ECP Standard Parallel Interface for
DSP56300 Devices

Application Note

by
Mihai V. Micea

Dan Chiciudean
and Lucian Muntean

AN2085/D
Rev. 0, 11/2000

@ MOTOROLA



This document contains information on a new product. Specifications and information herein are subject to change without notice.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in
Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters,
including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent
rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into
the body, or other applications intended to support life, or for any other application in which the failure of the Motorola product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall
indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses,
and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use,
even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
All other tradenames, trademarks, and registered trademarks are the property of their respective owners.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado, 80217
1-303-675-2140 or 1-800-441-2447

JAPAN: Motorola Japan, Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu, Minato-ku,
Tokyo 106-8573 Japan. 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. 852-26668334

Customer Focus Center: 1-800-521-6274

HOME PAGE: http://motorola.com/semiconductors/ © Copyright Motorola, Inc., 2000



Abstract and Contents

The data communi cation between the DSP and a host computer is one of the important issues in designing
DSP-based systems directly connected to PCs which are commonly used as process controllers or as
interactive user interfaces. This application note proposes the implementation of a high-performance, yet
relatively simple, parallel data communication protocol for a DSP connected to a PC.

This document focuses on the implementation of the Extended Capabilities Port (ECP) parallél
communication standard on the DSP56300 family processors.

Specific ECP communication protocols are described along with the characteristic hardware and software
implementation details, both on the DSP and on the PC side. The performance evaluation routines
designed for the ECP data link are also presented, along with the corresponding results and conclusions.

1 INTtrOdUCTION .. 1
2 DSP-Host Communication Tradeoffs ............ ... ... .. .. ... .... 1
3 ECP Standard Specifications ... 2
3.1 ECPHardware DesCription. . .. .....vt ittt e 2
3.2 ECPHandshaking Protocols. . ... e 3
321 ECPForward DataCycle. ... e 4
3.2.2 ECPForward Command Cycle. . ......... ... it 4
3.2.3 ECPReverseDataCycle ... e e e 5
3.24 ECPReverseCommand Cycle. ... e 6
3.3 ECPSOftware RegISterS . . ..ot e 6
4 ECP Interface Implementation—Hardware .. ........................ 8
5 ECP Interface Implementation—Software .......................... 9
51 ImplementationontheDSPSIde.............cciiiiii i 9
511 Initialization . ... ... 9
512 Forward Data . . ... 10
5.1.3 Reverse Data. . ... ..o 12
52 ECPProgrammingontheHostSide. ........... ... .. ... i, 14
6 Performance Evaluation of the ECP Interface ...................... 16
6.1  Single-Byte TransmiSSioN. . .. ..ottt e e e 16
6.2  Buffered TranSmiSSION . . .. ..ottt 17
7 Boosting Performance with a DMA Controller ..................... 18

@ MOTOROLA Abstract and Contents ii



8 CONCIUSION ..ot e 20
9 About the AULhOrS .. ... e e e e e 21

10 RefeIrENCES ..o 21

iv ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



1 Introduction

An important set of real-life digital signal processing applications involves a host computer functioning as
asystem controller or interactive graphical user interface. In these applications, reliable, high-speed data
communication between the DSP and the host computer is an important design and implementation issue.

This document describes the implementation of a high-performance, yet relatively simple, paralld data
communication protocol for a DSP connected to a PC. The paper focuses on the implementation of the
Extended Capabilities Port (ECP) parallel communication standard on the DSP56300 family processors.
Specific ECP communication protocols are described, as well as hardware and software implementation
details for both the DSP and the PC. Performance evaluation routines designed for the ECP datalink are
aso presented, along with corresponding results and conclusions.

Details of the ECP standard can be found in the Microsoft document, Extended Capabilities Port:
Soecifications, Revision 1.06.

2 DSP-Host Communication Tradeoffs

The DSP56300 family features various data communication interfaces, suitable for alarge variety of
system interconnections, through its built-in peripheral ports.

The Serial Communication Interface (SCI) provides afull-duplex port for serial datatransfers. Using three
dedicated signals (Data Transmit, Data Receive, and Serial Clock), this interface supports industry-
standard asynchronous bit rates and protocols up to 115200 bps, as well as high-speed synchronous data
transmission up to 8.25 Mbps for a 66 MHz clock. The primary disadvantage of a SCI-based connection
with a host computer isthat the maximum data transfer rate is limited to 115200 bps by the computer’s
serial interface. Another disadvantage is that many DSP-based eval uation modules use the DSP serial port
for code development and debugging, making it difficult to develop a DSP program that can initiate serial
data transactions autonomously with a host computer.

For high-performance parallel datatransfers, the DSP56300 family provides afull-duplex, double-buffered
paralel port caled the Host Interface. Thisinterface is either 8-bits or 32-bits wide, depending on the
particular DSP device selected. The HI08 or HI32 can connect directly to the data bus of a host processor
or computer with minimal glue logic, allowing direct data links to microcontrollers such as the Motorola
HC11 or the Intel 8051 family, aswell asto microprocessors such as the Motorola 68k family or Intel x86
family. The Host Interface can easily connect with the high-speed I SA or PCI bus on aPC to form a
communication channel that is substantially faster than a serial connection (up to 16 MBpsfor the ISA bus,
for example). However, this solution requires a very close physical connection, which drastically reduces
overal system flexibility.

A good compromise between maximum data transfer speed and system flexibility is the parallel cable
interconnection. The standard PC protocol for high-performance parallel communication is the Extended
Capabilities Port (ECP). This document describes the hardware and software implementation of the ECP
Standard with the HI08 port of a DSP56300 family device.

(M) moToroLa Introduction 1



3 ECP Standard Specifications

The Extended Capabilities Port is afast, bidirectional parallel interface developed by Microsoft and
Hewlett-Packard. It is backward-compatible with the existing PC standard parallel port (SPP)
configurations, using the existing parallel connectors and cables.

Pre-existing parallel communication methods utilized awide variety of hardware and software interfaces,
each with unique and incompatible signaling schemes. The ECP standard was developed to provide a
standard, open path for communications between computers and more intelligent printers and peripherals.
The availability of this standard bidirectional protocol encourages the development of new peripheral s that
can return both data and status to the host computer.

The ECP protocol generates handshake signals identical to those of the Extended Parallel Port (EPP), and
runs at the same speed as EPP. It also supports Run Length Encoding (RLE) to achieve data compression
ratios up to 64:1.

In summary, the ECP provides the following features:
» High performance half-duplex forward and reverse channel
» Interlocked handshake for fast, reliable data transfer
e Optional single-byte RLE compression for improved throughput
e Channel addressing for low-cost peripherals
e Active output drivers
e Adaptive signal timing
e Peer-to-peer capability
The ECP provides three operational modes for compatibility with various systems:

e Compatible mode—asynchronous, byte-wide forward channel (host-to-peripheral), parallel port
interface. Data and status lines are used according to the original SPP and EPP definitions.

« Nibble mode—asynchronous, byte-wide reverse channel (peripheral-to-host), paralldl port
compatible with all existing PC hosts. Data bytes are transmitted as two sequential 4-bit nibbles
using four peripheral-to-host status lines.

* Bytemode—asynchronous, byte-wide reverse channel using the eight datalines of theinterfacefor
data and the control/status lines for handshaking, compatible with IBM PS/2 hosts.

In addition, the ECP offers:

 ECP mode—fast bidirectional channel, with or without RLE compression. This mode requires
custom hardware.

3.1 ECP Hardware Description

The Extended Capabilities Port uses the industry-standard DB25 connector and is backward-compatible
with the SPP and EPP parallel standards. When the ECP operatesin SPP or EPP mode, the data and
handshake lines operate according to the SPP and EPP definitions.

When the port operates in ECP mode, each of the DB25 connector pins has a unique function, aslisted in
Table 1.

2 ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



ECP Handshaking Protocols

Table 1. Pin Assignments for Extended Capabilities Parallel Port Connector

. . . Input/ .

Pin SPP Signal ECP Signal Output Function

1 Strobe HostCLK Output | Alow on this line indicates valid data at the host. When this pin
is de-asserted, the +ve clock edge should be used to shift the
data into the peripheral.

2-9 Data 0-7 Data 0-7 110 Bidirectional data bus

10 Ack PeriphCLK Input Alow on this line indicates valid data at the peripheral. When
this pin is deasserted, the +ve clock edge should be used to
shift the data into the host.

11 Busy PeriphAck Input In reverse channel operation, a high on this pin indicates a
data cycle, while a low indicates a command cycle. In forward
channel operation, the pin functions as PeriphAck.

12 Paper Out / End nAckReverse Input The peripheral pulls this pin low to acknowledge a reverse
request.

13 Select X-Flag Input Extensibility Flag

14 Auto Linefeed Host Ack Output In forward channel operation, a high on this pin indicates a
data cycle, while a low indicates a command cycle. In reverse
channel operation, the pin functions as HostAck.

15 Error / Fault PeriphRequest Input The peripheral pulls this pin low to indicate that reverse data is
available.

16 Initialize nReverseRequest Output | This pinis pulled low to indicate that data is in the reverse
direction.

17 Select Printer 1284 Active Output | The host pulls this pin high to indicate 1284 transfer mode, and
pulls the pin low to terminate.

18-25 | Ground Ground GND Ground

3.2 ECP Handshaking Protocols

The ECP can be fully implemented by hardware with custom parallel communication controllers. It can be

implemented in software as well.

The ECP handshaking protocol features the following four cycles:

Forward Data
Reverse Data
Forward Command
Reverse Command

@ MOTOROLA

ECP Standard Specifications




3.2.1 ECP Forward Data Cycle

In the forward data cycle, the host sends a single byte of compressed data to the peripheral. This cycle
consists of six steps:

Host places data on data lines.

Host asserts HostAck to indicate the start of a data cycle.

Host asserts HostClk to low to indicate valid data.

Peripheral asserts PeriphAck to acknowledge valid.

Host deasserts HostClk high. The +ve edge is used to shift data into the peripheral.
6. Peripheral de-asserts PeriphAck to acknowledge receiving the byte.

o~ DN P

These steps are illustrated in Figure 1.

HostClk \
PeriphAck / \

HostAck

o I a

Figure 1. ECP Forward Data Cycle

3.2.2 ECP Forward Command Cycle

In the forward command cycle, the host sends a channel address to the peripheral. This cycle consists of six
steps:

Host places data on data lines.

Host deasserts HostAck to indicate the start of acommand cycle.

Host asserts HostClk low to indicate valid data.

Peripheral asserts PeriphAck to acknowledge valid data.

Host deasserts HostClk high. The +ve edge is used to shift data into the peripheral.

6. Peripheral deasserts PeriphAck to acknowledge receiving the byte.

o~ D

These steps areillustrated in Figure 2.

4 ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



ECP Handshaking Protocols

HostClk \
PeriphAck / \

HostAck

Y -

Figure 2. ECP Forward Command Cycle

3.2.3 ECP Reverse Data Cycle

In the reverse data cycle, the peripheral sends a single byte of datato the host. There are eight steps
specified for the reverse data cycle:

Host sets nReverseRequest Low to request areverse channel.

Peripheral asserts nAckReverse low to acknowledge reverse channel request.
Peripheral places dataon datalines.

Peripheral pulls PeriphAck high to select data cycle.

Peripheral pulls PeriphClk low to indicate that valid datais present.

Host pulls HostAck high to acknowledge that valid datais present.

Peripheral pulls PeriphClk high. The +ve edge is used to shift datainto the host.
8. Host deasserts HostAck low to acknowledgment receipt of the byte.

N o ok~ 0D

These steps areillustrated in Figure 3.

nReverse Request

nAckReverse

PeriphClk

HostAck

PeriphAck

Figure 3. ECP Reverse Data Cycle

@ MOTOROLA ECP Standard Specifications 5



3.2.4 ECP Reverse Command Cycle

In the reverse command cycle, the peripheral sends a channel address to the host. There are eight steps
specified for the reverse command cycle:

Host sets nReverseRequest Low to request areverse channel.

Peripheral asserts nAckReverse low to acknowledge reverse channel request.
Peripheral places dataon datalines.

Peripheral pulls PeriphAck low to select command cycle.

Peripheral pulls PeriphClk low to indicate that valid data is present.

Host pulls HostAck high to acknowledge that valid datais present.

Peripheral pulls PeriphClk high. The +ve edge is used to shift datainto the host.
8. Host deasserts HostAck low to acknowledgment receipt of the byte.

N o bk~ w DNk

These steps are illustrated in Figure 4.

nReverse Request

nAckReverse

PeriphClk

HostAck

PeriphAck

Figure 4. ECP Reverse Command Cycle

3.3 ECP Software Registers

The software registersimplemented in a standard PC on the host side of the ECP interface are listed in
Table 2. Thefirst 3 registers are identical to those in the Standard Parallel Port.

6 ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



Table 2. ECP Registers

ECP Software Registers

Address

Port Name

Read/Write

Description

Base +0

Data (SPP)

Read/Write

Standard parallel port data register. Writing to this
register in SPP mode drives data on the parallel port
data lines. In all other modes the drivers can be
tri-stated by setting the direction bit in the Control
Register.

ECP Address FIFO (ECP mode)

Read/Write

Data written to this address is placed in the FIFO and
tagged as ECP Address/RLE. ECP port hardware
transmits the byte to the peripheral automatically.

Base + 1

Status Register

Read

Reflects the inputs on the parallel port interface.

Base + 2

Control Register

Read/Write

Directly controls several output signals, sets the direc-
tion of communication, and enables an interrupt on
the rising edge.

Base + 400h

Data FIFO (Parallel Port FIFO Mode)

Read/Write

In Parallel Port FIFO Mode, any data written to the
Data FIFO is sent to the peripheral using the SPP
handshake; hardware generates the handshaking
required.

Data FIFO (ECP Mode)

Read/Write

When data direction is 0 (output to peripheral), bytes
written or DMAed from the system to this FIFO are
transmitted to the peripheral by hardware handshake
using the ECP parallel port protocol. When data direc-
tionis 1 (input from peripheral), bytes from the periph-
eral are read into this FIFO under automatic hardware
handshake from ECP.

Test FIFO (Test Mode)

Read/Write

Data can be read, written, or DMAed to or from the
system to this FIFO in any direction; data is not trans-
mitted to the parallel port lines using a hardware pro-
tocol handshake but can be displayed on the parallel
port data lines.

Configuration Register A (Configuration Mode)

Read/Write

Indicates if the card generates level- or edge-trig-
gered interrupts and the bus widths within the card,
and determines if there are any bytes left in the FIFO.
Configuration Register A is accessible only when the
ECP Port is in Configuration Mode.

Base + 401h

Configuration Register B (Configuration Mode)

Read/Write

Selects compression option (RLE) for outgoing data,
returns the status of the IRQ pin, IRQ assignment and
DMA Channel assignment. Configuration Register B
is accessible only when the ECP Port is in Configura-
tion Mode.

Base + 402h

Extended Control Register

Read/Write

Configures the ECP mode and returns the status of
the ECP FIFO. Modes of operation include:

+  Standard Mode

+ Byte/PS/2 Mode

+ Parallel Port FIFO Mode

+ ECP FIFO Mode

+ EPP Mode

*  FIFO Test Mode

+  Configuration Mode

@ MOTOROLA

ECP Standard Specifications



4 ECP Interface Implementation—Hardware

The hardware connection between the PC and DSP is a standard DB25 parallel cable. On the host side, the
cable connectsto the standard parallel port, configured for the ECP protocol. On the DSP side, the cable
connectsto a male DB25 header, which is directly connected to the HIO8 port asillustrated in Figure 5.

oL 33| HAS/AQ
o 14 21| HDR/WR
o 2 43|HADO
o 15
o 3 42|HAD1
o 16 30|HCS/A10
ol 4 41| HAD2
0 17
o 5 40/|HAD3
o 18
o 69 37|HAD4
0 1
o 270 36| HADS
o 28 34|HAD6
0 1
o 9 34|HAD7
o 22
o 10 32| HA8/AL1
o 23
o 11 31| HA9/A2
o 24
o 12 22|HRW/RD
o—ts
2
Parallel DB25 Header Motorola DSP563xx

Figure 5. HIO08 to DB25 Header Interconnection

In thisimplementation, all HI08 signals are configured as General Purpose 1/0 lines (GPIO) during the
ECP initialization routine for the DSP. The Host Interface data lines (HADO-HAD7) are assigned to the
ECP data bus (D0-D7). The ECP handshake signals are connected to the HI08 port as shown in Table 3.

Table 3. ECP to HIO8 Pin Assignments

ECP Signal Direction HI08 Signal

HostClk — HAS/AO

Data 0-7 <a—p | HADO-HAD7
PeriphClk €4—— | HA8AL
PeriphAck a—— | HAYA2
nAckReverse <« | HRWRD
HostAck —__ | HDSWR
nReverseRequest —p» | HCS/AL0

In some cases, the dectrical signal coupling between the DSP and the host computer may reguire voltage
level shiftersto accommodate the 3.3V DSP56300 family I/O port voltage levelsand the 5V (TTL) parallel
interface signals of the host computer. Tests run with the ECP implementation on the DSP56303 issued
satisfactory results without such voltage level interface buffers, but specia care must be taken with each

DSP56300 family device.

8 ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



Implementation on the DSP Side

5 ECP Interface Implementation—Software

The ECP handshake signals required to control data transactions between the DSP and the host computer
can be generated either in hardware, using a customized ECP controller, or in software. This section
describes the latter approach for the DSP side, in which software polls the HI08 port to generate the ECP
handshake signals. The host side employs a hardware controller, but does require some initialization
software which is also described.

5.1 Implementation on the DSP Side

The ECP standard defines four main protocol phases: ECP forward data and reverse data cycles for data
transactions, and ECP forward command and reverse command cycles to indicate single-byte data
compression or channel address. This section presents DSP software for the two data cycles, which are the
basic requirement for the ECP communication, as well as an initialization routine.

5.1.1 Initialization

The DSP initialization routine includes:
e Configuring the HI08 port as GPIO
e Setting the direction of each line used for handshaking
»  Generating the correct logical levels on the output lines
e Initiaizing the HI08 lines that connect to the ECP data bus as inputs

The code for thisroutine is presented in Example 1.

@ MOTOROLA ECP Interface Implementation—Software 9



Example 1.

ECP Initialization Routine

hpcr

hddr

hdr

HCOSTCLK
PER PHOLK
PER PHACK
NACKREVERSE
HCOSTACK

equ $ffffca
equ $ffffc8
equ $ffffco

EQ 8
EQU 9
EQU 10
EQU 11
EQU 12

NREVERSEREQUEST EQU 13

init_ecp

bset
beclr
bset
bset
bset
bel r
bset
bset
beclr
bel r
bsr

rts

line_in
nove
and
nove
rts

#0, x: hper
#HOSTCLK, x: hddr
#PERI PHCLK, x: hddr
PERI PHCLK, x: hdr
PER PHACK, x: hddr
PERI PHACK, x: hdr
nACKREVERSE, x: hddr
NACKREVERSE, x: hdr
HOSTACK, x: hddr
NREVERSEREQUEST, x: hddr
line in

x: hddr, a
#%$f f 00, a
a, X: hddr

; Host Port Control Register Address
;Host Data Direction Register address
; Host Data Regi ster address

; The next 6 equates are used for
;;addressi ng the handshaking lines in
;s Host Data Register

; Configures the 8 data |ines
;;as inputs

5.1.2 Forward Data

For the ECP forward data cycle, the DSP implements a read routine, which is called each time abyteisto
be transferred from the host to the DSP. Figure 6 is a flowchart of the read routine.

10

ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



Implementation on the DSP Side

C Start Read )

4

nRevReq=LOW Yes
?

No
PeriphClk -«— HIGH

nRevReg=LOW
?

HostClk=HIGH
?

No

PeriphAck <«— HIGH

Yes

nRevReg=LOW
?

C Call Read Data )

| Periphack =— Low |

( End Read )

Figure 6. ECP Read Routine Flowchart

In accordance with ECP specifications, the read routine performs a blocking scan of the nReverseRequest
(‘datadirection’) and HostClk (‘datavalid’) lines. If the host pulls the data direction line low, indicating a
host request to read data from the DSP, a“time-out” condition occurs; the program exits the read routine
and goes to the write routine. Otherwise, the read routine waits for a byte to be sent by the host, indicated

by a high on the HostCIk line.
The code for the read routine is given in Example 2 on page 12.

@ MOTOROLA ECP Interface Implementation—Software 11



Example 2. ECP Read Routine

r ead
jclr  #nREVERSEREQUEST, x: hdr, * Wit for nRevReqg line to
bset  #PER PHCLK, x: hdr ;7,00 high and then sets
;;the PeriphdQk Iine.
rdi
jclr  #nREVERSEREQUEST, x: hdr,time_out_rd ;Check if nRevReq is | ow
;;and if so, a tine out
;;condi tion occured.
jset  #HOSTALK, x: hdr, rd1 ;If Hostdk is |owthen
;;sets Perphdk and
bset  #PER PHACK, x: hdr ;;conti nue.
rd2
jclr  #nREVERSEREQUEST, X: hdr, read_end
jclr  #HOSTALK, x: hdr, rd2 Wit for Hostdk to go
bsr data_in ;;high and then sanpl es

;;the data bus.
time_out rd
belr  #PERI PHACK, x: hdr ; Reset the PeripAck line
read_end
rts

data_in
nove X: hdr, a0 ; Get one byte fromdata
extractu #$8000, a, a ;;bus and store it in a0.
rts

5.1.3 Reverse Data

For the ECP reverse data cycle, the DSP implements a write routine in accordance with the corresponding
ECP protocol specifications. Figure 7 is a flowchart of the read routine.

12 ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



( Start Write

l

nRevReq=HIGH
?

No

Yes

| nAdRev <— Low

( Call

DataOut

PeriphAck
PeriphClk

-«— HIGH
- LOW

nRevReq=HIGH
?

HostAck=LOW
?

No

PeriphClk -«— HIGH

( Call Lineln )
PeriphAck -e— LOW
nAckRev -e— HIGH

( END Write )

Figure 7. ECP Write Routine Flowchart

@ MOTOROLA ECP Interface Implementation—Software

Implementation on the DSP Side

13



The write routine performs a non-blocking scan on the nReverseRequest (‘ datadirection’) handshake line.
If thelineishigh, indicating that the host isin the Forward Data phase of ECP operation and is not ready to
receive the data byte from the DSP, the program exits the write routine and goes to the read routine.

Otherwise, the write routine sends the byte out on the ECP data bus.

The code for the write routine is given in Example 3.

Example 3. ECP Write Routine Code

wite
jset  #nREVERSEREQUEST, x: hdr,wite end ;If nRevReq line is | ow
bclr  #nACKREVERSE, x: hdr ;;exit fromwite routine,
;s el se reset nAckRev,
bsr data_out ;;output the data on data
;o 1ines.
bset  #PER PHACK, x: hdr ; Assert Peri phAck,
belr  #PER PHCLK, x: hdr ;;de assert PeripdKk.
w1l
j set  #nREVERSEREQUEST, X: hdr, ti me_out _wr
jclr  #HOSTACK, x: hdr, w1 Wit for Host Ack to go
bset  #PER PHCLK, x: hdr ;7 high and set Peripd k.
w2
jset  #nREVERSEREQUEST, x: hdr, ti me_out _wr
] set  #HOBTACK, x: hdr, wr 2 Wit for Host Ack to go
ol ow
time_out_w
bsr line_in ;Switch the data bus
;;direction to in.
belr  #PER PHACK, x: hdr ; Reset Peri phAck and
bset #nACKREVERSE, x: hdr ;;set nAckRev.
wite_end
rts
dat a_out
move ao0, x0 ; Take t he | east
;;significant byte from
nove x: hdr, a0 ;;a0 and send it,
i nsert $8000, x0, a ;3w thout modi fying
nove ao0, x: hdr ;;the nost significant
nove x: hddr, al ;;byte fromHost Data
or $ff,a ;; Regi ster.
novev al, x: hddr
rts

5.2 ECP Programming on the Host Side

The host computer generates the ECP communication protocol with a hardware controller on the
motherboard, so the only programming requirements are proper ECP controller initialization and a pair of
routines for data transmission and reception between the ECP port and the user application.

Example 4 presents all the initialization routines needed for data communication through the host ECP
port. User applications should call these functionsin a similar manner to the communication evaluation
program described in Section 6, “ Performance Evaluation of the ECP Interface,” on page 16.

14 ECP Standard Parallel Interface for DSP56300 Devices

@ MOTOROLA



Example 4. Host ECP Initialization Routines

ECP Programming on the Host Side

#define b_addr 0x378

unsi gned char Read_cnfg(int reg){
return inb(b_addr +0x400+r eg) ;
}

void Wite cnfg(int reg,unsigned char x){
out b( x, b_addr +0x400+r eg) ;
}

Wite_cnfgA(unsigned char x){
Wite cnfg(0,x);
}

Wite_cnfgB(unsigned char x){
Wite cnfg(1,x);
}

unsi gned char Read_cnf gB(voi d){
return Read cnfg(1l);
}

/llnitialize the parallel port in ECP node.
void init_ecp(){

out b( 0x34, b_addr +0x402) ;

out b( Oxf 4, b_addr +0x402) ;

Wite cnf gA( 0x14);

Wite_cnf gB( Read_cnf gB() &x7f);

}

//Place the ECP in Forward phase.
void init wite()({
unsi gned char x;
out b( 0x34, b_addr +0x402) ;
out b(i nb(b addr +2) &0x0C, b_addr +2) ;
x=i nb(b_addr +2) ;
out b(0x34, b addr+0x402)
out b( 0x75, b_addr +0x402) ;
out b( x| 4, b _addr +2) ;
while ((!'inb(b_ addr+1))&(1<<6))

}

/1 Place the ECP i n Reverse phase.
void init_read()({
unsi gned char x;
out b(0x34, b addr+0x402)
out b(i nb(b addr +2) | 0x20, b_addr +2) ;
x=i nb(b_addr +2) ;
out b(0x75, b addr+0x402)
out b( x&Oxfb b_addr+2);
while((!i nb(b addr+1))&(1<<5));

}

[/ Test if ECP FIFOis enpty.

int fifo empty(){
return (inb(b_addr+0x402)&1);
}

[/Test if ECP FIFOis full.
int fifo_full(){

return (inb(b_addr+0x402) &2);
}

@ MOTOROLA ECP Interface Implementation—Software

15



6 Performance Evaluation of the ECP Interface

This section describes a time-based, data counting performance evaluation program for the ECP interface,
and presents results for forward and reverse data transfer modes.

To evaluate data communication performance through the ECP interface, programs must be developed for
both the host and the DSP. The performance parameters of primary concern are the occurrence of errors
during the transfer and the data transfer rate. To determine the maximum transfer rate of the proposed ECP
implementation, alarge amount of data must be sent through the parallel link with minimal interference
from other activities during the data transfer.

6.1 Single-Byte Transmission

A first approach isto transmit one byte at atime. For reverse mode, the ECP test routine on the DSP side
simply transmits a byte of data on the ECP in an infinite loop, incrementing the value sent after each
transferred byte.

Example 5 lists the reverse mode ECP test routine on the DSP.

Example 5. DSP-Side Performance Evaluation Routine—Single-Byte Transfer, Reverse Mode

ECP_t est ; Test the ECP Reverse phase
bsr init_ecp ;Initialize the HO08
agai n
nove b,a
jsr wite ;Wite a byte (froma0O) to the host
i nc b ;I ncrement the val ue
jnp agai n ;Infinite | oop

A similar algorithm is used for the ECP forward mode.

The actual ECP performance evaluation program resides on the host computer. The host routine measures
the time it takes to transfer alarge amount of data through the ECP interface, checks the data, and counts
the errors that occur. The routine for reverse mode evaluation includes the following steps:

1. Initialize the host parallel port controller for ECP mode.
2. Configure the ECP for reverse data mode to receive data from peripheral.

3. When the port receives the first data byte, start the communication timer and initialize the
error counter.

4. After receiving apredefined number of data bytes from the DSP, calculate the overall data
transfer speed and display the error count.

These steps are incorporated in the test routine in Example 6.

16 ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



Buffered Transmission

Example 6. Host-Side Performance Evaluation Routine

voi d mai n(){
unsi gned char ch, ol d_ch;
int error_no=0,i;

time t t1,t2;
long |;
init_ecp(); [llnitialize the ECP controller
init_read(); /1 Place ECP in Reverse phase
while(fifo enpty()); //Véit for ECP FIFOto receive a byte
ol d_ch=i nb(b_addr +0x400) ; // Read that byte
t1=ti me( NULL); //Store the transfer begin tine
for (I1=0;1<4096000; | ++){
while(!fifo full()); [/t for ECP FIFOto fill

for(i=0;i<16;i++){

ch=i nb( b_addr +0x400) ; // Read a byte
if (ch!=ol d _ch++) /1 Conpare with previous val ue
error_no++, //and increment the error counter
ol d_ch=ch; //if an error occured
} }
t2=ti me( NULL) ; //Store the transfer end time

printf(“\nErrors=%",error _no); //Dsplay the error counter and
printf(“\nSpeed=% ", (doubl ) 4096000. 0*16. 0/ (t2-t1)); //transfer speed

}

Again, asimilar algorithm is employed for the ECP forward mode.

A test system incorporating the programs in Example 5 and Example 6 was run in both forward and
reverse mode, yielding results shown in Table 4.

Table 4. ECP Performance Evaluation Results for Single-Byte Transfers

Transfer Direction Byte Count Transfer Rate Error Count
Forward Mode 62.5 Mega 590 KBps 0
Reverse Mode 62.5 Mega 451 KBps 0

The difference between the forward mode and reverse mode transfer ratesin Table 4 is due to the fact that
the reverse data routine requires more DSP instruction cycles than the forward data routine.

6.2 Buffered Transmission

A second, more practical approach isto implement a buffered-type datatransfer through the ECP interface.
The codein Example 7 on page 18 is a simple DSP routine for reverse mode that transfers an entire buffer
to the host computer. In this example, the ‘ buffer’ variable represents the base address of the data buffer to
be sent and the ‘buf_len’ variable represents the buffer length. The routine scans the buffer in one-step
(word) increments and calls the ECP ‘write' routine described in Example 3 on page -14 to send the least
significant byte of each word in the buffer to the host. These routines can be interrupted by other
asynchronous events such as timer interrupts, serial, or DMA transfers, etc.

@ MOTOROLA Performance Evaluation of the ECP Interface 17



Example 7. DSP-Side Performance Evaluation Routine—Buffer Transfer, Reverse Mode
Send_Buf f er

nove #buffer, r0 ;Initialize pointer to the start of the buffer.
do #buf | en, | oop_shb ;Initialize the Loop Counter (LC) Register with
;;buffer |ength.
nove x: (r0)+, a0 ;Prepare the current data word (24-bits) to be sent.
bsr wite ; Send the 8 least significant bits of AO register.
| oop_sb
rts

In the same manner, one can easily implement the corresponding ‘ Receive Buffer’ routine on the DSP
using the ‘read’ routine described in Example 2 on page -12.

To transfer 16-bit words, the ‘ Send_Buffer’ routine can be modified as shown in Example 8. Similar
modifications can be used for forward transfers, and to send or receive 14-bit words.

Example 8. 16-bit Word Buffer Send Routine

Send Buffer 16

nove #buffer,r0

do #buf | en, | oop_shb

nove x: (r0)+ a0

bsr wite

extract #$8008, a, a ; Replace the 8 least significant bits in AOwth the
;; next 8 nore significant ones, to be used further
7y by ‘wite'.

bsr wite

| oop_shb
rts

7 Boosting Performance with a DMA Controller

The performance of an ECP-based communication system can be substantially enhanced by incorporating
adedicated ECP controller with a DMA interface into the DSP56300-based system. A typica connection

of a DMA-capable ECP controller (such as the PPC34C60 from Standard Microsystem Corporation or the
W91284PIC from Warp Nine Engineering) to a DSP56300 family processor is shown in Figure 8.

18 ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



Buffered Transmission

Data
<< >y
Address
Expansion Port >
(Port A) —
RD >
WR E— &>
AA
X CS >
ECP Host ECP Status
—_— Controller Interface —————
DSP563XX ROX|<e DMAREQ
Control
<————1
o8 < DMADIR
(PortB) DMAACK |
Configured 1C
as GPIO >

Figure 8. Typical Connection of an ECP Controller to the DSP563xx

Asthe master of the ECP datalink, the host computer uses the ECP control lines to select the type of data
transfer (forward or reverse) and initiates the transactions. Thus, the ECP Controller always initiates the
DMA cycleswith the DSP by asserting DMAREQ (DMA transfer request) and DMADIR (direction of the
transfer). The actual DMA transfer begins when the DSP asserts DMAACK (DMA transfer acknowledge)
and CS. The DMA transaction ends when the DSP asserts the TC (terminal count) signal.

On the DSP side, some preliminary configuration and initialization is required to perform DMA
transactions with the ECP controller, including the following steps:

Port A Datalines are used for data transfers.
Port A Address lines specify the location of the transferred data.
Port A RD and WR signals command the read and write cycles, respectively.

Port A AA, (One of the four Address Attribute 0:3 lines functions as the chip select signal for the
ECP controller.

Interrupt line IRQ, serves asthe DMA request signal from the ECP controller.
An interrupt handler for the DMA request isinstalled.

Three HI08 (Port B) signals are configured as GPIO to function as follows:

— DMAACK (output)

— DMADIR (input)

— TC (output)

When the host initiates an ECP reverse data cycle, (i.e., reads a data buffer from the DSP), the following
steps are executed:

1
2.
3.

Host configures the ECP controller and initiates the ECP reverse data cycles.
ECP controller asserts DMAREQ.

The DSP interrupts the execution of its current program and handles the corresponding
interrupt as follows:

@ MOTOROLA Boosting Performance with a DMA Controller 19



a) Readsthe DMADIR to determine the direction of data transfer.
b) Preparesthe data buffer to be sent.

¢) Configurestheon-chip DMA controller with the start address of the data buffer and the
total number of data words.

d) Startsthe DMA transfer and asserts DMAACK.

4. DSP resumes the current program execution while the DMA transfer is performed in
paralel.

5. When the buffer is transferred, the on-board DMA controller issues an internal interrupt.

6. The DSPinterrupted to assert TC (end of DMA transfer) and reset the internal DMA
controller.

7. DSP resumes the execution of the current program.

A similar operation is executed for an ECP forward data cycle initiated by the host.

8 Conclusion

The ECP interface enables medium to high-speed parallel data transfers between a host computer and a
DSP-based application without the physical limitations of a direct connection between the data buses of the
host and DSP. This solution is easy to implement, requiring little or no additional hardware beyond the
standard DB25 parallel connector and minimal software development. System performance can be
enhanced by using DMA transfers between the host ECP controller and the DSP.

20 ECP Standard Parallel Interface for DSP56300 Devices @ MOTOROLA



Buffered Transmission

9 About the Authors

Mihal V. Miceais alecturer at the Computer Software and Engineering Department at the Politehnica
University of Timisoara, and Executive Director of the DSP Applications Lab Timisoara (DALT)
sponsored by Digital DNA from Motorola

Dan Chiciudean and Lucian Muntean are students at the Automation and Computer Science Faculty at the
Politehnica University of Timisoara, and members of the research and development team at DALT.

Contacts.
e micha@dsplabs.utt.ro
e http://dsplabs.utt.ro/dalt/

10 References

[1] DSP56300 Family User’s Manual (order number DSP56300FM/AD), Matorola, Incorporated, 1999.
[2] DSP56303EVM User’s Manual (order number DSP56303EM UM/AD), Matorola, Incorporated, 1999.
[3] DSP56307EVM User’s Manual (order number DSP56307EV MUM/D), Matorola, Incorporated, 1999.

[4] DSP5630x Port A Programming, Application Note (order number AN1751/D), Motorola, Incorporated,
1999.

[5] Motorola DSP Assembler Reference Manual, Motorola, Incorporated, 1996.

[6] IEEE Sandard Signaling Method for a Bidirectional Parallel Peripheral Interface for Personal
Computers, Draft D1.1, November 5, 1999, Institute of Electrical and Electronic Engineers, Inc.

[7] Extended Capabilities Port: Specifications, Revision 1.06, July 14, 1993, Microsoft Corporation.

[8] Interfacing the PC. Interfacing the Extended Capabilities Port, Craig Peacock, February 28, 2000,
Internet Resource.

[9] WO1284PIC. IEEE 1284 Peripheral Interface Controller. Data Sheet, Revision 4.00, 29 October, 1999,
Warp Nine Engineering.

[10] High Performance ECP/EPP Printer Interface Using the PPC34C60 PPIC, Jeffrey C. Dunnihoo,
Application Note 4.17, Revision 13 January, 1994, Standard Microsystems Corporation.

(M) moToroLa About the Authors 21



22

ECP Standard Parallel Interface for DSP56300 Devices

@ MOTOROLA



	Title
	Abstract and Contents
	1 Introduction
	2 DSP-Host Communication Tradeoffs
	3 ECP Standard Specifications
	3.1 ECP Hardware Description
	3.2 ECP Handshaking Protocols
	3.2.1 ECP Forward Data Cycle
	3.2.2 ECP Forward Command Cycle
	3.2.3 ECP Reverse Data Cycle
	3.2.4 ECP Reverse Command Cycle

	3.3 ECP Software Registers

	4 ECP Interface Implementation—Hardware
	5 ECP Interface Implementation—Software
	5.1 Implementation on the DSP Side
	5.1.1 Initialization
	5.1.2 Forward Data
	5.1.3 Reverse Data

	5.2 ECP Programming on the Host Side

	6 Performance Evaluation of the ECP Interface
	6.1 Single-Byte Transmission
	6.2 Buffered Transmission

	7 Boosting Performance with a DMA Controller
	8 Conclusion
	9 About the Authors
	10 References

