

MOTOROLA

Semiconductor Application Note

Order by
AN1790/D

Rev. 0 , 2/99

P
ro

gr
am

m
in

g
th

e
C

S
42

18
 C

O
D

E
C

Contents

1 CODEC Overview 2

2 ESSI Port Overview 3

2.1 ESSI/GPIO Pins...............................3
2.2 ESSI Port Registers..........................3
2.3 Digital Interface (ESSI Ð CODEC)..5

3 Programming the CS4218
CODEC .. 6

3.1 Phase 1: Setting Up Global
Constants ...7

3.2 Phase II: Initializing and Interfacing
the ESSI and CODEC Ports9

3.3 Phase III: Data Transferring
Mechanism18

4 Example Application 23

4.1 Echo Program23
4.2 Echo Code......................................23
Programming the CS4218 CODEC
for Use With DSP56300 Devices
by Thomas Lay

Through mathematical algorithms implemented on the DSP,
members of MotorolaÕs DSP56300 family can accomplish
various of tasks and different kinds of digital signal
processing. However, to obtain useful information, it is often
necessary to interact with the outside world. To satisfy this
requirement, the CS4218 16-bit Audio CODEC CMOS
device is integrated with the current DSP563xx evaluation
modules. The CODEC performs analog-to-digital (A/D) and
digital-to-analog (D/A) conversion, filtering, and level
setting.

A sample program is included in this document to
demonstrate the use of the CS4218 CODEC with a Motorola
DSP. The program explains the steps for interfacing the
Motorola DSP with the CS4218 CODEC. The sample
program shows in detail the use of the enhanced synchronous
serial interface ports (ESSI) and how the DSPÕs ESSI ports
interface, initialize, and transport data between the DSP and
CS4218 CODEC.

The following source code files, which assist in programming
the CODEC, are located on MotorolaÕs DSP Web site at the
this address:

www.mot.com/SPS/DSP/documentation/DSP56300.html

¥ Ioequ.asm: Important I/O equates for the
DSP5630xEVM modules

¥ Intequ.asm: Interrupt equates for the DSP563xx
EVM modules

¥ Ada_equ.asm: Equates for initializing the CODEC.

¥ Ada_Init.asm: Initialization code for the ESSI and
CODEC

¥ Vectors.asm: Vector table for the DSP563xx EVM
modules

¥ Echo.asm: Example of CODEC programming

Throughout this document, the sample code references
equates in Ada_equ.asm, Ioequ.asm, and Intequ.asm.
© Motorola, Inc., 1999

CODEC Overview

1 CODEC Overview
The CS4218 stereo audio CODEC comprises many devices that perform A/D and D/A conversion.
The CODEC consists of two delta-sigma A/D converters, two delta-sigma D/A converters, input
anti-aliasing filters, output smoothing filters, programmable input gain, and programmable output
attenuators. These separate CODEC components allow the DSP to receive data from the CODEC,
process the data, and transmit processed data back to the CODEC. The data travels through special
serial ports using the DSPÕs ESSI ports and the CODECÕs specialized pins.

The CODEC modes of operation are configured by setting certain pins on the CODEC high or low,
specifically SMODE1, SMODE2, and SMODE3 pins. The mode to which the DSP563xx evaluation
modules are physically set is Serial Mode 4 (SM4). In SM4 mode, the control information for the
CODEC is separated from the data information, reducing the bandwidth needed by the data serial ports
and simplifying the programming procedures.

Within SM4 mode are four sub modes. These secondary modes specify two things: whether the
CODEC functions in the master mode or the slave mode and the number of bits per frame. For the DSP
evaluation boards discussed in this document, the secondary modes are physically configured to sub
mode 0 so that the CODEC functions in the master mode and sets the frame size to 32 bits. Operating
in the master mode, the CODEC sends the serial bit clock and frame synchronization pulses to indicate
the start and stop of a data frame. In addition, sub mode zero specifies that each frame consists of two
16-bit words: a left-channel 16 bit word and a right-channel 16 bit word. The left and right channels
are sent to and from the CODEC with the most significant bits (MSBs) first. The properties defined by
the sub modes apply to both the input data going into the CODEC (SDIN) and the output data coming
from the CODEC (SDOUT). See Figure 1.

Control information is sent to the CODEC on a different serial interface than the data information. The
control information consists of a list of attributes that specify properties such as level settings.
Although 31 bits must be set in the control information, only 23 bits are useful. The other 8 bits are set
to zero. For details on the CS4218 CODEC, refer to the Crystal CS4218 CODEC Datasheet.

Figure 1. CODEC Data Format

Frame 32-bits

16-bits 16-bits

STOUT Left Channel Word Right Channel Word

SDIN Left Channel Word Right Channel Word

SSYNC
1-2 Programming the CS4218 CODEC Motorola

ESSI Port Overview

2 ESSI Port Overview
The Motorola DSP563xx evaluation modules discussed in this document have two ESSI ports, ESSI0
and ESSI1, that form one of the major serial interfaces to external peripherals. Each port consists of six
unique pins that allow performance of various functions, depending on how they are configured. Each
port can function as either an ESSI or a General-Purpose Input/Output port (GPIO).

Operate the ESSI port in ESSI mode to synchronize your tasks with a master clock. In addition, certain
control actions and direction flow are set automatically. Operate the ESSI port in GPIO mode to
specify exactly how data is transferred and the direction of data flow. The drawback to GPIO mode is
that you must thoroughly understand GPIO port usage in order to program for GPIO. The example in
this document illustrates both the ESSI and GPIO modes of operation.

2.1 ESSI/GPIO Pins
The ESSI port uses six pins to transfer information. You can configure each pin to function in the ESSI
mode or the GPIO mode by modifying the port control registers (see Table 1).

2.2 ESSI Port Registers
In either ESSI or GPIO mode, certain registers apply specifically to each mode, with the exception of
two registers that determine how the ESSI ports are used: port control register C (PCRC) and port
control register D (PCRD). Port control register C configures the ESSI0Õs functional mode; port
control register D configures the ESSI1Õs functional mode. Setting the corresponding bit/pin on the
port control register to 1 configures the pin to operate in the ESSI mode. Setting the corresponding
bit/pin to 0 configures the pin to function in the GPIO mode. Notice that each pin is individually
configured to be in the ESSI mode or the GPIO mode.

2.2.1 ESSI/GPIO Shared Registers
Table 2 lists the functions of the ESSI/GPIO shared registers.

Table 1. ESSI Pins

 Pin Name Pin Function

Serial Control 0 (SC0/PC0) Has a multitude of functions depending on how control registers are set

Serial Control 1 (SC1/PC1) Has a multitude of functions depending on how control registers are set

Serial Control 2 (SC2/PC2) Has a multitude of functions depending on how control registers are set

Serial Clock (SCK/PC3) Serves as a provider or a receiver of the serial bit rate clock

Serial Receive Data (SRD/PC4) Receives serial data

Serial Transmit Data (STD/PC5) Transmits serial data
Motorola 1-3

ESSI Port Overview

The ESSI consists of 12 registers specific to the ESSI mode. There are two sets of ESSI registers; one
for ESSI0 and the other for ESSI1. Table 3 lists the ESSI registers.

In the GPIO mode, the ESSI port accesses four registers specific to GPIO mode (see Table 4).

Table 2. ESSI/GPIO Shared Registers

Register Name Function

Port Control Register C (PCRC) Controls whether to use the ESSI0 port in ESSI mode or GPIO mode

Port Control Register D (PCRD) Controls whether to use the ESSI1 port in ESSI mode or GPIO mode.

Table 3. ESSI Registers

Register Name Function

Control Register A (CRA) Controls ESSI Mode operations.

Control Register B (CRB) Controls ESSI Mode operations.

Status Register (SSISR) Describes status and serial flags.

Transmit Slot Mask Register A (TSMA) Determines when to transmit during a given time slot.

Transmit Slot Mask Register B (TSMB) Determines when to transmit during a given time slot.

Receive Slot Mask Register A (RSMA) Determines when to receive during a given time slot.

Receive Slot Mask Register B (RSMB) Determines when to receive during a given time slot.

Time Slot Register (TSR) Prevents data transmission during a time slot.

Receive Data Register (RX) Read-only register that receives data.

Transmit Data Register 0 (TX0) Transfer data for transmitter 1

Transmit Data Register 1 (TX1) Transfer data for transmitter 2

Transmit Data Register 2 (TX2) Transfer data for transmitter 3

Table 4. GPIO Registers

Register Name Function

Port Direction Register C (PRRC) Controls the direction of data flow for ESSI0 port in GPIO mode

Port Direction Register D (PRRD) Controls the direction of data flow for ESSI1 port in GPIO Mode.

Port Data Register C (PDRC) Stores data received or transmitted for ESSI0 port in GPIO mode.

Port Data Register D (PDRD) Stores data received or transmitted for ESSI1 port in GPIO mode.
1-4 Programming the CS4218 CODEC Motorola

ESSI Port Overview

After a pin is set to function in the GPIO mode, the direction of data flow must be configured to
specify for the ESSI port whether the pin receives data or transmits data. Setting the pin/bit to 0 on Port
Direction Register C (PRRC) configures the GPIO pin as an input; setting the pin/bit to 1 configures
the GPIO pin as an output. To receive or transmit data in GPIO mode, use the port data registers
(PDRs). If the pin/bit functions as an input, the value in that pin/bit reflects the value on that pin. If the
pin/bit functions as an output, the value on the pin/bit is the value being transmitted.

For details on the ESSI ports, refer to the DSP563xxEVM userÕs manual and the application note,
DSP56300 Enhanced Synchronous Serial Interface (ESSI) Programming, (order number AN1764/D)
located at web address:

www.mot.com/SPS/DSP/documentation/appnotes.html

2.3 Digital Interface (ESSI – CODEC)
For the DSP563xx evaluation modules discussed in this document, the CODEC is configured to
function in SM4 mode. SM4 mode separates the data information from the CODEC control
information so that two serial ports are required to transfer data and CODEC control information. Both
the ESSI0 and ESSI1 ports control and transfer data between the DSP and the CODEC. Typically,
ESSI0 controls data transfers while ESSI1 controls CODEC control information transfers.

ESSI0 performs three functions with the CODEC:

¥ Transfers data to and from the CODEC

¥ Receives synchronization pulses

¥ Performs the reset function on the CODEC

In contrast, ESSI1 controls and transfers CODEC control information. Table 5 shows the definitions
of the ESSI pins.

Table 5. ESSI Pins

ESSI0/ESSI1 Pin CS4218 Codec Pin Description

STD0 (ESSI0) SDIN Data transfer from ESSI0 to CODEC

SRD0 (ESSI0) SDOUT Data transfer from CODEC to ESSI0

SCK0 (ESSI0) SCLK Clock sent by CODEC (Master)

SC00 (ESSI0) ~RESET Reset CODEC from ESSI0

SC02 (ESSI0) SSYNC Frame Synchronization pulse from CODEC

SC10 (ESSI1) ~CCS Control Information gate

SC11 (ESSI1) CCLK Clock sent by ESSI1 to set control information

SC12 (ESSI1) CDIN Control data transfer from ESSI1
Motorola 1-5

Programming the CS4218 CODEC

Physically, the ESSI port pins connect to the serial pins on the CODEC though jumper connections. To
ensure correct operation using the example code referenced in this document, refer to Table 6 and
Table 7 for the correct jumper settings for the DSP5630xEVM boards. Figure 2 on page 2-7 shows
the pin set-up between the DSPÕs ESSI ports and the CODEC. For details on the pin layouts and
jumper settings between the CODEC and DSP, consult the DSP userÕs manual for the respective
evaluation modules.

3 Programming the CS4218 CODEC
For proper operation of the CS4218 CODEC device with Motorola DSPs requires a three-phase
procedure. Each phase plays an essential role in properly setting up constants, interfacing and
initializing, and correctly using the CS4218 CODEC with the Motorola DSP:

¥ Phase 1: Setting up global constants Ñ Includes such activities as setting up buffer spaces and
pointers, setting CODEC control information constants, and defining interface constants and
pins.

¥ Phase 2: Interfacing and initializing the ESSI and the CODEC Ñ Comprises the bulk of the
work needed to obtain a working interface between the DSP563xx and the CODEC. The
procedures include setting up and initializing the CODEC ports, setting up and initializing the
ESSI ports, and interfacing the CODEC and ESSI ports.

Table 6. JP5 Jumper Block (ESSI0)

JP5 ESSI Pin Codec Pin

1-2 SCK0 SCLK

3-4 SC00 ~RESET

5-6 STD0 SDIN

7-8 SRD0 SDOUT

9-10 SC01 -

11-12 SC02 SSYNC

Table 7. JP4 Jumper Block (ESSI1)

JP4 ESSI Pin Codec Pin

1-2 SCK1 -

3-4 SC10 ~CCS

5-6 STD1 -

7-8 SRD1 -

9-10 SC11 CDIN

11-12 SC12 CCLK
1-6 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

¥ Phase 3: Data transferring mechanisms Ñ Includes information on the types of data transfer
methods. Although three types of data transfer methods are availableÑpolling, DMA, and
interruptsÑ this document discusses only interrupts.

Figure 2. ESSI/CODEC Pin Setup

3.1 Phase 1: Setting Up Global Constants

3.1.1 Setting Up Buffer Space and Pointers
Phase 1 begins with setting up buffer spaces and pointers. The buffer spaces and pointers temporarily
store the incoming and outgoing data. These variables come in the form of receive and transmit buffers
and pointers. In addition to offering temporary storage, the pointers offer a method to access the
memory location of the stored data. Example 1 demonstrates the task of setting up transmit and
receive buffers and pointers.

Example 1. Setting Up Transmit and Receive Buffers and Pointers

;Receive buffer and pointer

RX_BUFF_BASE equ *
RX_data_1_2 ds 1 ; Left receive channel audio
RX_data_3_4 ds 1 ; Right receive channel audio
RX_PTR ds 1 ; Receive pointer

;Transmit buffer and pointer

TX_BUFF_BASE equ *
TX_data_1_2 ds 1 ; Left transmit channel audio
TX_data_3_4 ds 1 ; Right transmit channel audio
TX_PTR ds 1 ; Transmit pointer

CS4218 CODECMotorola DSP
(master)(slave)

SDIN

SDOUT

SCLK

RESET

FSYNC

MF4/CCS

MF3/CCLK

MF2/CDIN

SRD0

SRD0

SCK0

SC00

SC02

SC10

SC11

SC12

ESSI0

ESSI1
Motorola 1-7

Programming the CS4218 CODEC

3.1.2 Defining CODEC Control Parameters
To specify specific parameters of the A/D and D/A conversion and other audio parameters, the control
information must be declared. Parameters such as left and right attenuation, left and right gain, line
input selects, and mask interrupts, are configured in the control information. The control information
consists of 32 bits of information. Although only 23 bits contain useful information, a minimum of 31
bits must be set. Table 8 lists the bit definitions.

Referring to Table 8, a programmer can configure the control information for the CODEC. Suppose,
for instance, that the following requirements are needed for an application:

1. No mask for the interrupt pin.

2. No left or right D/A attenuation.

3. Muting turned off.

4. LIN2 and RIN2 selected. (On the EVM boards input 2 is used for both left and right channels.)

5. No left and right D/A gains.

Table 8. CS4218 CODEC Control Information (MSB)

Descriptions Bit Values

Not Applicable 31 0

Mask Interrupt 30 0 = no mask on MF5:\INT
1 = mask on MF5:\INT

D01 29 N/A

Left output D/A Attenuation (1.5
dB steps)

28 – 24 00000 = No attenuation
11111 = Max attenuation
 (-46.5 dB)

Right output D/A Attenuation (1.5
dB steps)

23 – 19 00000 = No attenuation
11111 = Max attenuation
 (-46.5 dB)

Mute D/A output 18 0 = output not muted
1 = output muted

Left Input Select 17 0 = LIN1
1 = LIN2

Right Input Select 16 0 = RIN1
1 = RIN2

Left input D/A Gain (1.5 dB steps) 15 – 12 00000 = no gain
11111 = max gain (22.5 dB)

Right input D/A Gain (1.5 dB
steps)

11 – 8 00000 = no gain
11111 = max gain (22.5 dB)

Not Applicable 7 – 0 0000000
1-8 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

Example 2 illustrates the procedure of setting the CODEC control information using these specified
control parameters.

Example 2. Setting Codec Control Information

NO_MASK_INT equ $000000
NO_LEFT_ATTN equ $000000 ; 0 dB
NO_RIGHT_ATTN equ $000000 ; 0 dB
LIN2 equ $000200 ; use LIN2 on EVM
RIN2 equ $000100 ; use RIN2 on EVM
NO_LEFT_GAIN equ $000000 ; 0 dB
NO_RIGHT_GAIN equ $000000 ; 0 dB
NO_MUTING equ $000000

CTRL_WD_12 equ NO_MASK_INT+NO_LEFT_ATTN+NO_RIGHT_ATTN+LIN2+RIN2+
NO_MUTING

CTRL_WD_34 equ NO_LEFT_GAIN+NO_RIGHT_GAIN

Note: The CS4218 CODEC data sheet reverses the bit-order of the control information. For instance,
bit 1 should be the mask interrupt instead of bit 30. However, since most of the work with the
ESSI ports and CODEC is done using MSB first, Table 8 is modified to reverse the bit order
from the CODEC data sheet to simplify control information programming.

Note: The evaluation modules used in this document select line 2 of right and left inputs. Therefore,
bits 17 (Left Input Select) and bits 16 (Right Input Select) should be configured to select LIN
2 (1) when the DSP563xx EVM evaluation modules are used.

3.2 Phase II: Initializing and Interfacing the ESSI and CODEC
Ports

After certain constants for the CODEC and the ESSI are defined, the next step is to initialize the ESSI
and CODEC interface. Initialization starts with the ESSI ports, which includes resetting the ESSI
ports, modifying ESSI control registers, and configuring ESSI/GPIO functionality. Second, the
CODEC must also be initialized, which entails resetting the CODEC and sending in CODEC control
information, as follows:

1. Reset the ESSI ports.

2. Modify the ESSI control registers.

3. Configure ESSI or GPIO functionality.

4. Reset the CODEC.

5. Modify CODEC control information.

6. De-assert ESSI reset and enable interrupts.

3.2.1 Initialize ESSI Ports
The first step in initializing the ESSI port is to reset the ESSI ports by sending a value of zero into Port
Control Registers C and D. (Although ESSI1 is to be used as a GPIO, it is recommended that you also
perform the reset on ESSI1.) Example 3 illustrates the reset procedure of the ESSI ports.

Example 3. ESSI Port Reset Procedure

movep #$0000,x:M_PCRC ; reset ESSI0 C control register port
movep #$0000,x:M_PCRD ; reset ESSI1 D control register port
Motorola 1-9

Programming the CS4218 CODEC

The next step is to set the control parameters for the ESSI port by adjusting the bits on the ESSI
Control Register A (CRA0) and ESSI Control Register B (CRB0). Describing the meaning of each bit
on the registers is beyond the scope of this document. You can find definitions of each bit in the
respective DSP563xx userÕs manuals. However, this document does cover certain typical settings that
must be made for the CODEC to work properly with the ESSI ports. Table 9 displays the settings to be
made with Control Register A.

Table 10 lists the typical required settings for Control Register B to ensure functionality between the
ESSI ports and the CODEC.

Table 9. Settings for Control Register A

Bit Name Description Bit Position Value (Binary)

Reserved Reserved 23 0

SSC1 SC1 pin = serial I/O flag 22 0 (SC1 flag set)

WL[2:0] Word Length control 21-19 010
(16 bit control word)

ALC Alignment Control 18 0 (Align to bit 23)

Reserved Reserved 17 0

DC[4:0] Frame Rate Divider
Control

16-12 00001 (2 time slots per
frame)

PSR Prescaler Range 11 1 (ESSI clock is divided
by one)

Reserved Reserved 10-8 000

PM[7:0] Prescale Modulus Select 7-0 00000111 (ESSI clock
divided by 8)

Table 10. Settings for Control Register B

Bit Name Description Bit Position Value (Binary)

REIE Receive exception
interrupt

23 1 (enabled)

TEIE Transmit exception
interrupt

22 1 (enabled)

RLIE Receive last slot
interrupt

21 1 (enabled)

TLIE Transmit last slot
interrupt

20 1 (enabled)

RIE Receive interrupt 19 1 (enabled)

TIE Transmit interrupt 18 1 (enabled)

RE Receive register 17 1 (enabled)

TE0 Transmit register 0 16 1 (enabled)

TE1 Transmit register 1 15 0 (disabled)
1-10 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

Only the ESSI0 control parameters are configured. Since ESSI1 functions in GPIO mode, the control
parameters do not need to be set. Example 4 illustrates the task of setting up the control registers for
the ESSI0 port according to the specifications in Table 9 and Table 10.

Example 4. Setting Control Registers for the ESSI0 Port

;Setting ESSI0 Control Parameters

; Control Register A
movep #$101807,x:M_CRA0 ; 12.288MHz/16 = 768KHz SCLK

; prescale modulus = 8
; frame rate divider = 2
; 16-bits per word
; 32-bits per frame
; 16-bit data aligned to bit 23

; Control Register B
movep #$ff330c,x:M_CRB0 ; Enable REIE,TEIE,RLIE,TLIE,

; RIE,TIE,RE,TE0
; network mode, synchronous,
; out on rising/in on falling
; shift MSB first
; external clock source drives SCK
; (codec is master)
; RX frame sync pulses active for
; 1 bit clock immediately before
; transfer period
; positive frame sync polarity
; frame sync length is 1-bit

TE2 Transmit register 2 14 0 (disabled)

MOD Mode 13 1 (Network Mode)

SYN Synchronization mode 12 1 (Synchronous mode)

CKP Clock polarity 11 0 (Data and frame sync
clocked on rising edge)

FSP Frame Sync. Polarity 10 0 (positive polarity)

FSR Frame Synch Relative
Timing

9 1 (Frame synch begins
one bit before first bit of
data word)

FSL Frame Sync. Length 8-7 10 (Rx-bit length: TX-bit
length)

SHFD Shift direction 6 0 (shift MSB first)

SCKD Clock source direction 5 0 (SCK is input clock)

SCD2 SC2 pin direction 4 0 (SC2 is input)

SCD1 SC1 pin direction 3 1 (SC1 is output)

SCD0 SC0 pin direction 2 1 (SC0 is output)

OF[1:0] Output flags 1-0 N/A

Table 10. Settings for Control Register B (Continued)

Bit Name Description Bit Position Value (Binary)
Motorola 1-11

Programming the CS4218 CODEC
3.2.2 Configuring GPIO Pins
Recall that the ESSI0 pins function in ESSI mode, while the ESSI1 pins operate in GPIO mode. As
Figure 2 shows, some pins affect only the control information of the CODEC, while other pins deal
with the transfer of data. Because the CODEC on the DSP563xx EVM boards is configured to operate
in SM4 mode, the control information runs on a serial line separate from the data lines. Additionally,
SM4 specifies that the control information be configured only once unless a change is needed.

The full ESSI port mode is not necessary for controlling the CODEC control information. Instead,
GPIO mode transfers the control information. Any pins that control the CODEC control information
are configured for GPIO mode; otherwise ESSI mode is used. The following pins are used as GPIO
pins to control the transfer of CODEC control information.

¥ SC00 (CODEC_RESET pin)

¥ SC10 (CCS pin)

¥ SC11 (CCLK pin)

¥ SC12 (CDIN pin)

These pins correspond to specific bits on the port data registers. For instance, the CODEC_RESET pin
on the CODEC connects to the SC00 pin on ESSI0. This pin corresponds to bit 0 on Port Data Register
C. Refer to Table 11 and Table 12 for details on the correspondence between physical pins and port
data registers.

Table 11. Port Data Register C Pin/Bit Correspondence

Bit Name (ESSI0) Bit Name (Codec) Bit Position Register C Functionality Mode

Reserve for future use N/A 6-23 N/A

STD SDIN 5 ESSI

SRD SDOUT 4 ESSI

SCK SCLK 3 ESSI

SC02 FSYNC 2 ESSI

SC01 N/A 1 N/A

SC00 CODEC_RESET 0 GPIO

Table 12. Port Data Register D Pin/Bit Correspondence

Bit Name (ESSI1) Bit Name (Codec) Bit Position Register D Functionality Mode

Reserve for future use N/A 6-23 N/A

STD N/A 5 N/A

SRD N/A 4 N/A

SCK N/A 3 N/A

SC12 CDIN 2 GPIO

SC11 CCLK 1 GPIO

SC10 CCS 0 GPIO
1-12 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC
Using the information in Table 11 and Table 12, you can define global constants to simplify
programming. Example 5 illustrates the task of defining the pin/bit correspondence for the GPIO pins.

Example 5. Defining GPIO Pin/Bit Correspondence

; ESSI0 - audio data port control register C
; DSP CODEC
; ---------------------------
CODEC_RESET equ 0 ; bit0 SC00 ---> CODEC_RESET~

; ESSI1 - control data port control register D
; DSP CODEC
;----------------------------
CCS equ 0 ; bit0 SC10 ---> CCS~
CCLK equ 1 ; bit1 SC11 ---> CCLK
CDIN equ 2 ; bit2 SC12 ---> CDIN

After constants are set up for the GPIO pins, the port control registers must be configured. First, the
CODEC_RESET pin (pin 0) is configured to function as a GPIO pin. However, other pins on ESSI0,
are configured to work in ESSI mode. A 0 value is sent into bit 0 in Port Control Register C, while a
value of 1 is sent to the other five pertinent bits.

Additionally, the CCS pin, the CCLK pin, and CDIN pin must function as GPIO pins on the ESSI1
port. Bit 0 (CCS), bit 1 (CCLK), and bit 2 (CDIN) in Port Control Register D are set to 0 to allow those
pins to operate in GPIO mode. Since the other pins in Port Control Register D are not used, they
should be set to a value of 0 for future compatibility.

At this point, the ESSI functionality should be disabled prior to initializing the CODEC. Therefore the
pins on ESSI0 are not configured to function in ESSI mode until the CODEC is initialized. However,
the GPIO pins are configured as shown in Example 6.

Example 6. GPIO Pin Configuration

; Port Control Register C
movep #$0000,x:M_PCRC ; Setting pin 0 for GPIO

; Port Control Register D
movep #$0000,x:M_PCRD ; Setting pin 0, pin 1, and pin 2

; to GPIO mode

Since ESSI0 pin 0 and ESSI1are used in GPIO mode, the direction of data flow must be declared. The
direction of flow determines which device transmits data and which device receives data. To set the
direction of data flow, we set Port Direction Registers C and D, (register C refers to ESSI0 and register
D refers to ESSI1). Setting the pin/bit on the Port Direction Register to 1 configures the pin/bit as an
output; setting the pin/bit to 0 configures the pin/bit as an input. Therefore, in order to configure the
pins using the Data Direction Registers to mimic the direction flow information in Figure 2, the
following bits must be set. Table 13 and Table 14 show the bit settings for the Data Direction
Registers.

Table 13. Data Direction Register C

Bit Name Bit Position Value (Binary)

Other bits 6-23 X* (0)

STD0 5 X (0)

SRD0 4 X (0)

SCK0 3 X (0)

SC02 2 X (0)
Motorola 1-13

Programming the CS4218 CODEC
Example 7 illustrates the bit settings in the Data Direction registers.

Example 7. Code Form Settings in Data Direction Registers

; Data Direction Register C
movep #$0001,x:M_PRRC ; set SC00=CODEC_RESET~ as output
; Data Direction Register D
movep #$0007,x:M_PRRD ; set SC10=CCS~ as output

; set SC11=CCLK as output
; set SC12=CDIN as output

3.2.3 Initializing the CODEC ports
The next step is initializing the CODEC, as follows:

¥ Reset the CODEC.

¥ Wait for the CODEC to reset.

¥ Send the control information for the CODEC. Note that control information needs to be sent
only when a change is made to the control parameters.

To reset the CODEC, send a 0 value into the CODEC_RESET pin. Recall that we have defined a
global variable called CODEC_RESET. Thus, to reset the CODEC, you clear the CODEC_RESET bit
in Port Data Register C on the ESSI port. In addition, set the CSS pin to 0 to notify the CODEC that
control information is to be modified. Since the CODEC requires a minimum of 50 ms to reset, you
typically program a delay into the DSP to allow for the CODEC to reset. Example 8 summarizes these
procedures.

SC01 1 X (0)

SC00 0 1 (CODEC_RESET is
output)

*NOTE: The X value is a “don’t care” value, but for future compatibility, a value of
0 is assigned in place of don’t cares.

Table 14. Data Direction Register D

Bit Name Bit Position Value (Binary)

Other bits 6-23 X (0)*

STD1 5 X (0)

SRD1 4 X (0)

SCK1 3 X (0)

SC12 2 1 (CDIN is output)

SC11 1 1 (CCLK is output)

SC10 0 1 (CCS is output)

*NOTE: The X value is a “don’t care” value, but for future compatibility, a value of
0 is assigned in place of don’t cares.

Table 13. Data Direction Register C (Continued)

Bit Name Bit Position Value (Binary)
1-14 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC
Example 8. Code Format Procedures

bclr #CODEC_RESET,x:M_PDRC ; assert CODEC_RESET~ (bit 0 on ESSI0)
bclr #CCS,x:M_PDRD ; assert CCS~ (bit 0 on ESSI1)

;----reset delay for codec----
do #1000,_delay_loop
rep #1000 ; A delay greater than 50 ms
nop
_delay_loop

Once the CODEC is reset, the CODEC control information must be sent from the DSP to the CODEC
ports. However, the CODEC_RESET pin must first be turned off (set to 1). Refer to Table 15 for
information on the options of each bit/pin. Example 9 demonstrates the task of deasserting the
CODEC reset.

Example 9. Deasserting Code Reset

bset #CODEC_RESET,x:M_PDRC ; dissert CODEC_RESET~ (pin 0 on ESSI0)

The CODEC is now ready to receive the control information. The CODEC ignores the first set of
control information sent after a reset. Therefore, a dummy set of control information is sent prior to
sending the correct control information. Two global variables are defined to simplify programming:

¥ CTRL_WD_HI: The high word in the control information.

¥ CTRL_WD_LO: The low word in the control information.

To send the control information from the ESSI to the CODEC, perform the following steps:

1. Set up the registers to send dummy control information.

2. Send the control words.

3. Set up the registers to send correct control information.

4. Send the control words.

Example 10 illustrates these procedures.

Table 15. CODEC Pins

Pin Name Description Values

~CODEC_RESET Resets the CODEC 0 = Reset CODEC
1 = Disable Reset

FSYNC Indicates a start of a frame Rising edge = New Frame

SCLK Serial clock Rising Edge = data is received
Falling edge = data is transmitted

SDOUT Serial data output line N/A

SDIN Serial data input line N/A

~CCS Enables setting of CODEC control parameters 0 = enabled
1 = disabled

CDIN Serial control information input line N/A

CCLK Clock for control parameters Rising edge = control parameters sent
Motorola 1-15

Programming the CS4218 CODEC
Example 10. Sending Code Information

CTRL_WD_HI ds 1 ; Upper Control word
CTRL_WD_LO ds 1 ; Lower Control word

dummy_control
move #0,x0
move x0,x:CTRL_WD_HI ; send dummy control data
move x0,x:CTRL_WD_LO
jsr codec_control

set_control
move #CTRL_WD_12,x0 ; recall constant set previously

; for upper control info
move x0,x:CTRL_WD_HI ; set hi control word to hi constant
move #CTRL_WD_34,x0 ; recall constant set previously

; for lower control info
; set low control word to low constant

move x0,x:CTRL_WD_LO ; 16 bit data aligned to bit 23
jsr codec_control

The control words are sent serially to the CDIN pin of the CODEC. The codec_control subroutine
performs this action. Following is one method of sending in the control words:

1. Clear the CCS bit to allow the CODEC to accept control information.

2. Set the CCLK bit on the CODEC high (control bits are sent on the rising edge of the clock).

3. Determine whether the MSB of the control information is 1 or 0.

4. Send the MSB value to the CDIN pin.

5. Set CCLK to low on the CODEC to start the next cycle.

6. Shift-left the control word.

7. Repeat 16 times.

This procedure must be performed once for the upper 16-bit control word and then once for the lower
16-bit control word. Example 11 illustrates these procedures.

Example 11. Sending in Control Words

;---
; codec_control routine
; Input: CTRL_WD_LO and CTRL_WD_HI
; Output: CDIN
; Description: Used to send control information to CODEC
; NOTE: does not preserve the ‘a’ register.
;---
codec_control

clr a
bclr #CCS,x:M_PDRD ; assert CCS
move x:CTRL_WD_HI,a1 ; upper 16 bits of control data
jsr send_codec ; shift out upper control word
move x:CTRL_WD_LO,a1 ; lower 16 bits of control data
jsr send_codec ; shift out lower control word
bset #CCS,x:M_PDRD ; dissert CCS
rts

;---
; send_codec routine
; Input: a1 contains control information
; Ouput: sends bits to CDIN
; Description: Determines bits to send to CDIN
;---
1-16 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC
send_codec
do #16,end_send_codec ; 16 bits per word
bset #CCLK,x:M_PDRD ; toggle CCLK clock high
jclr #23,a1,bit_low ; test msb
bset #CDIN,x:M_PDRD ; send high into CDIN
jmp continue

bit_low
bclr #CDIN,x:M_PDRD ; send low into CDIN

continue
rep #2 ; delay
nop
bclr #CCLK,x:M_PDRD ; restart cycle
lsl a ; shift control word to 1 bit

; to left
end_send_codec
 rts

The codec_control subroutine performs most of the work of sending the information to the
CODEC ports. First, the CSS bit is cleared to permit the modification of the control registers on the
CODEC. Then the control words are loaded into registers and sent out to another subroutine that sends
the data serial out to the CODEC ports. After both the upper and lower control words are sent, the CCS
bit is reset to 1 to disallow changing of the control information on the CODEC.

The send_codec subroutine serves as the workhorse for the codec_control routine. This routine
pushes the individual bits of the control words into the CODEC. First, it sets the clock (CCLK) high to
allow the bit to be sent. Then it determines what the most significant bit (MSB) is and either sends in a
0 or 1 to the CDIN pin, depending on the MSB. A delay is incorporated into the routine to allow the
information to be sent. Afterwards, the clock (CCLK) is set low to allow the cycle to begin again. The
control word is shifted to serve the next MSB bit. These procedures are performed 16 times to serve all
the bits in the control word.

3.2.4 Enabling Interrupts/ESSI Ports
Once the ESSI port and CODEC ports are configured and initialized, there are just three more steps to
complete the interface between the ESSI and the CODEC:

1. Set the priority level of the interrupts. This parameter is determined by the application.

2. Enable interrupts on the DSP.

3. Enable the ESSI port.

Recall that in order to set the functionality of ESSI pin, the port control registers must be configured.
Setting the corresponding pin/bit to 1 enables ESSI mode, and setting the pin/bit to 0 disables ESSI
mode and enables the GPIO mode. As stated in Section 3.2.2, "Configuring GPIO Pins" the following
pins/bits must be configured as GPIO pins:

¥ CODEC_RESET pin (bit 0 on ESSI0)

¥ CCS pin (bit 0 on ESSI1)

¥ CCLK pin (bit 1 on ESSI1)

¥ CDIN pin (bit 2 on ESSI1)

Therefore, on Port Control Register C, bit 0 is set to 0. Other pertinent pins should be set to 1 in order
to configure the other pins as ESSI pins. On Port Control Register D, bits 0, 1, and 2 should all be set
to the value of 0 to allow GPIO functionality on those pins. Because the other pins are not connected to
the CODEC, the other bits do not have an effect.
Motorola 1-17

Programming the CS4218 CODEC
Example 12 demonstrates setting the interrupt priority level, enabling the priority, and setting the
ESSI/GPIO functionality of the ESSI ports.

Example 12. ESSI Port Priority and Functionality Setting

movep #$000c,x:M_IPRP ; set interrupt priority level for ESSI0
; to 3

andi #$fc,mr ; enable interrupts
movep #$003e,x:M_PCRC ; enable ESSI mode for

; bit 5,bit 4,bit 3,bit 2,bit 1.
; enable GPIO mode for
; bit 0

movep #$0000,x:M_PCRD ; enable GPIO mode for
; bit 2, bit 1, bit 0.
; Other bits are don’t care.

3.3 Phase III: Data Transferring Mechanism
The three methods for transferring data from the CODEC to and from the ESSI port are polling, DMA,
and interrupts. This document demonstrates only the use of interrupts.

3.3.1 Interrupts and Interrupt Service Routines
The ESSI device has six interrupts:

¥ ESSI receive data with exception status

¥ ESSI receive data

¥ ESSI receive last slot

¥ ESSI transmit data with exception status

¥ ESSI transmit last slot

¥ ESSI transmit data

Each interrupt is triggered on certain status bits and is cleared by performing an interrupt service
routine. The following sections explain what specific status bits trigger the interrupts and what must be
done to clear the interrupts. For details on the properties and functionality of each type of interrupt and
how to set up the interrupt service routines, refer to the DSP563xx EVM userÕs manual.

3.3.2 ESSI Receive Data with Exception Status Interrupt
The interrupt occurs when the following properties are true:

¥ The receive exception interrupt is turned on (CRB[23]).

¥ The receive data register is full.

¥ A receiver overrun error occurs.

The interrupt is triggered when the receiver overrun bit is set. When the interrupt is serviced, you must
first clear the receiver overrun bit (SSISR0[5]) and then receive the Receive BUFFER. Perform the
following steps:

1. Clear the receive overrun bit.

2. Save the necessary context.

3. Load the receive buffer pointer.
1-18 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC
4. Move the received data to the receive buffer.

5. Update the receive buffer pointer.

6. Restore context.

Example 13 illustrates the procedures for servicing the ESSI Exception Status interrupt.

Example 13. Servicing the ESSI Exception Status Interrupt

;ESSI Receive Data with Exception Interrupt Service Routine
;---

ssi_rxe_isr

; Clear receives overrun bit
bclr #5,x:M_SSISR0 ; (M_SSISR0 refers to status register)

; explicitly clears overrun flag

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.
move m0,x:(r7)+ ; Save m0 to the stack.
move #1,m0 ; Modulus 2 buffer.

move x:RX_PTR,r0 ; Load the pointer to the rx buffer.

nop ; Delay

movep x:M_RX0,x:(r0)+ ; Move received data to receive buffer

move r0,x:RX_PTR ; Update rx buffer pointer.
 ; Restore Context
move x:-(r7),m0 ; Restore m0.
move x:-(r7),r0 ; Restore r0.
rti

3.3.3 ESSI Receive Data Interrupt
The interrupt occurs when the following properties are true:

¥ The receive interrupt is turned on (CRB[19])

¥ The receive data register is full

To service the interrupt, you must receive the data in the following steps:

1. Save the necessary context.

2. Load the receive buffer pointer.

3. Move the received data to the receive buffer.

4. Update the receive buffer pointer.

5. Restore context.

Example 14 illustrates the procedures for servicing the ESSI Receive Data interrupt.
Motorola 1-19

Programming the CS4218 CODEC
Example 14. Servicing the ESSI Receive Data Interrupt

;ESSI Receive Data Interrupt Service Routine
;---
ssi_rx_isr

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.
move m0,x:(r7)+ ; Save m0 to the stack.
move #1,m0 ; Modulus 2 buffer.

move x:RX_PTR,r0 ; Load the pointer to the rx buffer.

nop ; Delay

movep x:M_RX0,x:(r0)+ ; Move received data to receive buffer

move r0,x:RX_PTR ; Update rx buffer pointer.
 ; Restore Context
move x:-(r7),m0 ; Restore m0.
move x:-(r7),r0 ; Restore r0.

rti

3.3.4 ESSI Receive Last Slot Interrupt
The interrupt occurs when the following properties are true:

¥ The receive last slot interrupt is turned on (CRB[21]).

¥ The last time slot ends.

The receive last slot interrupt guarantees that the previous frame has been serviced and the next frame
is ready to be serviced. The interrupt allows the programmer to redefine pointers to the buffer to be
reset so that a new frame can be serviced. To prepare for the next frame, follow these steps:

1. Save Context.

2. Reset the receive buffer.

3. Restore context.

Example 15 demonstrates the steps required for servicing the ESSI Receive Last Slot interrupt.

Example 15. Servicing the ESSI Receive Last Slot Interrupt

; receive last slot interrupt service routine

ssi_rxls_isr
 ; Save context
move r0,x:(r7)+ ; Save r0 to the stack.

move #RX_BUFF_BASE,r0 ; Reset rx buffer pointer just in

; case it was corrupted.
move r0,x:RX_PTR ; Update rx buffer pointer.

move x:-(r7),r0 ; Restore r0.
rti

3.3.5 ESSI Transmit Data with Exception Status Interrupt
The interrupt occurs when the following properties are true:

¥ The transmit exception interrupt is turned on (CRB[22]).

¥ The transmit data register is empty.

¥ A transmit underrun error occurs.
1-20 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC
The interrupt is triggered when the transmit underrun bit is set. When the interrupt is serviced, you
must first clear the transmit underrun bit (SSISR0[4]) and then transmit the transmit BUFFER, as
follows:

1. Clear the transmit underrun bit.

2. Save the necessary context.

3. Load the transmit buffer pointer.

4. Move the transmit buffer data to the transmit register.

5. Update the transmit buffer pointer.

6. Restore context.

Example 16 illustrates the procedures for servicing the ESSI Transmit Data With Exception Status
interrupt.

Example 16. Servicing the ESSI Transmit Data with Exception Status Interrupt

; transmit data with exception status interrupt service routine

ssi_txe_isr
; Clear underrun bit

bclr #4,x:M_SSISR0 ; (M_SSISR0 pointers to status register)

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.
move m0,x:(r7)+ ; Save m0 to the stack.
move #1,m0 ; Modulus 2 buffer.

; Load transmit pointer to transmit ;
; buffer

move x:TX_PTR,r0 ; Load the pointer to the tx buffer.

nop ; delay

; Move Transmit buffer data to transmit
; register

movep x:(r0)+,x:M_TX00 ; SSI transfer data register.

; Update transmit buffer pointer
move r0,x:TX_PTR ; Update tx buffer pointer.

; Restore Context
move x:-(r7),m0 ; Restore m0.
move x:-(r7),r0 ; Restore r0.
rti

3.3.6 ESSI Transmit Last Slot Interrupt
The interrupt occurs when the following properties are true:

¥ The transmit last slot interrupt is turned on (CRB[20]).

¥ The last time slot begins.

The use of the Transmit Last Slot interrupt guarantees that the previous frame has been serviced and
the next frame is ready to be serviced. The interrupt allows the programmer to redefine pointers to the
buffer to be reset so that a new frame can be serviced. To prepare for the next frame the following
steps are followed:

1. Save context.

2. Reset the transmit buffer.

3. Restore context.
Motorola 1-21

Programming the CS4218 CODEC
Example 17 illustrates the procedures for servicing the ESSI Transmit Last Slot interrupt.

Example 17. ESSI Transmit Last Slot Interrupt Service

; transmit last slot interrupt service routine
ssi_txls_isr

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.

; Reset Transmit buffer pointer
move #TX_BUFF_BASE,r0 ; Reset pointer.
move r0,x:TX_PTR ; Reset tx buffer pointer just in

; case it was corrupted.

; Restore Context
move x:-(r7),r0 ; Restore r0.
rti

3.3.7 ESSI Transmit Data Interrupt
The interrupt occurs when the following properties are true:

¥ The receive interrupt is turned on (CRB[18]).

¥ The transmit data register is empty.

To service the interrupt, the you must transmit the data, as follows:

1. Save the necessary context.

2. Load the transmit buffer pointer.

3. Move the transmit buffer data to the transmit register.

4. Update the transmit buffer pointer.

5. Restore context.

Example 18 illustrates the procedures for servicing the ESSI Transmit Data interrupt.

Example 18. Servicing the ESSI Transmit Data Interrupt

; transmit data interrupt service routine
ssi_tx_isr

; Save Context
move r0,x:(r7)+ ; Save r0 to the stack.
move m0,x:(r7)+ ; Save m0 to the stack.
move #1,m0 ; Modulus 2 buffer.

move x:TX_PTR,r0 ; Load the pointer to the tx
; buffer.

nop ; delay

movep x:(r0)+,x:M_TX00 ; SSI transfer data register.

move r0,x:TX_PTR ; Update tx buffer pointer.

;Restore Context

move x:-(r7),m0 ; Restore m0.
move x:-(r7),r0 ; Restore r0.

rti
1-22 Programming the CS4218 CODEC Motorola

Example Application
4 Example Application
An example program is provided to illustrate the use of the CODEC. The following files are included
in a package to be distributed with this document:

¥ Ioequ.asm Important I/O equates

¥ Intequ.asm Interrupt equates for the DSP EVM modules

¥ Ada_equ.asm Equates to initialize the CODEC

¥ Ada_Init.asm Initialization code for the ESSI and CODEC

¥ Vectors.asm Vector table for the DSP EVM modules

¥ Echo.asm Sample code that illustrates DSP processing

These files include all the procedures discussed in Section 2.3, "Digital Interface (ESSI Ð
CODEC)"and Section 3, "Programming the CS4218 CODEC". They assist you to quickly generate an
application using the CS4218 CODEC. If a desired property in the control information is needed, you
can make simple modifications to these files.

4.1 Echo Program
The echo program example simulates an echo of an input signal using a number of time-delayed
samples. To implement a time-delayed echo on the DSP, a sample is fed into the DSP from the
CODEC. The new sample is divided by two to maintain stability and then added to a time-delayed
sample. The sum of the signals is again divided by two and then sent out to the CODEC. Figure 3
displays the block diagram of this process.

Figure 3. Block Diagram of a Delayed Sample (Echo)

4.2 Echo Code
The control information constants for the CODEC must be defined, as follows:

1. Include CODEC and I/O files.

2. Define transmit and receive buffer and pointers.

3. Define CODEC control constants.

New Sample Output÷2

Z-1

Σ

+

+
÷2
Motorola 1-23

Example Application
Example 19 illustrates the tasks of including initialization and interface files, defining transmit and
receive buffers and pointers, and setting up control word constants.

Example 19. Include, Define, and Set-Up Tasks

;***

 nolist
 include 'ioequ.asm'
 include 'intequ.asm'
 include 'ada_equ.asm'
 include 'vectors.asm'

list

;***
;---Buffer for talking to the CS4218

 org x:$0
RX_BUFF_BASE equ *
RX_data_1_2 ds 1 ; data time slot 1/2 for RX ISR (left audio)
RX_data_3_4 ds 1 ; data time slot 3/4 for RX ISR (right audio)

TX_BUFF_BASE equ *
TX_data_1_2 ds 1 ; data time slot 1/2 for TX ISR (left audio)
TX_data_3_4 ds 1 ; data time slot 3/4 for TX ISR (right audio)

RX_PTR ds 1 ; Pointer for rx buffer
TX_PTR ds 1 ; Pointer for tx buffer

CTRL_WD_12 equ MIN_LEFT_ATTN+MIN_RIGHT_ATTN+LIN2+RIN2
CTRL_WD_34 equ MIN_LEFT_GAIN+MIN_RIGHT_GAIN

After the constants are set up for the CODEC, the DSP is set up and initialized, as follows:

1. Notify the DSP of the speed at which the PLL is running. For this application the PLL is set to
86.016MHz.

2. Mask the interrupts with the correct values.

3. Initialize the hardware stack pointer.

4. Operate DSP on Mode 0.

5. Initialize the data interrupt stack pointer, which is the stack used in the ISR for the CODEC.

6. Assert linear addressing for the stack pointer used by the data interrupts.

Example 20 illustrates the initialization of the DSP.

Example 20. DSP Initialization Procedure

org p:$100
START
main

movep #$040006,x:M_PCTL ; PLL 7 X 12.288 = 86.016MHz
ori #3,mr ; mask interrupts
movec #0,sp ; clear hardware stack pointer
move #0,omr ; operating mode 0
move #$40,r7 ; initialize stack pointer for ISR
move #-1,m7 ; linear addressing

After the DSP is initialized, the CODEC must be initialized. Using the supplied code, you can make a
jump statement to start the CODEC/ESSI initialization routine. Example 21 demonstrates this
procedure.

Example 21. Initializing CODEC/ESSI

jsr ada_init ;initialize CODEC/ESSI
1-24 Programming the CS4218 CODEC Motorola

Example Application
The DSP and CODEC are ready to receive, process, and transmit data. The echo implementation
requires that a buffer be set up and initialized. The code in Example 22 performs these steps.

Example 22. Setting Up and Initializing Buffer

move #$0400,r4 ; start echo buffer at $400
move #$03FF,m4 ; make echo buffer 1024 deep

clr a ; clear a
rep #$03FF ; clear the echo buffer
move a,l:(r4)+

To receive data from the ESSI port, data is received at the beginning of the frame. Check the status bits
to ensure that data receive starts at the beginning of the frame and not in the middle. Once a receive
frame synchronization is detected, data can move through the receive memory location,
RX_BUFF_BASE. Then, the data can be processed and moved into the transmit pointer. All of these
procedures can be implemented in an infinite loop to receive, process, and transmit the data
continuously. Example 23 illustrates the implementation of the echo program.

Example 23. Implementation of Echo Program

echo_loop

jset #3,x:M_SSISR0,* ; wait for rx frame sync
jclr #3,x:M_SSISR0,* ; wait for rx frame sync
clr a
clr b
move x:RX_BUFF_BASE,a ; receive left
move x:RX_BUFF_BASE+1,b ; receive right
asr a x:(r4),x0 ; divide them by 2 and get oldest
asr b y:(r4),y0 ; samples from buffer
add x0,a ; add the new samples and the old
add y0,b
asr a ; reduce magnitude of new data

; (to ensure stability)
asr b
move a,x:(r4) ; save the altered samples
move b,y:(r4)+ ; and bump the pointer
move a,x:TX_BUFF_BASE ; transmit left
move b,x:TX_BUFF_BASE+1 ;transmit right

jmp echo_loop

echo

The data is quickly divided by two after it is received from the left and right channels. Then the left
and right channels are added to the time-delayed samples, which are stored on the echo buffer. The
magnitude is reduced by two, and the echo buffer is updated with the newest output sample. The
left-and-right processed channels are then sent to the transmit buffers and on to the ESSI port and
finally to the CODEC. The procedures loop infinitely until manually stopped. Example 24 combines
all the separate pieces of the echo code into an application that performs the time-delayed echo.
Motorola 1-25

Example Application
Example 24. Application of Echo Code

;***

 nolist
 include 'ioequ.asm'
 include 'intequ.asm'
 include 'ada_equ.asm'
 include 'vectors.asm'

list

;***

;---Buffer for talking to the CS4218

 org x:$0
RX_BUFF_BASE equ *
RX_data_1_2 ds 1 ; data time slot 1/2 for RX ISR (left audio)
RX_data_3_4 ds 1 ; data time slot 3/4 for RX ISR (right audio)

TX_BUFF_BASE equ *
TX_data_1_2 ds 1 ; data time slot 1/2 for TX ISR (left audio)
TX_data_3_4 ds 1 ; data time slot 3/4 for TX ISR (right audio)

RX_PTR ds 1 ; Pointer for rx buffer
TX_PTR ds 1 ; Pointer for tx buffer

CTRL_WD_12 equ MIN_LEFT_ATTN+MIN_RIGHT_ATTN+LIN2+RIN2
CTRL_WD_34 equ MIN_LEFT_GAIN+MIN_RIGHT_GAIN

org p:$100
START
main

movep #$040006,x:M_PCTL ; PLL 7 X 12.288 = 86.016MHz
ori #3,mr ; mask interrupts
movec #0,sp ; clear hardware stack pointer
move #0,omr ; operating mode 0
move #$40,r7 ; initialize stack pointer for isr
move #-1,m7 ; linear addressing
jsr ada_init ; initialize codec

move #$0400,r4 ; start echo buffer at $400
move #$03FF,m4 ; make echo buffer 1024 deep

clr a ; clear a
rep #$03FF ; clear the echo buffer
move a,l:(r4)+

echo_loop

jset #3,x:M_SSISR0,* ; wait for rx frame sync
jclr #3,x:M_SSISR0,* ; wait for rx frame sync
clr a
clr b
move x:RX_BUFF_BASE,a ; receive left
move x:RX_BUFF_BASE+1,b ; receive right
asr a x:(r4),x0 ; divide them by 2 and get oldest
asr b y:(r4),y0 ; samples from buffer
add x0,a ; add the new samples and the old
add y0,b
asr a ; reduce magnitude of new data

; (to ensure stability)
asr b
move a,x:(r4) ; save the altered samples
move b,y:(r4)+ ; and bump the pointer
move a,x:TX_BUFF_BASE ; transmit left
move b,x:TX_BUFF_BASE+1 ; transmit right

jmp echo_loop

include 'ada_init.asm' ; used to include codec
; initialization routines

echo
 end
1-26 Programming the CS4218 CODEC Motorola

Example Application
Document Order No: AN1790/D
Motorola 1-27

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support life,
or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed:
Motorola Literature Distribution
P.O. Box 5405
Denver, Colorado 80217
1 (800) 441-2447
1 (303) 675-2140

Motorola Fax Back System (Mfax™):
TOUCHTONE (602) 244-6609
1 (800) 774-1848
RMFAX0@email.sps.mot.com

Asia/Pacific:
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-26629298

Technical Resource Center:
1 (800) 521-6274

DSP Helpline

dsphelp@dsp.sps.mot.com

Japan:
Nippon Motorola Ltd
SPD, Strategic Planning Office141
4-32-1, Nishi-Gotanda
Shinagawa-ku, Japan
81-3-5487-8488

Internet:
http://www.motorola-dsp.com/

OnCE and Mfax are registered trademarks of Motorola, Inc.

	Programming the CS4218 CODEC for Use With DSP56300 Devices
	1 CODEC Overview
	2 ESSI Port Overview
	2.1 ESSI/GPIO Pins
	2.2 ESSI Port Registers
	2.2.1 ESSI/GPIO Shared Registers
	Table 2.� ESSI/GPIO Shared Registers
	Table 3.� ESSI Registers
	Table 4.� GPIO Registers�

	2.3 Digital Interface (ESSI – CODEC)

	3 Programming the CS4218 CODEC
	3.1 Phase 1: Setting Up Global Constants
	3.1.1 Setting Up Buffer Space and Pointers
	3.1.2 Defining CODEC Control Parameters

	3.2 Phase II: Initializing and Interfacing the ESSI and CODEC Ports
	3.2.1 Initialize ESSI Ports
	3.2.2 Configuring GPIO Pins
	3.2.3 Initializing the CODEC ports
	3.2.4 Enabling Interrupts/ESSI Ports

	3.3 Phase III: Data Transferring Mechanism
	3.3.1 Interrupts and Interrupt Service Routines
	3.3.2 ESSI Receive Data with Exception Status Interrupt
	Example�13. Servicing the ESSI Exception Status Interrupt

	3.3.3 ESSI Receive Data Interrupt
	Example�14. Servicing the ESSI Receive Data Interrupt

	3.3.4 ESSI Receive Last Slot Interrupt
	Example�15. Servicing the ESSI Receive Last Slot Interrupt

	3.3.5 ESSI Transmit Data with Exception Status Interrupt
	Example�16. Servicing the ESSI Transmit Data with Exception Status Interrupt

	3.3.6 ESSI Transmit Last Slot Interrupt
	Example�17. ESSI Transmit Last Slot Interrupt Service

	3.3.7 ESSI Transmit Data Interrupt
	Example�18. Servicing the ESSI Transmit Data Interrupt

	4 Example Application
	4.1 Echo Program
	4.2 Echo Code

	Disclaimer and Contact Information

