC4) Receives serial data.

Serial Transmit Data (STD/PC5) Transmit serial data.

ESSI Port Registers

Motorola Codec Programming Tutorial D-5

Table D-2. ESSI/GPIO Shared Registers

D.5.2 ESSI Registers

The ESSI consists of 12 registers specific to the ESSI mode. Recall that the DSP5630x has
two ESSI ports. Therefore there are two sets of ESSI registers; one for ESSI0 and the other
for ESSI1. Table D-3 displays a list of the ESSI registers.

Table D-3. ESSI Registers

D.5.3 GPIO Registers

While functioning in the GPIO mode, the ESSI port accesses four registers specific to the
GPIO mode. Refer to Table D-4 for details on the registers.

Register Name Function

Port Control Register C (PCRC) Controls whether to use the ESSI0 port in ESSI mode or GPIO mode

Port Control Register D (PCRD) Controls whether to use the ESSI1 port in ESSI mode or GPIO mode.

Register Name Function

Control Register A (CRA) Controls ESSI Mode operations.

Control Register B (CRB) Controls ESSI Mode operations.

Status Register (SSISR) Describes status and serial flags.

Transmit Slot Mask Register A (TSMA) Determines when to transmit during a given time slot.

Transmit Slot Mask Register B (TSMB) Determines when to transmit during a given time slot.

Receive Slot Mask Register A (RSMA) Determines when to receive during a given time slot.

Receive Slot Mask Register B (RSMB) Determines when to receive during a given time slot.

Time Slot Register (TSR) Prevents data transmission during a time slot.

Receive Data Register (RX) Read only register that receives data.

Transmit Data Register 0 (TX0) Transfer data for transmitter 1

Transmit Data Register 1 (TX1) Transfer data for transmitter 2

Transmit Data Register 2 (TX2) Transfer data for transmitter 3

Motorola DSP56303EVM User’s Manual D-6

Digital Interface (ESSI – Codec)

Table D-4. GPIO Registers

D.5.4 GPIO Mode Port C and Port D

After a specific pin has been set to function in the GPIO mode, the direction of data flow
must be configured. In other words, the ESSI port must know whether the pin is receiving
data or transmitting data. These specifications are determined by setting the Port Direction
Register C (PRRC) and Port Direction Register D (PRRD). By setting the pin/bit to 0 on
the port direction register, the GPIO pin is configured as an input. Furthermore by setting
the pin/bit on the port direction register to 1, the GPIO pin is configured as an output.

Finally, to retrieve or transmit data in the GPIO mode, the port data registers (PDRs) are
used. If the pin/bit is used as an input, the value in that pin/bit reflects the value present on
that pin. Additionally, if the pin/bit is used as an output, the value seen on the pin/bit is the
value being transmitted.

For more information concerning ESSI ports please refer to the DSP5630xEVM User’s
Manual and the Application Note, DSP56300 Enhanced Synchronous Serial Interface
(ESSI) Programming, (order number AN1764/D) located at web address

www.mot.com/SPS/DSP/documentation/appnotes.html.

D.6 Digital Interface (ESSI – Codec)

As mentioned previously, the DSP’s ESSI ports form the major interface between the DSP
and the codec device. Recall that on the DSP5630x evaluation modules discussed in this
appendix the codec is configured to function in the SM4 mode. SM4 mode separates the
data information from the codec control information. Therefore, two serial ports are
required to transfer data and codec control information. Specifically, both ESSI0 and
ESSI1 ports are used to control and transfer data between the DSP and the codec. In
general, ESSI0 controls data transfers between the DSP and the codec, while ESSI1
controls codec control information transfers between the DSP and the codec.

ESSI0 performs three functions with reference to the codec. First, ESSI0 transfers data to
and from the codec. Secondly, ESSI0 receives synchronization pulses. And finally, ESSI0

Register Name Function

Port Direction Register C (PRRC) Controls the direction of data flow for ESSI0 port in GPIO mode

Port Direction Register D (PRRD) Controls the direction of data flow for ESSI1 port in GPIO Mode.

Port Data Register C (PDRC) Stores data received or transmitted for ESSI0 port in GPIO mode.

Port Data Register D (PDRD) Stores data received or transmitted for ESSI1 port in GPIO mode.

Digital Interface (ESSI – Codec)

Motorola Codec Programming Tutorial D-7

performs the reset function on the codec. Each ESSI0 pin that is connected to the
codeccodec serves a specific purpose. Please refer to Table D-5 as to the individual
definition of each pin.

ESSI1 serves a different purpose. ESSI1 controls and transfers codec control information.
Again, please refer to Table D-5 as to the definition of each corresponding pin.

Table D-5. Pin Set-Up Descriptions

Physically, the ESSI port pins are connected to the serial pins on the codec though jumper
connections. In order to ensure correct operation using the example code referenced in this
document refer to Table D-6 and Table D-7 for the correct jumper settings for the
DSP5630xEVM boards. Please refer to Figure D-2, which shows the pin set-up between
the DSP’s ESSI ports and the codec.

Table D-6. JP5 Jumper Block (ESSI0)

ESSI0/ESSI1 Pin CS4218 Codec Pin Description

STD0 (ESSI0) SDIN Data transfer from ESSI0 to codec

SRD0 (ESSI0) SDOUT Data transfer from codec to ESSI0

SCK0 (ESSI0) SCLK Clock sent by codec (Master)

SC00 (ESSI0) ~RESET Reset codec from ESSI0

SC02 (ESSI0) SSYNC Frame Synchronization pulse from codec

SC10 (ESSI1) ~CCS Control Information gate

SC11 (ESSI1) CCLK Clock sent by ESSI1 to set control information

SC12 (ESSI1) CDIN Control data transfer from ESSI1

JP5 ESSI Pin Codec Pin

1-2 SCK0 SCLK

3-4 SC00 ~RESET

5-6 STD0 SDIN

7-8 SRD0 SDOUT

9-10 SC01 -

11-12 SC02 SSYNC

Motorola DSP56303EVM User’s Manual D-8

Programming the CS4218 Codec

Table D-7. JP4 Jumper Block (ESSI1)

Figure D-2. ESSI/Codec Pin Setup

For more information concerning the pin layouts and jumper settings between the codec
and DSP, please consult the DSP user’s manual for the respective evaluation modules.

D.7 Programming the CS4218 Codec

In order for the CS4218 codec device to work properly with the Motorola DSPs, certain
procedures must be followed. These procedures can be broken down into three major
phases. Each of the phases plays an essential role in properly setting up constants,

JP4 ESSI pin Codec pin

1-2 SCK1 -

3-4 SC10 ~CCS

5-6 STD1 -

7-8 SRD1 -

9-10 SC11 CDIN

11-12 SC12 CCLK

Motorola DSP
(slave)

STD0

SRD0

 SCK0

SC00

SC02

SC10

SC11

SC12

CS4218 CODEC
(master)

SDIN

SDOUT

SCLK

RESET

FSYNC

MF4/CCS

MF3/CCLK

MF2/CDIN

ESSI0

ESSI1

Phase 1: Setting up Constants

Motorola Codec Programming Tutorial D-9

interfacing and initializing, and finally using the CS4218 codec with the Motorola DSPs
correctly, in accordance with the following descriptions:

• Phase 1: Setting up global constants

This phase includes such activities as setting up buffer spaces and pointers, setting codec
control information constants, and defining interface constants and pins.

• Phase 2: Interfacing and Initializing the ESSI and the codec

The bulk of the work needed to obtain a working interface between the DSP5630x and the
codec, lies in this phase. The procedures include such activities as setting up and
initializing the codec ports, setting up and initializing the ESSI ports, and finally
interfacing the codec and ESSI ports.

• Phase 3: Data transferring mechanisms

This phase includes information concerning the types of data transfer mechanism. Polling,
DMA, and interrupts are the three types available to the programmer. However, the
interrupt method of transferring data will be discussed in detail in this document.

D.8 Phase 1: Setting up Constants

D.8.1 Setting Up Buffer Space and Pointers

Phase 1 begins with setting up buffer spaces and pointers. The buffer spaces and pointers
offer a temporary storage for the incoming and outgoing data. These variables come in the
form of receive and transmit buffer and pointers. In addition to offering a temporary
storage, the pointers offer a method to access the memory location of the stored data.
Example D-1 demonstrates the task of setting up transmit and receive buffers and pointers.

Example D-1 Setting Up Transmit and Receive Buffers and Pointers

;Receive buffer and pointer

RX_BUFF_BASE equ *
RX_data_1_2 ds 1 ; Left receive channel audio
RX_data_3_4 ds 1 ; Right receive channel audio
RX_PTR ds 1 ; Receive pointer

;Transmit buffer and pointer

TX_BUFF_BASE equ *
TX_data_1_2 ds 1 ; Left transmit channel audio
TX_data_3_4 ds 1 ; Right transmit channel audio
TX_PTR ds 1 ; Transmit pointer

Motorola DSP56303EVM User’s Manual D-10

Phase 1: Setting up Constants

D.8.2 Defining Control Parameters of the CODEC

To specify specific parameters of the A/D and D/A conversion and other audio
parameters, the control information must be declared. Parameters such as left and right
attenuation, left and right gain, line input selects, and mask interrupts, are configured in
the control information. The control information consists of 32 bits of information.
Although only 23 bits contain useful information, a minimum of 31 bits must be set. Table
D-8 lists the definitions of each bit.

Table D-8. CS4218 Codec Control Information (MSB)

Descriptions Bit Values

Not Applicable 31 0

Mask Interrupt 30 0 = no mask on MF5:\INT
1 = mask on MF5:\INT

D01 29 N/A

Left output D/A Attenuation (1.5
dB steps)

28 – 24 00000 = No attenuation
11111 = Max attenuation
 (-46.5 dB)

Right output D/A Attenuation (1.5
dB steps)

23 – 19 00000 = No attenuation
11111 = Max attenuation
 (-46.5 dB)

Mute D/A output 18 0 = output not muted
1 = output muted

Left Input Select 17 0 = LIN1
1 = LIN2

Right Input Select 16 0 = RIN1
1 = RIN2

Left input D/A Gain (1.5 dB steps) 15 – 12 00000 = no gain
11111 = max gain (22.5 dB)

Right input D/A Gain (1.5 dB
steps)

11 – 8 00000 = no gain
11111 = max gain (22.5 dB)

Not Applicable 7 – 0 0000000

Phase 1: Setting up Constants

Motorola Codec Programming Tutorial D-11

Referring to Table D-8, a programmer can configure the control information for the codec.
Suppose, for instance, that the following requirements are needed for this application:

1. No mask for the interrupt pin.

2. No left or right D/A attenuation.

3. Muting turned off.

4. LIN2 and RIN2 Selected. (On the EVM boards input 2 is used for both left and right
channels.)

5. No left and right D/A gains.

Example D-2 illustrates the procedure of setting the codec control information using the
previous specified control parameters.

Example D-2 Setting Codec Control Information

NO_MASK_INT equ $000000
NO_LEFT_ATTN equ $000000 ; 0 dB
NO_RIGHT_ATTN equ $000000 ; 0 dB
LIN2 equ $000200 ; use LIN2 on EVM
RIN2 equ $000100 ; use RIN2 on EVM
NO_LEFT_GAIN equ $000000 ; 0 dB
NO_RIGHT_GAIN equ $000000 ; 0 dB
NO_MUTING equ $000000

CTRL_WD_12 equ NO_MASK_INT+NO_LEFT_ATTN+NO_RIGHT_ATTN+LIN2+RIN2+
NO_MUTING

CTRL_WD_34 equ NO_LEFT_GAIN+NO_RIGHT_GAIN

Note: The CS4218 codec data sheet reverses the bit-order of the control information. For
instance, bit 1 should be the mask interrupt instead of bit 30. However, since most of
the work done with the ESSI ports and codec is done using MSB first, Table D-8 was
modified to reverse the bit order from the codec data sheet to simplify control
information programming.

Note: The Evaluation modules used in this document are designed to select line 2 of right
and left inputs. Therefore, bits 17 (Left Input Select) and bits 16 (Right Input Select)
should be configured to select LIN 2 (1) when using the DSP5630xEVM evaluation
modules.

Motorola DSP56303EVM User’s Manual D-12

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

D.9 Phase II: Initializing and Interfacing the ESSI and CODEC
Ports

After defining certain constants for the codec and the ESSI, the next step is to initialize the
ESSI and codec interface. The initialization procedure involves first initializing the ESSI
ports, which includes resetting the ESSI ports, modifying ESSI control registers, and
configuring ESSI/GPIO functionality. Second, the codec must also be initialized, which
entails resetting the codec and sending in codec control information.

In other words, the following general steps need to be performed:

1. Reset ESSI ports.

2. Modify ESSI control registers.

3. Configure ESSI or GPIO functionality.

4. Reset codec.

5. Modify codec control information.

6. De-assert ESSI reset and enable interrupts.

D.9.1 Initialize ESSI Ports

The first step in initializing the ESSI Port is to reset the ESSI ports. By sending a value of
zero into the port control register C and port control register D on the ESSIs, ESSI0 and
ESSI1 undergo a reset. Although ESSI1 will be used as a GPIO, it is recommended that
the programmer also perform the reset on ESSI1. Example D-3 illustrates the reset
procedure of the ESSI ports.

Example D-3 ESSI Port Reset Procedure

movep #$0000,x:M_PCRC ; reset ESSI0 C control register port
movep #$0000,x:M_PCRD ; reset ESSI1 D control register port

The next step in initializing the ESSI port is to set the control parameters for the ESSI port.
Adjusting the bits on the ESSI Control Register A (CRA0) and ESSI Control Register B
(CRB0) allow for initializing and modifying control parameters. Each bit on the registers
has a specific meaning. Describing the meaning of each bit on the registers is beyond the
scope of this appendix. The information on specific definitions of each bit can be found in
the respective DSP5630x chip manuals. However, there are certain typical settings that
need to be made in order for the codec to work properly with the ESSI ports. Table D-9
displays the settings that need to be made with Control Register A.

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Motorola Codec Programming Tutorial D-13

Table D-9. Settings for Control Register A

Besides setting the CRA0 register, the CRB0 register must also be set to allow certain
parameters to be met. Table D-10 lists the typical settings that are required for Control
Register B in order to ensure functionality between the ESSI ports and the codec.

Table D-10. Settings Control Register B

Bit Name Description Bit Position Value (Binary)

Reserved Reserved 23 0

SSC1 SC1 pin = serial I/O flag 22 0 (SC1 flag set)

WL[2:0] Word Length control 21-19 010
(16 bit control word)

ALC Alignment Control 18 0 (Align to bit 23)

Reserved Reserved 17 0

DC[4:0] Frame Rate Divider
Control

16-12 00001 (2 time slots per
frame)

PSR Prescaler Range 11 1 (ESSI clock is divided
by one)

Reserved Reserved 10-8 000

PM[7:0] Prescale Modulus Select 7-0 00000111 (ESSI clock
divided by 8)

Bit Name Description Bit Position Value (Binary)

REIE Receive exception
interrupt

23 1 (enabled)

TEIE Transmit exception
interrupt

22 1 (enabled)

RLIE Receive last slot
interrupt

21 1 (enabled)

TLIE Transmit last slot
interrupt

20 1 (enabled)

RIE Receive interrupt 19 1 (enabled)

TIE Transmit interrupt 18 1 (enabled)

RE Receive register 17 1 (enabled)

TE0 Transmit register 0 16 1 (enabled)

TE1 Transmit register 1 15 0 (disabled)

Motorola DSP56303EVM User’s Manual D-14

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Notice that only the ESSI0 control parameters are configured. Since ESSI1 functions in
the GPIO mode, the control parameters do not need to be set. Example D-4 illustrates the
task of setting the control registers for the ESSI0 port according to the specifications given
in Table D-9 and Table D-10.

TE2 Transmit register 2 14 0 (disabled)

MOD Mode 13 1 (Network Mode)

SYN Synchronization mode 12 1 (Synchronous mode)

CKP Clock polarity 11 0 (Data and frame sync
clocked on rising edge)

FSP Frame Sync. Polarity 10 0 (positive polarity)

FSR Frame Synch Relative
Timing

9 1 (Frame synch begins
one bit before first bit of
data word)

FSL Frame Sync. Length 8-7 10 (Rx-bit length: TX-bit
length)

SHFD Shift direction 6 0 (shift MSB first)

SCKD Clock source direction 5 0 (SCK is input clock)

SCD2 SC2 pin direction 4 0 (SC2 is input)

SCD1 SC1 pin direction 3 1 (SC1 is output)

SCD0 SC0 pin direction 2 1 (SC0 is output)

OF[1:0] Output flags 1-0 N/A

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Motorola Codec Programming Tutorial D-15

Example D-4 Setting Control Registers for the ESSI0 Port

;Setting ESSI0 Control Parameters

; Control Register A
movep #$101807,x:M_CRA0 ; 12.288MHz/16 = 768KHz SCLK

; prescale modulus = 8
; frame rate divider = 2
; 16-bits per word
; 32-bits per frame
; 16-bit data aligned to bit 23

; Control Register B
movep #$ff330c,x:M_CRB0 ; Enable REIE,TEIE,RLIE,TLIE,

; RIE,TIE,RE,TE0
; network mode, synchronous,
; out on rising/in on falling
; shift MSB first
; external clock source drives SCK
; (codec is master)
; RX frame sync pulses active for
; 1 bit clock immediately before
; transfer period
; positive frame sync polarity
; frame sync length is 1-bit

D.9.2 Configure GPIO Pins

In the previous sections of this document, it was stated that the ESSI0 pins function in the
ESSI mode, while the ESSI1 pins operate in the GPIO mode. Referring to Figure D-2,
notice that some of the pins only affect the control information of the codec, while the
other pins deal with the transfer of data. Because the codec on the DSP5630xEVM boards
are configured to operate in SM4 mode, the control information runs on a separate serial
line than the data lines. Additionally, SM4 dictates that the control information only needs
to be configured once unless a change is needed.

In order to control the codec control information, the full ESSI port mode does not need to
be used. Instead, the GPIO mode is used to transfer the control information. Any pins that
are used to control the codec control information will be configured as a GPIO mode,
otherwise the ESSI mode will be used. To configure the mode in which the pin operates,
ESSI or GPIO, port control registers C and D need to be modified. As mentioned in
Section D.5.1, "ESSI/GPIO Shared Registers," , port control C register controls the ESSI0
mode settings and Port Control D controls the ESSI1 mode settings.

Motorola DSP56303EVM User’s Manual D-16

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

The following pins are used as GPIO pins. Again, these pins control the transfer of codec
control information.

• SC00 (CODEC_RESET pin)

• SC10 (CCS pin)

• SC11 (CCLK pin)

• SC12 (CDIN pin)

The pins listed above correspond to specific bits on the port data registers. For instance,
the CODEC_RESET pin on the codec is connected to the SC00 pin on ESSI0. This pin
corresponds to bit 0 on port data register C. Please refer to Table D-11 and Table D-12 for
details concerning the correspondence between physical pins and port data registers.

Table D-11. Port Data Register C Pin/bit Correspondence

Table D-12. Port Data Register D Pin/bit Correspondence

Bit Name (ESSI0) Bit Name (Codec) Bit Position Register C Functionality Mode

Reserve for future use N/A 6-23 N/A

STD SDIN 5 ESSI

SRD SDOUT 4 ESSI

SCK SCLK 3 ESSI

SC02 FSYNC 2 ESSI

SC01 N/A 1 N/A

SC00 CODEC_RESET 0 GPIO

Bit Name (ESSI1) Bit Name (Codec) Bit Position Register D Functionality Mode

Reserve for future use N/A 6-23 N/A

STD N/A 5 N/A

SRD N/A 4 N/A

SCK N/A 3 N/A

SC12 CDIN 2 GPIO

SC11 CCLK 1 GPIO

SC10 CCS 0 GPIO

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Motorola Codec Programming Tutorial D-17

Using the information in Table D-11 and Table D-12, global constants can be defined to
simplify programming. Example D-5 illustrates the task of defining the pin/bit
correspondence for the GPIO pins.

Example D-5 Defining GPIO Pin/Bin Correspondence

; ESSI0 - audio data port control register C
; DSP CODEC
; ---------------------------
CODEC_RESET equ 0 ; bit0 SC00 ---> CODEC_RESET~

; ESSI1 - control data port control register D
; DSP CODEC
;----------------------------
CCS equ 0 ; bit0 SC10 ---> CCS~
CCLK equ 1 ; bit1 SC11 ---> CCLK
CDIN equ 2 ; bit2 SC12 ---> CDIN

After setting up constants to reference the bit/pin correspondence for the GPIO pins, the
Port control registers need to be configured. To begin with, the CODEC_RESET pin
(pin 0) must be configured to function as a GPIO pin. Other pins on ESSI0, however,
should be configured to work in the ESSI mode. Therefore, a 0 value should be sent into
bit 0 in port control register C, while a value of 1 should be sent to the other five pertinent
bits.

Additionally, the CCS pin, the CCLK pin, and CDIN pin all must function as GPIO pins
on the ESSI1 port. Therefore, bit 0 (CCS), bit 1 (CCLK), and bit 2 (CDIN), must all be set
to 0 to allow those pins to operate in the GPIO mode on the port control register D. Since
we are not using the other pins in Port control Register D, the other pins can be set to
anything, that is, to “don’t care” values (0 or 1).

At this point, the ESSI functionality should be disabled prior to initializing the codec.
Therefore the pins on ESSI0 will not be configured to function in the ESSI mode until the
codec has been initialized. However, the GPIO pins is configured as seen in Example D-6.

Example D-6 GPIO Pin Configuration

; Port Control Register C
movep #$0000,x:M_PCRC ; Setting pin 0 for GPIO, other

; pins ESSI

; Port Control Register D
movep #$0000,x:M_PCRD ; Setting pin 0, pin 1, and pin 2

; to GPIO mode

Since ESSI0 pin 0 and ESSI1 will be used in the GPIO mode, the direction of data flow
must be declared. In other words, the direction of flow determines which device is
transmitting and which device is receiving. Recall that in order to set the direction of data

Motorola DSP56303EVM User’s Manual D-18

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

flow Port Direction Registers C and D must be set, (register C refers to ESSI0 and register
D refers to ESSI1).

Setting the pin/bit on the Port Direction Register to 1 configures the pin/bit as an output
and setting the pin/bit on the Port Direction Register to 0 configures the pin/bit as an input.
Therefore, in order to configure the pins using the Data Direction Registers to mimic the
direction flow information in Figure D-2, the following bits must be set. Table D-6 and
Table D-7 show the bit settings for the Data Direction Registers.

Table D-13. Data Direction Register C

Table D-14. Data Direction Register D

Bit Name Bit position Value (binary)

Other bits 6-23 X (don’t care)

STD0 5 X (don’t care)

SRD0 4 X (don’t care)

SCK0 3 X (don’t care)

SC02 2 X (don’t care)

SC01 1 X (don’t care)

SC00 0 1 (CODEC_RESET is
output)

Bit Name Bit position Value (binary)

Other bits 6-23 X (don’t care)

STD1 5 X (don’t care)

SRD1 4 X (don’t care)

SCK1 3 X (don’t care)

SC12 2 1 (CDIN is output)

SC11 1 1 (CCLK is output)

SC10 0 1 (CCS is output)

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Motorola Codec Programming Tutorial D-19

Example D-7 illustrates the setting of the bits in the Data Direction registers in code form.

Example D-7 Code Form Settings in Data Direction Registers

; Data Direction Register C
movep #$0001,x:M_PRRC ; set SC00=CODEC_RESET~ as output
; Data Direction Register D
movep #$0007,x:M_PRRD ; set SC10=CCS~ as output

; set SC11=CCLK as output
; set SC12=CDIN as output

D.9.3 Initialization of the CODEC ports

The next step that needs to occur is the process of initializing the codec. This initialization
process begins with first resetting the codec, second waiting for the codec to reset, and
finally sending the control information for the codec. Note that the control information
only needs to be sent when a change is needed to be made to the control parameters.

In order to reset the codec, a 0 value must be sent into the CODEC_RESET pin. Recall
that a global variable was defined called CODEC_RESET in this document. Thus, to reset
the codec the CODEC_RESET bit located on the Port Data Register C on the ESSI port
must be cleared. In addition, the codec must be notified that control information will be
modified. Setting the CSS pin to 0 allows for this. Furthermore, the codec requires a
minimum of 50 ms to reset. Thus, often a delay is programmed into the DSP to allow for
the codec to reset. Example D-8 summarizes the procedures in code format.

Example D-8 Code Format Procedures

bclr #CODEC_RESET,x:M_PDRC ; assert CODEC_RESET~ (bit 0 on ESSI0)
bclr #CCS,x:M_PDRD ; assert CCS~ (bit 0 on ESSI1)

;----reset delay for codec----
do #1000,_delay_loop
rep #1000 ; A delay greater than 50 ms
nop
_delay_loop

Once the codec has been reset, the codec control information needs to be sent from the
DSP to the codec ports. But, before the control information can be sent, the
CODEC_RESET pin must to be turned off (set to 1). Please refer to Table D-15 for
information concerning the options of each bit/pin. Example D-9 demonstrates the task of
deasserting the codec reset.

Example D-9 Deasserting Code Reset

bset #CODEC_RESET,x:M_PDRC ; dissert CODEC_RESET~ (pin 0 on ESSI0)

Motorola DSP56303EVM User’s Manual D-20

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Table D-15. Codec Pins

Finally, the codec is ready to receive the control information. The codec will ignore the
first set of control information sent after a reset. Therefore, a dummy set of control
information is sent prior to sending the correct control information. To reduce the amount
of code written by the programmer, another solution is to send the correct control
information to the codec twice. The first set of control information will be ignored, but the
second control information will be recognized.

Two global variables will be defined to simplify programming”:

• CTRL_WD_HI: The high word in the control information.

• CTRL_WD_LO: The low word in the control information.

To send the control information from the ESSI to the codec, perform the following steps:

1. Set up registers to send dummy control information.

2. Send control words.

3. Set up registers to send correct control information.

4. Send control words.

Example D-10 illustrates the procedures.

Pin Name Description Values

~CODEC_RESET Resets the CODEC 0 = Reset codec
1 = Disable Reset

FSYNC Used to indicate a start of a frame Rising edge = New Frame

SCLK Serial clock Rising Edge = data is received
Falling edge = data is transmitted

SDOUT Serial data output line N/A

SDIN Serial data input line N/A

~CCS Enables setting of CODEC control parameters 0 = enabled
1 = disabled

CDIN Serial Control Information input line N/A

CCLK Clock for Control Parameters Rising edge = control parameters sent

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Motorola Codec Programming Tutorial D-21

Example D-10 Sending Code Information

CTRL_WD_HI ds 1 ; Upper Control word
CTRL_WD_LO ds 1 ; Lower Control word

dummy_control
move #0,x0
move x0,x:CTRL_WD_HI ; send dummy control data
move x0,x:CTRL_WD_LO
jsr codec_control

set_control
move #CTRL_WD_12,x0 ; recall constant set previously

; for upper control info
move x0,x:CTRL_WD_HI ; set hi control word to constant
move #CTRL_WD_34,x0 ; recall constant set previously

; for upper control info
move x0,x:CTRL_WD_LO ; 16 bit data aligned to bit 23
jsr codec_control

The control words are sent serially to the CDIN pin of the codec. The codec_control
subroutine in the previous code performs this action. The following is one method of
sending in the control words:

1. Clear CCS bit to allow the codec to accept control information.

2. Set CCLK bit on codec high. Recall Control bits are sent on rising edge of clock.

3. Determine whether MSB is 1 or 0 of control information.

4. Send MSB value to CDIN pin.

5. Set CCLK to low on codec to start next cycle.

6. Shift left control word.

7. Repeat 16 times.

This procedure must be performed once for the upper 16-bit control word and then once
for the lower 16-bit control word.

Example D-11 illustrates these procedures.

Motorola DSP56303EVM User’s Manual D-22

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Example D-11 Sending in Control Words

;---
; codec_control routine
; Input: CTRL_WD_LO and CTRL_WD_HI
; Output: CDIN
; Description: Used to send control information to CODEC
; NOTE: does not preserve the ‘a’ register.
;---
codec_control

clr a
bclr #CCS,x:M_PDRD ; assert CCS
move x:CTRL_WD_HI,a1 ; upper 16 bits of control data
jsr send_codec ; shift out upper control word
move x:CTRL_WD_LO,a1 ; lower 16 bits of control data
jsr send_codec ; shift out lower control word
bset #CCS,x:M_PDRD ; dissert CCS
rts

;---
; send_codec routine
; Input: a1 containing control information
; Ouput: sends bits to CDIN
; Description: Determines bits to send to CDIN
;---
send_codec

do #16,end_send_codec ; 16 bits per word
bset #CCLK,x:M_PDRD ; toggle CCLK clock high
jclr #23,a1,bit_low ; test msb
bset #CDIN,x:M_PDRD ; send high into CDIN
jmp continue

bit_low
bclr #CDIN,x:M_PDRD ; send low into CDIN

continue
rep #2 ; delay
nop
bclr #CCLK,x:M_PDRD ; restart cycle
lsl a ; shift control word to 1 bit

; to left
end_send_codec
 rts

The codec_control subroutine performs most of the work for sending the information to
the codec ports. First, the CSS bit is cleared to permit the modification of the control
registers on the codec. Afterwards the control words are loaded into registers, where they
are then sent out to another subroutine that sends the data serial out to the codec ports.
After sending both the upper and lower control words, the CCS bit is reset to 1 to disallow
changing of the control information on the codec.

The send_codec subroutine in essence serves as the workhorse for the codec_control
routine. This routine pushes the individual bits of the control words into the codec.

Phase II: Initializing and Interfacing the ESSI and CODEC Ports

Motorola Codec Programming Tutorial D-23

First it sets the clock (CCLK) high to allow the bit to be sent. Afterwards, it determines
what the most significant bit (MSB) is and either sends in a 0 or 1 to the CDIN pin
depending on the MSB. A delay is incorporated into the routine to allow the information
to get sent. Afterwards the clock (CCLK) is set low to allow the cycle to begin again. The
control word is shifted to serve the next MSB bit. These procedures are performed 16
times to serve all the bits in the control word.

D.9.4 Enabling Interrupts/ESSI ports:

Now that the ESSI port and CODEC ports are configured and initialized, there are just
three more steps to complete the interface between the ESSI and the CODEC. To begin
with, the priority level of the interrupts must be set. This parameter is determined by the
application. The second step is to enable interrupts on the DSP. Finally, the ESSI ports
must be enabled. Recall that in order to set the functionality of ESSI pin, the port control
registers must be configured. Again, setting the corresponding pin/bit to 1 enables the
ESSI mode, while setting the pin/bit to 0 disables the ESSI mode and enables the GPIO
mode.

From Section D.9.2, "Configure GPIO Pins," the following pins/bits must be configured
as GPIO pins:

• CODEC_RESET pin (bit 0 on ESSI0)

• CCS pin (bit 0 on ESSI1)

• CCLK pin (bit 1 on ESSI1)

• CDIN pin (bit 2 on ESSI1)

Therefore on port control register C, bit 0 is set to 0. Other pertinent pins should be set to 1
in order to configure the other pins as ESSI pins. On Port Control Register D, bits 0, 1, and
2 should all be set to the value of 0 to allow GPIO functionality on those pins. Because the
other pins are not connected to the codec, the other bits will not have an effect.

Example D-12 demonstrates setting the interrupt priority level, enabling the priority, and
finally setting the ESSI/GPIO functionality of the ESSI ports.

Motorola DSP56303EVM User’s Manual D-24

Phase III: Data Transferring Mechanism

Example D-12 ESSI Port Priority and Functionality Setting

movep #$000c,x:M_IPRP ; set interrupt priority level for ESSI0
; to 3

andi #$fc,mr ; enable interrupts
movep #$003e,x:M_PCRC ; enable ESSI mode for

; bit 5,bit 4,bit 3,bit 2,bit 1.
; enable GPIO mode for
; bit 0

movep #$0000,x:M_PCRD ; enable GPIO mode for
; bit 2, bit 1, bit 0.
; Other bits are don’t care.

D.10 Phase III: Data Transferring Mechanism

There are basically three different methods for transferring data from the codec to and
from the ESSI port. They are Polling, DMA, and Interrupts. In this document, however,
only the use of interrupts will be demonstrated.

D.10.1 Interrupts and Interrupt Service Routines

The ESSI device has six interrupts available. They are the ESSI receive data with
exception status interrupt, ESSI receive data interrupt, ESSI receive last slot interrupt, the
ESSI transmit data with exception status interrupt, the ESSI transmit last slot interrupt,
and the ESSI transmit data interrupt. Each interrupt is triggered based on certain status bits
and can be cleared by performing certain actions in an interrupt service routine. In the
following sections, this document will explain what specific status bits trigger the
interrupts and what must be done in order to clear the interrupts.

For more information concerning the properties and functionality of each type of interrupt
and for setting up the interrupt service routines please refer to the DSP5630xEVM’s user
manual.

D.10.2 ESSI Receive Data with Exception Status Interrupt

The interrupt occurs when the following properties are true:

• The receive exception interrupt is turned on (CRB[23]).

• The receive data register is full.

• A receiver overrun error occurred.

The interrupt is triggered by the receiver overrun bit being set. When the interrupt is
serviced, the programmer will need to first clear the receiver overrun bit (SSISR0[5]) and

Phase III: Data Transferring Mechanism

Motorola Codec Programming Tutorial D-25

then receive the Receive BUFFER. The following steps are needed to perform these
procedures:

1. Clear receive overrun bit.

2. Save necessary context.

3. Load receive buffer pointer.

4. Move received data to receive buffer.

5. Update receive buffer pointer.

6. Restore context.

Example D-13 illustrates the procedures to service this interrupt.

Example D-13 ESSI Exception Status Interrupt Service

;ESSI Receive Data with Exception Interrupt Service Routine
;---

ssi_rxe_isr

; Clear receives overrun bit
bclr #5,x:M_SSISR0 ; (M_SSISR0 refers to status register)

; explicitly clears overrun flag

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.
move m0,x:(r7)+ ; Save m0 to the stack.
move #1,m0 ; Modulus 2 buffer.

move x:RX_PTR,r0 ; Load the pointer to the rx buffer.

nop ; Delay

movep x:M_RX0,x:(r0)+ ; Move received data to receive buffer

move r0,x:RX_PTR ; Update rx buffer pointer.
 ; Restore Context
move x:-(r7),m0 ; Restore m0.
move x:-(r7),r0 ; Restore r0.
rti

D.10.3 ESSI Receive Data Interrupt

The interrupt occurs when the following properties are true:

• The receive interrupt is turned on (CRB[19])

• The receive data register is full

Motorola DSP56303EVM User’s Manual D-26

Phase III: Data Transferring Mechanism

To service the interrupt the programmer will need to receive the data. The following steps
can be performed to accomplish such a task:

1. Save necessary context.

2. Load receive buffer pointer.

3. Move received data to receive buffer.

4. Update receive buffer pointer.

5. Restore context.

Example D-14 illustrates the procedures to service this interrupt.

Example D-14 ESSI Receive Data Interrupt Service

;ESSI Receive Data Interrupt Service Routine
;---
ssi_rx_isr

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.
move m0,x:(r7)+ ; Save m0 to the stack.
move #1,m0 ; Modulus 2 buffer.

move x:RX_PTR,r0 ; Load the pointer to the rx buffer.

nop ; Delay

movep x:M_RX0,x:(r0)+ ; Move received data to receive buffer

move r0,x:RX_PTR ; Update rx buffer pointer.
 ; Restore Context
move x:-(r7),m0 ; Restore m0.
move x:-(r7),r0 ; Restore r0.

rti

D.10.4 ESSI Receive Last Slot Interrupt

The interrupt occurs when the following properties are true:

• The receive last slot interrupt is turned on (CRB[21]).

• The last time slot ends.

The use of the receive last slot interrupt guarantees that the previous frame has been
serviced and the next frame is ready to be serviced. The interrupt allows the programmer
to redefine pointers to the buffer to be reset so that a new frame can be serviced.

Phase III: Data Transferring Mechanism

Motorola Codec Programming Tutorial D-27

To perform the procedure of preparing for the next frame the following steps can be used:

1. Save Context.

2. Reset receive buffer.

3. Restore context.

Example D-15 demonstrates the steps required servicing this interrupt.

Example D-15 ESSI Receive Last Slot Interrupt Service

; receive last slot interrupt service routine

ssi_rxls_isr
 ; Save context
move r0,x:(r7)+ ; Save r0 to the stack.

move #RX_BUFF_BASE,r0 ; Reset rx buffer pointer just in

; case it was corrupted.
move r0,x:RX_PTR ; Update rx buffer pointer.

move x:-(r7),r0 ; Restore r0.
rti

D.10.5 ESSI Transmit Data with Exception Status Interrupt

The interrupt occurs when the following properties are true:

• The transmit exception interrupt is turned on (CRB[22]).

• The transmit data register is empty.

• A transmit underrun error occurred.

The interrupt is triggered by the transmit underrun bit being set. When the interrupt is
serviced, the programmer will need to first clear the transmit underrun bit (SSISR0[4])
and then transmit the transmit BUFFER. The steps needed to perform these procedures are
as follows:

1. Clear transmit underrun bit.

2. Save necessary context.

3. Load Transmit buffer pointer.

4. Move Transmit buffer data to transmit register.

5. Update Transmit Buffer pointer.

6. Restore context.

Example D-16 illustrates the procedures to service this interrupt.

Motorola DSP56303EVM User’s Manual D-28

Phase III: Data Transferring Mechanism

Example D-16 ESSI Transmit Data with Exception Status Interrupt Service

; transmit data with exception status interrupt service routine

ssi_txe_isr
; Clear underrun bit

bclr #4,x:M_SSISR0 ; (M_SSISR0 pointers to status register)

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.
move m0,x:(r7)+ ; Save m0 to the stack.
move #1,m0 ; Modulus 2 buffer.

; Load transmit pointer to transmit ;
; buffer

move x:TX_PTR,r0 ; Load the pointer to the tx buffer.

nop ; delay

; Move Transmit buffer data to transmit
; register

movep x:(r0)+,x:M_TX00; SSI transfer data register.

; Update transmit buffer pointer
move r0,x:TX_PTR ; Update tx buffer pointer.

; Restore Context
move x:-(r7),m0 ; Restore m0.
move x:-(r7),r0 ; Restore r0.
rti

D.10.6 ESSI Transmit Last Slot Interrupt

The interrupt occurs when the following properties are true:

• The transmit last slot interrupt is turned on (CRB[20]).

• The last time slot begins.

The use of the transmit last slot interrupt guarantees that the previous frame has been
serviced and the next frame is ready to be serviced. The interrupt allows the programmer
to redefine pointers to the buffer to be reset so that a new frame can be serviced.

To perform the procedure of preparing for the next frame the following steps can be used:

1. Save Context.

2. Reset Transmit buffer.

3. Restore Context.

Example D-17 depicts the servicing of this interrupt.

Phase III: Data Transferring Mechanism

Motorola Codec Programming Tutorial D-29

Example D-17 ESSI Transmit Last Slot Interrupt Service

; transmit last slot interrupt service routine
ssi_txls_isr

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.

; Reset Transmit buffer pointer
move #TX_BUFF_BASE,r0 ; Reset pointer.
move r0,x:TX_PTR ; Reset tx buffer pointer just in

; case it was corrupted.

; Restore Context
move x:-(r7),r0 ; Restore r0.
rti

D.10.7 ESSI Transmit Data Interrupt

The interrupt occurs when the following properties are true:

• The receive interrupt is turned on (CRB[18]).

• The transmit data register is empty.

To service the interrupt, the programmer will need to transmit the data. The following
steps can be performed to accomplish such a task:

1. Save necessary context .

2. Load Transmit buffer pointer.

3. Move Transmit buffer data to transmit register.

4. Update Transmit Buffer pointer.

5. Restore context.

Example D-18 illustrates the procedures to service this interrupt.

Motorola DSP56303EVM User’s Manual D-30

Example Application

Example D-18 ESSI Transmit Data Interrupt Service

; transmit data interrupt service routine
ssi_tx_isr

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.
move m0,x:(r7)+ ; Save m0 to the stack.
move #1,m0 ; Modulus 2 buffer.

move x:TX_PTR,r0 ; Load the pointer to the tx
; buffer.

nop ; delay

movep x:(r0)+,x:M_TX00 ; SSI transfer data register.

move r0,x:TX_PTR ; Update tx buffer pointer.

;Restore Context

move x:-(r7),m0 ; Restore m0.
move x:-(r7),r0 ; Restore r0.

rti

D.11 Example Application

An example program has been provided to illustrate the use of the codec.

The following files are included in a package to be distributed with this document:

• Ioequ.asm: Contains important I/O equates.

• Intequ.asm: Contains interrupt equates for the DSP EVM modules.

• Ada_equ.asm:Contains equates used to initialize the CODEC.

• Ada_Init.asm: Contains initialization code for the ESSI and CODEC.

• Vectors.asm: Contains the vector table for the DSP EVM modules.

• Echo.asm: Sample code that illustrates DSP processing.

All the procedures that were discussed in Section D.6, "Digital Interface (ESSI – Codec),"
and Section D.7, "Programming the CS4218 Codec," have been included in these files.
Therefore it will take little effort on the part of the programmer to quickly generate an
application using the CS4218 codec. If a desired property in the control information is
needed, simple modifications can be made to these files.

Example Application

Motorola Codec Programming Tutorial D-31

D.11.1 Echo Program

This example shows a simulation of an echo of an input signal using a number of
time-delayed sample. To implement a time-delayed echo on the DSP, a sample is fed into
the DSP from the codec. The new sample is then divided by two to maintain stability and
is then added to a time delayed sample. The sum of the signals is, again, divided by two
and then sent out to the codec.

Figure D-3 displays the block diagram describing this process.

Figure D-3. Block Diagram of a Delayed Sample (echo)

D.11.2 Echo Code

To begin the echo program, the following files are included to simplify the initialization,
the interface, and the transferring mechanism of the codec:

• ioequ.asm

• intequ.asm

• ada_equ.asm

• vectors.asm

• ada_init.asm

The next step is to define the transmit and receive buffers and pointers.

After performing the task of defining the receive and transmit buffers and pointers, the
control information constants for the codec will also need to be defined.

The following steps need to be performed:

1. Include codec and I/O files.

2. Define transmit and receive buffer and pointers.

3. Define codec control constants.

Outputew Sample ÷2

 Z-1024

 ÷2
Σ

+

+

Motorola DSP56303EVM User’s Manual D-32

Example Application

Example D-19 illustrates the tasks of including initialization and interface files, defining
transmit and receive buffers and pointers, and setting up control word constants.

Example D-19 Include, Define, and Set-Up Tasks

;***

 nolist
 include ’ioequ.asm’
 include ’intequ.asm’
 include ’ada_equ.asm’
 include ’vectors.asm’

list

;***
;---Buffer for talking to the CS4218

 org x:$0
RX_BUFF_BASE equ *
RX_data_1_2 ds 1 ; data time slot 1/2 for RX ISR (left audio)
RX_data_3_4 ds 1 ; data time slot 3/4 for RX ISR (right audio)

TX_BUFF_BASE equ *
TX_data_1_2 ds 1 ; data time slot 1/2 for TX ISR (left audio)
TX_data_3_4 ds 1 ; data time slot 3/4 for TX ISR (right audio)

RX_PTR ds 1; Pointer for rx buffer
TX_PTR ds 1; Pointer for tx buffer

CTRL_WD_12 equ MIN_LEFT_ATTN+MIN_RIGHT_ATTN+LIN2+RIN2
CTRL_WD_34 equ MIN_LEFT_GAIN+MIN_RIGHT_GAIN

After setting up the constants needed for the codec, the DSP needs to be set up and
initialized.

1. The DSP will need to know what speed the PLL is running at. For this application the PLL
will be set to 86.016MHz.

2. The interrupts are masked with the correct values.

3. The hardware stack pointer is initialized.

4. Operate DSP on Mode 0.

5. The data interrupt stack pointer is initialized, which is the stack used in the ISR for the
codec.

6. Assert linear addressing for the stack pointer used for by the data interrupts.

Example D-20 illustrates the initialization procedures of the DSP:

Example Application

Motorola Codec Programming Tutorial D-33

Example D-20 DSP Initialization Procedure

org p:$100
START
main

movep #$040006,x:M_PCTL ; PLL 7 X 12.288 = 86.016MHz
ori #3,mr ; mask interrupts
movec #0,sp ; clear hardware stack pointer
move #0,omr ; operating mode 0
move #$40,r7 ; initialize stack pointer for ISR
move #-1,m7 ; linear addressing

Following the initialization procedures of the DSP, the codec also needs to be initialized.
Again, using the supplied code, a jump statement can be made to start the CODEC/ESSI
initialization routine. Example D-21 demonstrates this procedure.

Example D-21 Initializing CODEC/ESSI

jsr ada_init ;initialize CODEC/ESSI

The DSP and codec are ready to receive instructions to receive, process, and transmit data.
The echo implementation requires that a buffer is setup and initialized. The code in
Example D-22 can be used to perform these steps.

Example D-22 Setting Up and Initializing Buffer

move #$0400,r4 ; start echo buffer at $400
move #$03FF,m4 ; make echo buffer 1024 deep

clr a ; clear a
rep #$03FF ; clear the echo buffer
move a,l:(r4)+

In order to receive data from the ESSI port, the programmer must ensure that data is
received at the beginning of the frame. Thus, it is necessary to check the status bits to
ensure that data receive starts at the beginning of the frame and not in the middle. Once a
receive frame synchronization is detected, data can be manipulate through the receive
memory location, RX_BUFF_BASE. Afterwards, the data can be processed and then
moved into the transmit pointer. All of these procedures can be implemented in an infinite
loop to continuous receive, process, and transmit the data.

In the case of the echo program, Example D-23 illustrates the implementation.

Motorola DSP56303EVM User’s Manual D-34

Example Application

Example D-23 Implementation of Echo Program

echo_loop

jset #3,x:M_SSISR0,* ; wait for rx frame sync
jclr #3,x:M_SSISR0,* ; wait for rx frame sync
clr a
clr b
move x:RX_BUFF_BASE,a ; receive left
move x:RX_BUFF_BASE+1,b ; receive right
asr a x:(r4),x0 ; divide them by 2 and get oldest
asr b y:(r4),y0 ; samples from buffer
add x0,a ; add the new samples and the old
add y0,b
asr a ; reduce magnitude of new data

; (to ensure stability)
asr b
move a,x:(r4) ; save the altered samples
move b,y:(r4)+ ; and bump the pointer
move a,x:TX_BUFF_BASE ; transmit left
move b,x:TX_BUFF_BASE+1 ;transmit right

jmp echo_loop

echo

After receiving the left and right channels, the data is quickly divided by two. Then the left
and right channels are added to the time-delayed samples, which were stored on the echo
buffer. The magnitude is reduced by two and the echo buffer is updated with the newest
output sample. The left-and-right processed channels are then sent to the transmit buffers,
where it is sent to the ESSI port and eventually to the CODEC. The procedures loop
infinitely until manually stopped.

Example D-24 combines all the separate pieces of the echo code into an application that
performs the time-delayed echo.

Example Application

Motorola Codec Programming Tutorial D-35

Example D-24 Application of Echo Code

;***

 nolist
 include ’ioequ.asm’
 include ’intequ.asm’
 include ’ada_equ.asm’
 include ’vectors.asm’

list

;***

;---Buffer for talking to the CS4218

 org x:$0
RX_BUFF_BASE equ *
RX_data_1_2 ds 1 ; data time slot 1/2 for RX ISR (left audio)
RX_data_3_4 ds 1 ; data time slot 3/4 for RX ISR (right audio)

TX_BUFF_BASE equ *
TX_data_1_2 ds 1 ; data time slot 1/2 for TX ISR (left audio)
TX_data_3_4 ds 1 ; data time slot 3/4 for TX ISR (right audio)

RX_PTR ds 1 ; Pointer for rx buffer
TX_PTR ds 1 ; Pointer for tx buffer

CTRL_WD_12 equ MIN_LEFT_ATTN+MIN_RIGHT_ATTN+LIN2+RIN2
CTRL_WD_34 equ MIN_LEFT_GAIN+MIN_RIGHT_GAIN

org p:$100
START
main

movep #$040006,x:M_PCTL ; PLL 7 X 12.288 = 86.016MHz
ori #3,mr ; mask interrupts
movec #0,sp ; clear hardware stack pointer
move #0,omr ; operating mode 0
move #$40,r7 ; initialize stack pointer for isr
move #-1,m7 ; linear addressing
jsr ada_init ; initialize codec

move #$0400,r4 ; start echo buffer at $400
move #$03FF,m4 ; make echo buffer 1024 deep

clr a ; clear a
rep #$03FF ; clear the echo buffer
move a,l:(r4)+

Motorola DSP56303EVM User’s Manual D-36

Example Application

echo_loop

jset #3,x:M_SSISR0,* ; wait for rx frame sync
jclr #3,x:M_SSISR0,* ; wait for rx frame sync
clr a
clr b
move x:RX_BUFF_BASE,a ; receive left
move x:RX_BUFF_BASE+1,b ; receive right
asr a x:(r4),x0 ; divide them by 2 and get oldest
asr b y:(r4),y0 ; samples from buffer
add x0,a ; add the new samples and the old
add y0,b
asr a ; reduce magnitude of new data

; (to ensure stability)
asr b
move a,x:(r4) ; save the altered samples
move b,y:(r4)+ ; and bump the pointer
move a,x:TX_BUFF_BASE ; transmit left
move b,x:TX_BUFF_BASE+1 ; transmit right

jmp echo_loop

include ’ada_init.asm’ ; used to include codec
; initialization routines

echo
 end

INDEX

Motorola Index Index-xxxvii

Symbols

" C-5
C-9
#< C-9
#> C-9
% C-4
* C-6
++ C-6, C-7
; C-1
;; C-2
< C-7
<< C-7
> C-8
? C-3
@ C-6
\ C-2
^ C-4

A

A/D converter 3-7
AAR0

programming 3-4
Address Attribute Pin Polarity Bit, BAAP 3-5
Address Attribute Pin, AA0 3-4
Address Attribute Pin, AA1 3-6
Address Attribute Register, AAR0 3-4
Address Muxing Bit, BAM 3-5
Address Pins, A(0:17) 3-4, 3-6
Address Priority Disable Bit, APD 3-4
Address to Compare Bits, BAC(11:0) 3-6
Addressing

I/O short C-7
immediate C-9
long C-8
long immediate C-9
short C-7
short immediate C-9

Analog Input/Output 3-8
Assembler 2-12

mode C-33
option C-34
warning C-41

assembler 2-1
control 2-9
data definition/storage allocation 2-9
directives 2-8

listing control and options 2-10
macros and conditional assembly 2-11
object file control 2-10
options 2-6
significant characters 2-8
structured programming 2-11
symbol definition 2-9

assembler control 2-9
assembler directives 2-8
assembler options 2-6
assembling the example program 2-12
assembling the program 2-5
assembly programming 2-1
AT29LV010A 3-6
audio 3-7
audio codec 3-1, 3-7
audio interface cable 1-2
audio source 1-2

B

Buffer
address C-10
end C-23

buffer space and pointers D-9

C

Checksum C-37
Codec 3-7, 3-8, 3-10, D-2, D-20

Control Data Chip Select Pin, MF4/CCS 3-10
Control Data Clock Pin, MF3/CCLK 3-10
Control Information (MSB) D-10
control parameters D-10
digital interface 3-8
digital interface connections 3-9
initializing and interfacing D-12
Left Input #2 Pin, LIN2 3-8
Master Clock Pin, CLKIN 3-7
modes of serial operation 3-9
ports, initialization D-19
programming D-1
Programming the CS4218 D-8
Reset Pin, RESET 3-10
Serial Sync Signal Pin, SSYNC 3-10

command converter 3-1, 3-10
command format

assembler 2-5

Index-xxxviii DSP56303EVM User’s Manual Motorola

Comment C-14
delimiter C-1
object file C-13
unreported C-2

comment field 2-3
Conditional assembly C-28, C-37
Constant

define C-14, C-15
storage C-11

Constants D-9
Control Data Input Pin, MF2/CDIN 3-10
Control Register A, settings D-13
Control Register B, settings D-13
Crystal Semiconductor CS4215 3-7
CS4218 3-7
Cycle count C-37

D

D/A converter 3-7
Data Pins, D(0:23) 3-4, 3-6
data transfer fields 2-3
Debugger 2-1, 2-17

running the 2-19
Debugger software 2-17
Debugger window display 2-18
development process flow 2-1
device D-2
Directive C-10

.BREAK C-55

.CONTINUE C-56

.FOR C-56

.IF C-57

.LOOP C-58

.REPEAT C-58

.WHILE C-58
BADDR C-10
BSB C-11
BSC C-11
BSM C-12
BUFFER C-12
COBJ C-13
COMMENT C-14
DC C-14
DCB C-15
DEFINE C-5, C-16, C-37
DS C-17
DSM C-17
DSR C-18
DUP C-18
DUPA C-19
DUPC C-20
DUPF C-21
END C-22

ENDBUF C-23
ENDIF C-23
ENDM C-23
ENDSEC C-24
EQU C-24
EXITM C-25
FAIL C-25
FORCE C-26
GLOBAL C-26
GSET C-26
HIMEM C-27
IDENT C-27
IF C-28
in loop C-37
INCLUDE C-29
LIST C-29
LOCAL C-30
LOMEM C-30
LSTCOL C-31
MACLIB C-31
MACRO C-32
MODE C-33
MSG C-33
NOLIST C-34
OPT C-34
ORG C-42
PAGE C-45
PMACRO C-45
PRCTL C-46
RADIX C-46
RDIRECT C-47
SCSJMP C-47
SCSREG C-48
SECTION C-48
SET C-51
STITLE C-51
SYMOBJ C-51
TABS C-52
TITLE C-52
UNDEF C-52
WARN C-52
XDEF C-53
XREF C-53

Domain Technologies Debugger 1-1, 2-17
DSP development tools 2-1
DSP linker 2-12
DSP56002 3-10
DSP56002 Receive Data Pin, RXD 3-11
DSP56002 Transmit Data Pin, TXD 3-11
DSP56300 Family Manual 3-1
DSP56303 2-1

Chip Errata 3-2
Product Specification 1-1
Product Specification, Revision 1.02 3-1

Motorola Index Index-xxxix

Technical Data 1-1, 3-1
User’s Manual 3-1

DSP56303 Features 3-1
DSP56303EVM

additional requirements 1-2
Component Layout 3-2
connecting to the PC 1-4
contents 1-1
description 3-1
features 3-1
Flash PEROM 3-2
functional block diagram 3-3
installation procedure 1-2
interconnection diagram 1-4
memory 3-2
power connection 1-4
Product Information 1-1
SRAM 3-2
User’s Manual 1-1

E

Echo Code D-31
Echo Program D-31
Enhanced Synchronous Serial Port 0 (ESSI0) 3-13
Enhanced Synchronous Serial Port 1 (ESSI1) 3-14
ESSI Pin Definition D-4
ESSI Port Registers D-4
ESSI Ports Background D-3
ESSI ports, enabling interrupts D-23
ESSI Registers D-5
ESSI, initializing and interfacing D-12
ESSI, receive data interrupt D-25
ESSI/Codec Pin Setup D-8
ESSI/GPIO pins D-4
ESSI0 3-7
ESSI1 3-7
example

assembling the 2-12
example program 2-3
Expansion Bus Control 3-15
Expression

address C-37
compound C-61
condition code C-59
formatting C-61
operand comparison C-60
radix C-46
simple C-59

External Access Type Bits, BAT(1:0) 3-5

F

field

comment 2-3
data transfer 2-3
label 2-2
operand 2-3
operation 2-2
X data transfer 2-3
Y data transfer 2-3

File
include C-29
listing C-38

Flash 3-2
Flash Address Pins, A(0:16) 3-6
Flash Chip Enable Pin, CE 3-6
Flash Data Pins, I/O(0:7) 3-6
Flash Output Enable Pin, OE 3-6
Flash PEROM 3-2, 3-6

connections 3-6
stand-alone operation 3-6

Flash Write Enable Pin, WE 3-6
format

assembler command 2-5
source statement 2-2

Function C-6

G

GPIO pins, configuration D-15
GPIO Registers D-5
GS71024T-10 3-3

H

headphones 1-2
Host Address Pin, HA2 3-10
host PC 3-10
Host PC Data Terminal Ready Pin, DTR 3-11
Host PC Receive Data Pin, RD 3-11
host PC requirements 1-2
Host PC Transmit Data Pin, TD 3-11
Host Port (HI08) 3-14

I

Include file C-29

J

J1 1-3
J4 1-3, 3-7
J5 1-3, 3-7
J6 3-12
J7 3-7
J8 1-3, 3-11
J9 3-3, 3-7
JP4 Jumper Block (ESSI1) D-8

Index-xl DSP56303EVM User’s Manual Motorola

JP5 Jumper Block (ESSI0) D-7
JTAG 3-10

K

kit contents 1-1

L

Label
local C-38, C-41

label field 2-3
LED, red 3-10
Left Channel Output Pin, LOUT 3-8
Line continuation C-2
linker 2-1, 2-12

directives 2-16
options 2-13

linker directives 2-16
Listing file C-38

format C-31, C-38, C-40, C-45, C-52
sub-title C-51
title C-52

LM4880 3-8
Location counter C-6, C-42
Long Memory Data Moves 3-4

M

Macro
call C-38
comment C-37
definition C-32, C-38
directive C-32
end C-23
exit C-25
expansion C-39
library C-31, C-39
purge C-45

Macro argument
concatenation operator C-2
local label override operator C-4
return hex value operator C-4
return value operator C-3

MAX212 3-11
Memory

limit C-27, C-30
utilization C-39

Memory space C-39, C-42
Mode Selection 3-15
Modes D-2
Motorola

DSP linker 2-12

N

Number of Bits to Compare Bits, BCN(3:0) 3-6

O

Object file
comment C-13
identification C-27
symbol C-41, C-51

object files 2-1
OnCE commands 3-10
OnCE/JTAG conversion 3-10
operand field 2-3
operand fields 2-3
Operating Mode, DSP56307 3-6
operation field 2-3
Option

AE C-35, C-37
assembler operation C-36
CC C-36, C-37
CEX C-35, C-37
CK C-36, C-37
CL C-35, C-37
CM C-36, C-37
CONST C-36, C-37
CONTC C-37
CONTCK C-36, C-37
CRE C-35, C-37
DEX C-36, C-37
DLD C-36, C-37
DXL C-35, C-37
FC C-35, C-38
FF C-35, C-38
FM C-35, C-38
GL C-36, C-38
GS C-36, C-38
HDR C-35, C-38
IC C-36, C-38
IL C-35, C-38
INTR C-36, C-38
LB C-36, C-38
LDB C-36, C-38
listing format C-35
LOC C-35, C-38
MC C-35, C-38
MD C-35, C-38
message C-35
MEX C-35, C-39
MI C-36, C-39
MSW C-35, C-39
MU C-35, C-39
NL C-35, C-39
NOAE C-39

Motorola Index Index-xli

NOCC C-39
NOCEX C-39
NOCK C-39
NOCL C-39
NOCM C-39
NODEX C-39
NODLD C-39
NODXL C-39
NOFC C-39
NOFF C-39
NOFM C-39
NOGS C-39
NOHDR C-39
NOINTR C-39
NOMC C-39
NOMD C-39
NOMEX C-39
NOMI C-39
NOMSW C-39
NONL C-39
NONS C-40
NOPP C-40
NOPS C-40
NORC C-40
NORP C-40
NOSCL C-40
NOU C-40
NOUR C-40
NOW C-40
NS C-36, C-40
PP C-35, C-40
PS C-36, C-40
PSM C-36
RC C-35, C-40
reporting C-35
RP C-36, C-40
RSV C-36
S C-35, C-40
SCL C-36, C-41
SCO C-36, C-41
SI C-36
SO C-36, C-41
SVO C-36
symbol C-36
U C-35, C-41
UR C-35, C-41
W C-35, C-41
WEX C-41
XLL C-36, C-41
XR C-36, C-41

P

P Space Enable Bit, BPEN 3-6

Packing Enable Bit, BPAC 3-5
PC 3-10
PC requirements 1-2
PEROM 3-6

stand-alone operation 3-6
Pin Setup Descriptions D-7
Pins D-20
power supply, external 1-2, 1-4
program

assembling the 2-5
example 2-3
writing the 2-2

Program counter C-6, C-42
programming

AAR0 3-4
assembly 2-1
development 2-1
example 2-1

Q

Quick Start Guide 1-1

R

Read Enable Pin, RD 3-4, 3-6
Register C, data direction D-18
Register D, data direction D-18
Reset, DSP56002 3-11
Reset, DSP56303 3-7
Right Channel Output Pin, ROUT 3-8
Right Input #2 Pin, RIN2 3-8
RS-232 cable connection 1-4
RS-232 interface 3-10
RS-232 interface cable 1-2
RS-232 serial interface 3-10
running the Debugger program 2-19

S

Sampling frequency 3-7
SCI, DSP56002 3-10
Section C-48

end C-24
global C-26, C-38, C-49
local C-30, C-49
nested C-40
static C-38, C-49

Serial Clock Pin, SCK0 3-10
Serial Communication Interface Port (SCI) 3-12
Serial Control Pin 0, SC00 3-10
Serial Control Pin 0, SC10 3-10
Serial Control Pin 1, SC01 3-10
Serial Control Pin 1, SC11 3-10

Index-xlii DSP56303EVM User’s Manual Motorola

Serial Control Pin 2, SC02 3-10
Serial Control Pin 2, SC12 3-10
serial interface 3-10
Serial Port Clock Pin, SCLK 3-10
Serial Port Data In Pin, SDIN 3-10
Serial Port Data Out Pin, SDOUT 3-10
Serial Receive Data Pin, SRD0 3-10
Serial Transmit Data Pin, STD0 3-10
Source file

end C-22
source statement format 2-2
SRAM 3-2, 3-3

connections 3-3
SRAM Address Pins, A(0:14) 3-4
SRAM Chip Enable Pin, E 3-4
SRAM Data Pins, I0(0:23) 3-4
SRAM memory map 3-4
SRAM Output Enable Pin, OE 3-4
SRAM Write Enable Pin, WE 3-4
stand-alone operation 3-6
Stereo Headphones 3-8
Stereo Input 3-8
Stereo Output 3-8
String

concatenation C-6, C-7
delimiter C-5
packed C-40

Symbol
case C-38
cross-reference C-37
equate C-24, C-37
global C-38
listing C-40
set C-26, C-51
undefined C-41

T

Tutorial, codec programming D-1

U

Unified Memory Map 3-4

W

Warning C-41
Write Enable Pin, WR 3-4, 3-6

X

X data transfer field 2-3
X Space Enable Bit, BXEN 3-6

Y

Y data transfer field 2-3
Y Space Enable Bit, BYEN 3-6

1

2

3

A

C

B

Quick Start Guide

Example Test Program

DSP56303EVM Technical Summary

DSP56303EVM Schematics

DSP56303EVM Parts List

Motorola Assembler Notes

DCodec Programming Tutorial

IIndex

1

2

3

A

C

B

Quick Start Guide

Example Test Program

DSP56303EVM Technical Summary

DSP56303EVM Schematics

DSP56303EVM Parts List

Motorola Assembler Notes

D Codec Programming Tutorial

I Index

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter�1 Quick Start Guide
	Chapter�2 Example Test Program
	Chapter�3 DSP56303EVM Technical Summary
	Appendix�A DSP56303EVM Schematics
	Appendix�B DSP56303EVM Parts List
	Appendix�C Motorola Assembler Notes
	Appendix�D Codec Programming Tutorial
	Index

