MOTOROLA

!]) Order by
Semiconductor Application Note AN1790/D
Rev. 0, 2/99
Programming the C54218 CODEC Contents
for Use With DSP56300 Devices
by Thomas Lay 1 CODEC OVerviewcccccsessnssnssnes 2
2 ESSI Port OVerviewcceecoserenes 3
2.1 ESSI/GPIO Pins......ccceoeverivvirrennne 3
Through mathematical algorithms implemented on the DSP, 22 ESSI Port Registers.........oooorvr.... 3

members of Motorola’s DSP56300 family can accomplish
various of tasks and different kinds of digital signal
processing. However, to obtain useful information, it is often

2.3 Digital Interface (ESSI — CODEC)..5

3 Programming the CS4218
CODEC 6

necessary to interact with the outside world. To satisfy this 3.1 Phase I: Setting Up Global
requn‘ement’ the CS4218 16_b1t Audlo CODEC CMOS CONStANTS ..ovveeeeeeeeieeeeeeeeee e 7

device is integrated with the current DSP563xx evaluation 3.2 Phase IL: Initializing and Interfacing

modules. The CODEC performs analog-to-digital (A/D) and 13 E;Zisli ag:tfngge::; """""" K
digital-to-analog (D/A) conversion, filtering, and level MeChaniSmooooorerere 18
setting. 4 Example Applicationceceeue. 23
A sample program is included in this document to 4.1 Echo Programc.ccccceceeeeennnnnee. 23

4.2 Echo Code......cccccooeivmevnicincnnnns 23

demonstrate the use of the CS4218 CODEC with a Motorola
DSP. The program explains the steps for interfacing the
Motorola DSP with the CS4218 CODEC. The sample
program shows in detail the use of the enhanced synchronous
serial interface ports (ESSI) and how the DSP’s ESSI ports
interface, initialize, and transport data between the DSP and
CS4218 CODEC.

The following source code files, which assist in programming
the CODEC, are located on Motorola’s DSP Web site at the
this address:

www. ot . com SPS/ DSP/ docunent at i on/ DSP56300. ht m
* | oequ. asm Important I/O equates for the
DSP5630xEVM modules

* I ntequ. asm Interrupt equates for the DSP563xx
EVM modules

* Ada_equ. asm Equates for initializing the CODEC.

e Ada_l ni t. asm Initialization code for the ESSI and
CODEC

e Vectors. asm Vector table for the DSP563xx EVM
modules

O
1]
o)
O
O
[oe]
-«
N
~
0
O
]
E=
o
£
S
(S
o
(o))
o
o

* Echo. asm Example of CODEC programming

Throughout this document, the sample code references
equates in Ada_equ. asm | oequ. asm and | nt equ. asm

@ MOTOROLA
© Motorola, Inc., 1999

CODEC Overview

1

CODEC Overview

The CS4218 stereo audio CODEC comprises many devices that perform A/D and D/A conversion.
The CODEC consists of two delta-sigma A/D converters, two delta-sigma D/A converters, input
anti-aliasing filters, output smoothing filters, programmable input gain, and programmable output
attenuators. These separate CODEC components allow the DSP to receive data from the CODEC,
process the data, and transmit processed data back to the CODEC. The data travels through special
serial ports using the DSP’s ESSI ports and the CODEC’s specialized pins.

The CODEC modes of operation are configured by setting certain pins on the CODEC high or low,
specifically SMODE1, SMODE2, and SMODES3 pins. The mode to which the DSP563xx evaluation
modules are physically set is Serial Mode 4 (SM4). In SM4 mode, the control information for the
CODEC is separated from the data information, reducing the bandwidth needed by the data serial ports
and simplifying the programming procedures.

Within SM4 mode are four sub modes. These secondary modes specify two things: whether the
CODEC functions in the master mode or the slave mode and the number of bits per frame. For the DSP
evaluation boards discussed in this document, the secondary modes are physically configured to sub
mode 0 so that the CODEC functions in the master mode and sets the frame size to 32 bits. Operating
in the master mode, the CODEC sends the serial bit clock and frame synchronization pulses to indicate
the start and stop of a data frame. In addition, sub mode zero specifies that each frame consists of two
16-bit words: a left-channel 16 bit word and a right-channel 16 bit word. The left and right channels
are sent to and from the CODEC with the most significant bits (MSBs) first. The properties defined by
the sub modes apply to both the input data going into the CODEC (SDIN) and the output data coming
from the CODEC (SDOUT). See Figure 1.

Control information is sent to the CODEC on a different serial interface than the data information. The
control information consists of a list of attributes that specify properties such as level settings.
Although 31 bits must be set in the control information, only 23 bits are useful. The other 8 bits are set
to zero. For details on the CS4218 CODEC, refer to the Crystal CS4218 CODEC Datasheet.

54 Frame 32-bits }

SSYNC |_ r

STOUT Left Channel Word : Right Channel Word
SDIN Left Channel Word Right Channel Word
«————16-bits > 16-bits ————

Figure 1. CODEC Data Format

1-2

Programming the CS4218 CODEC Motorola

ESSI Port Overview

2 ESSI Port Overview

The Motorola DSP563xx evaluation modules discussed in this document have two ESSI ports, ESSIO
and ESSII, that form one of the major serial interfaces to external peripherals. Each port consists of six
unique pins that allow performance of various functions, depending on how they are configured. Each
port can function as either an ESSI or a General-Purpose Input/Output port (GPIO).

Operate the ESSI port in ESSI mode to synchronize your tasks with a master clock. In addition, certain
control actions and direction flow are set automatically. Operate the ESSI port in GPIO mode to
specify exactly how data is transferred and the direction of data flow. The drawback to GPIO mode is
that you must thoroughly understand GPIO port usage in order to program for GPIO. The example in
this document illustrates both the ESSI and GPIO modes of operation.

2.1 ESSI/GPIO Pins

The ESSI port uses six pins to transfer information. You can configure each pin to function in the ESSI
mode or the GPIO mode by modifying the port control registers (see Table 1).

Table 1. ESSI Pins

Pin Name Pin Function
Serial Control 0 (SCO/PCO0) Has a multitude of functions depending on how control registers are set
Serial Control 1 (SC1/PC1) Has a multitude of functions depending on how control registers are set
Serial Control 2 (SC2/PC2) Has a multitude of functions depending on how control registers are set
Serial Clock (SCK/PC3) Serves as a provider or a receiver of the serial bit rate clock
Serial Receive Data (SRD/PC4) | Receives serial data
Serial Transmit Data (STD/PC5) | Transmits serial data

2.2 ESSI Port Registers

In either ESSI or GPIO mode, certain registers apply specifically to each mode, with the exception of
two registers that determine how the ESSI ports are used: port control register C (PCRC) and port
control register D (PCRD). Port control register C configures the ESSIO’s functional mode; port
control register D configures the ESSI1’s functional mode. Setting the corresponding bit/pin on the
port control register to 1 configures the pin to operate in the ESSI mode. Setting the corresponding
bit/pin to 0 configures the pin to function in the GPIO mode. Notice that each pin is individually
configured to be in the ESSI mode or the GPIO mode.

2.2.1 ESSI/GPIO Shared Registers
Table 2 lists the functions of the ESSI/GPIO shared registers.

Motorola 1-3

ESSI Port Overview

Table 2. ESSI/GPIO Shared Registers

Register Name Function

Port Control Register C (PCRC) | Controls whether to use the ESSIO port in ESSI mode or GPIO mode

Port Control Register D (PCRD) | Controls whether to use the ESSI1 port in ESSI mode or GPIO mode.

The ESSI consists of 12 registers specific to the ESSI mode. There are two sets of ESSI registers; one
for ESSIO and the other for ESSI1. Table 3 lists the ESSI registers.

Table 3. ESSI Registers

Register Name Function
Control Register A (CRA) Controls ESSI Mode operations.
Control Register B (CRB) Controls ESSI Mode operations.
Status Register (SSISR) Describes status and serial flags.
Transmit Slot Mask Register A (TSMA) Determines when to transmit during a given time slot.
Transmit Slot Mask Register B (TSMB) Determines when to transmit during a given time slot.
Receive Slot Mask Register A (RSMA) Determines when to receive during a given time slot.
Receive Slot Mask Register B (RSMB) Determines when to receive during a given time slot.
Time Slot Register (TSR) Prevents data transmission during a time slot.
Receive Data Register (RX) Read-only register that receives data.
Transmit Data Register 0 (TXO0) Transfer data for transmitter 1
Transmit Data Register 1 (TX1) Transfer data for transmitter 2
Transmit Data Register 2 (TX2) Transfer data for transmitter 3

In the GPIO mode, the ESSI port accesses four registers specific to GPIO mode (see Table 4).

Table 4. GPIO Registers

Register Name Function
Port Direction Register C (PRRC) Controls the direction of data flow for ESSIO port in GPIO mode
Port Direction Register D (PRRD) Controls the direction of data flow for ESSI1 port in GPIO Mode.
Port Data Register C (PDRC) Stores data received or transmitted for ESSIO port in GPIO mode.
Port Data Register D (PDRD) Stores data received or transmitted for ESSI1 port in GPIO mode.

1-4 Programming the CS4218 CODEC Motorola

ESSI Port Overview

After a pin is set to function in the GPIO mode, the direction of data flow must be configured to
specify for the ESSI port whether the pin receives data or transmits data. Setting the pin/bit to 0 on Port
Direction Register C (PRRC) configures the GPIO pin as an input; setting the pin/bit to 1 configures
the GPIO pin as an output. To receive or transmit data in GPIO mode, use the port data registers
(PDRs). If the pin/bit functions as an input, the value in that pin/bit reflects the value on that pin. If the
pin/bit functions as an output, the value on the pin/bit is the value being transmitted.

For details on the ESSI ports, refer to the DSP563xxEVM user’s manual and the application note,
DSP56300 Enhanced Synchronous Serial Interface (ESSI) Programming, (order number AN1764/D)
located at web address:

www. ot . cond SPS/ DSP/ docurnrent at i on/ appnot es. ht m

2.3 Digital Interface (ESSI — CODECQC)

For the DSP563xx evaluation modules discussed in this document, the CODEC is configured to
function in SM4 mode. SM4 mode separates the data information from the CODEC control
information so that two serial ports are required to transfer data and CODEC control information. Both
the ESSIO and ESSI1 ports control and transfer data between the DSP and the CODEC. Typically,
ESSIO controls data transfers while ESSI1 controls CODEC control information transfers.

ESSIO performs three functions with the CODEC:
» Transfers data to and from the CODEC

* Receives synchronization pulses
» Performs the reset function on the CODEC

In contrast, ESSI1 controls and transfers CODEC control information. Table 5 shows the definitions
of the ESSI pins.

Table 5. ESSI Pins

ESSIO/ESSI1 Pin CS4218 Codec Pin Description
STDO (ESSI0) SDIN Data transfer from ESSIO to CODEC
SRDO (ESSIO) SDOUT Data transfer from CODEC to ESSIO
SCKO (ESSI0) SCLK Clock sent by CODEC (Master)
SCO00 (ESSI0) ~RESET Reset CODEC from ESSIO
SC02 (ESSI0) SSYNC Frame Synchronization pulse from CODEC
SC10 (ESSI1) ~CCS Control Information gate
SC11 (ESSI1) CCLK Clock sent by ESSI1 to set control information
SC12 (ESSI1) CDIN Control data transfer from ESSI1

Motorola 1-5

Programming the CS4218 CODEC

Physically, the ESSI port pins connect to the serial pins on the CODEC though jumper connections. To
ensure correct operation using the example code referenced in this document, refer to Table 6 and
Table 7 for the correct jumper settings for the DSP5630xEVM boards. Figure 2 on page 2-7 shows
the pin set-up between the DSP’s ESSI ports and the CODEC. For details on the pin layouts and
jumper settings between the CODEC and DSP, consult the DSP user’s manual for the respective
evaluation modules.

Table 6. JP5 Jumper Block (ESSIO)

JP5 ESSI Pin Codec Pin
1-2 SCKO SCLK
3-4 SCO00 ~RESET
5-6 STDO SDIN
7-8 SRDO SDOUT

9-10 SC01

11-12 SC02 SSYNC

Table 7. JP4 Jumper Block (ESSI1)

JP4 ESSI Pin Codec Pin
1-2 SCK1 -
3-4 SC10 ~CCS
5-6 STD1 -
7-8 SRD1 -
9-10 SC11 CDIN
11-12 SC12 CCLK

3 Programming the CS4218 CODEC

For proper operation of the CS4218 CODEC device with Motorola DSPs requires a three-phase
procedure. Each phase plays an essential role in properly setting up constants, interfacing and
initializing, and correctly using the CS4218 CODEC with the Motorola DSP:

Phase 1: Setting up global constants — Includes such activities as setting up buffer spaces and
pointers, setting CODEC control information constants, and defining interface constants and
pins.

Phase 2: Interfacing and initializing the ESSI and the CODEC — Comprises the bulk of the
work needed to obtain a working interface between the DSP563xx and the CODEC. The
procedures include setting up and initializing the CODEC ports, setting up and initializing the
ESSI ports, and interfacing the CODEC and ESSI ports.

1-6

Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

* Phase 3: Data transferring mechanisms — Includes information on the types of data transfer
methods. Although three types of data transfer methods are available—polling, DMA, and
interrupts— this document discusses only interrupts.

Motorola DSP CS4218 CODEC
(slave) (master)
— SRDO »| SDIN
SRDO ¢ SDOUT
ESSIO
SCKO |« SCLK
SCO00 P RESET
| sco2 «¢ FSYNC
—— SC10 » MF4/CCS
ESSI1 SC11 p MF3/CCLK
| sc12 » MF2/CDIN

Figure 2. ESSI/CODEC Pin Setup

3.1 Phase 1: Setting Up Global Constants

3.1.1 Setting Up Buffer Space and Pointers

Phase 1 begins with setting up buffer spaces and pointers. The buffer spaces and pointers temporarily
store the incoming and outgoing data. These variables come in the form of receive and transmit buffers
and pointers. In addition to offering temporary storage, the pointers offer a method to access the
memory location of the stored data. Example 1 demonstrates the task of setting up transmit and
receive buffers and pointers.

Example 1. Setting Up Transmit and Receive Buffers and Pointers

; Recei ve buffer and pointer

RX_BUFF_BASE equ *

RX data_1 2 ds 1 ; Left receive channel audio
RX data_3 4 ds 1 ; Right receive channel audio
RX_PTR ds 1 ; Receive pointer

; Transmit buffer and pointer

TX_BUFF_BASE equ *

TX data_1_2 ds 1 ; Left transmit channel audio
TX data_3_4 ds 1 ; Right transmit channel audio
TX_PTR ds 1 ; Transmit pointer

Motorola 1-7

Programming the CS4218 CODEC

3.1.2 Defining CODEC Control Parameters

To specify specific parameters of the A/D and D/A conversion and other audio parameters, the control
information must be declared. Parameters such as left and right attenuation, left and right gain, line
input selects, and mask interrupts, are configured in the control information. The control information
consists of 32 bits of information. Although only 23 bits contain useful information, a minimum of 31
bits must be set. Table 8 lists the bit definitions.

Table 8. CS4218 CODEC Control Information (MSB)
Descriptions Bit Values
Not Applicable 31 0
Mask Interrupt 30 0 = no mask on MF5:\INT
1 = mask on MF5:\INT
D01 29 N/A
Left output D/A Attenuation (1.5 28-24 00000 = No attenuation
dB steps) 11111 = Max attenuation
(-46.5 dB)
Right output D/A Attenuation (1.5 23-19 00000 = No attenuation
dB steps) 11111 = Max attenuation
(-46.5 dB)
Mute D/A output 18 0 = output not muted
1 = output muted
Left Input Select 17 0=LIN1
1=LIN2
Right Input Select 16 0 =RIN1
1=RIN2
Left input D/A Gain (1.5 dB steps) 15-12 00000 = no gain
11111 = max gain (22.5 dB)
Right input D/A Gain (1.5 dB 11-8 00000 = no gain
steps) 11111 = max gain (22.5 dB)
Not Applicable 7-0 0000000

Referring to Table 8, a programmer can configure the control information for the CODEC. Suppose,
for instance, that the following requirements are needed for an application:

1. No mask for the interrupt pin.
2. No left or right D/A attenuation.
3. Muting turned off.
4. LIN2 and RIN2 selected. (On the EVM boards input 2 is used for both left and right channels.)
5. No left and right D/A gains.
1-8 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

Example 2 illustrates the procedure of setting the CODEC control information using these specified
control parameters.

Example 2. Setting Codec Control Information

NO_MASK_| NT equ $000000

NO_LEFT_ATTN equ $000000 ; 0 dB

NO RI ~ATTN equ $000000 ; 0 dB

LI N2 equ $000200 ; use LIN2 on EVM

RI N2 equ $000100 ; use RIN2 on EVM

NO LEFT_GAI N equ $000000 ; 0 dB

NO_RI GHT_GAIN equ $000000 ;0 dB

NO_MUTI NG equ $000000

CTRL_WD 12 equ NO_MASK_| NT+NO_LEFT_ATTN+NO_RI GHT_ATTN+LI N2+RI N2+

NO_MUTI NG

CTRL_WD_34 equ NO_LEFT_GAI N+NO_RI GHT_GAI N

Note: The CS4218 CODEC data sheet reverses the bit-order of the control information. For instance,
bit 1 should be the mask interrupt instead of bit 30. However, since most of the work with the
ESSI ports and CODEC is done using MSB first, Table 8 is modified to reverse the bit order
from the CODEC data sheet to simplify control information programming.

Note: The evaluation modules used in this document select line 2 of right and left inputs. Therefore,

bits 17 (Left Input Select) and bits 16 (Right Input Select) should be configured to select LIN
2 (1) when the DSP563xx EVM evaluation modules are used.

3.2 Phase IlI: Initializing and Interfacing the ESSI and CODEC
Ports

After certain constants for the CODEC and the ESSI are defined, the next step is to initialize the ESSI
and CODEC interface. Initialization starts with the ESSI ports, which includes resetting the ESSI
ports, modifying ESSI control registers, and configuring ESSI/GPIO functionality. Second, the
CODEC must also be initialized, which entails resetting the CODEC and sending in CODEC control
information, as follows:

Reset the ESSI ports.

Modify the ESSI control registers.
Configure ESSI or GPIO functionality.
Reset the CODEC.

Modify CODEC control information.

A

De-assert ESSI reset and enable interrupts.

3.2.1 Initialize ESSI Ports

The first step in initializing the ESSI port is to reset the ESSI ports by sending a value of zero into Port
Control Registers C and D. (Although ESSII is to be used as a GPIO, it is recommended that you also
perform the reset on ESSI1.) Example 3 illustrates the reset procedure of the ESSI ports.

Example 3. ESSI Port Reset Procedure

nmovep #$0000, x: M_PCRC ; reset ESSIO C control register port
novep #$0000, x: M_PCRD ; reset ESSI1 D control register port

Motorola 1-9

Programming the CS4218 CODEC

The next step is to set the control parameters for the ESSI port by adjusting the bits on the ESSI
Control Register A (CRAO) and ESSI Control Register B (CRB0). Describing the meaning of each bit
on the registers is beyond the scope of this document. You can find definitions of each bit in the
respective DSP563xx user’s manuals. However, this document does cover certain typical settings that
must be made for the CODEC to work properly with the ESSI ports. Table 9 displays the settings to be
made with Control Register A.

Table 9. Settings for Control Register A

Bit Name Description Bit Position Value (Binary)
Reserved Reserved 23 0
SSC1 SC1 pin = serial I/O flag 22 0 (SC1 flag set)
WL[2:0] Word Length control 21-19 010
(16 bit control word)
ALC Alignment Control 18 0 (Align to bit 23)
Reserved Reserved 17 0
DC[4:0] Frame Rate Divider 16-12 00001 (2 time slots per
Control frame)
PSR Prescaler Range 11 1 (ESSI clock is divided
by one)
Reserved Reserved 10-8 000
PM[7:0] Prescale Modulus Select 7-0 00000111 (ESSI clock
divided by 8)

Table 10 lists the typical required settings for Control Register B to ensure functionality between the
ESSI ports and the CODEC.

Table 10. Settings for Control Register B

Bit Name Description Bit Position Value (Binary)

REIE Receive exception 23 1 (enabled)
interrupt

TEIE Transmit exception 22 1 (enabled)
interrupt

RLIE Receive last slot 21 1 (enabled)
interrupt

TLIE Transmit last slot 20 1 (enabled)
interrupt

RIE Receive interrupt 19 1 (enabled)

TIE Transmit interrupt 18 1 (enabled)

RE Receive register 17 1 (enabled)

TEO Transmit register 0 16 1 (enabled)

TE1 Transmit register 1 15 0 (disabled)

1-10 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

Table 10. Settings for Control Register B (Continued)

Bit Name Description Bit Position Value (Binary)
TE2 Transmit register 2 14 0 (disabled)
MOD Mode 13 1 (Network Mode)
SYN Synchronization mode 12 1 (Synchronous mode)
CKP Clock polarity 11 0 (Data and frame sync

clocked on rising edge)
FSP Frame Sync. Polarity 10 0 (positive polarity)
FSR Frame Synch Relative 9 1 (Frame synch begins
Timing one bit before first bit of
data word)
FSL Frame Sync. Length 8-7 10 (Rx-bit length: TX-bit
length)
SHFD Shift direction 6 0 (shift MSB first)
SCKD Clock source direction 5 0 (SCK is input clock)
SCD2 SC2 pin direction 4 0 (SC2is input)
SCD1 SC1 pin direction 3 1 (SC1 is output)
SCDO SCO pin direction 2 1 (SCO is output)
OF[1:0] Output flags 1-0 N/A

Only the ESSIO control parameters are configured. Since ESSI1 functions in GPIO mode, the control
parameters do not need to be set. Example 4 illustrates the task of setting up the control registers for
the ESSIO port according to the specifications in Table 9 and Table 10.

Example 4. Setting Control Registers for the ESSIO Port

;Setting ESSIO Control Paraneters
; Control Register A

novep #$101807, x: M_CRAO ; 12.288MHz/ 16 = 768KHz SCLK

; prescal e nodulus = 8

; frane rate divider = 2

; 16-bits per word

; 32-bits per frane

; 16-bit data aligned to bit 23

; Control Register B
nmovep #$f f 330c, x: M_CRBO ; Enable REIE, TEIE RLIE, TLIE
; RIE TIE RE, TEO
; network nmode, synchronous,
; out on rising/in on falling
; shift MSB first
; external clock source drives SCK
; (codec is nmaster)
; RX frame sync pul ses active for
;1 bit clock inmediately before
; transfer period
; positive frame sync polarity
; frame sync lengthis 1-bit

Motorola 1-11

Programming the CS4218 CODEC

3.2.2 Configuring GPIO Pins

Recall that the ESSIO pins function in ESSI mode, while the ESSI1 pins operate in GPIO mode. As
Figure 2 shows, some pins affect only the control information of the CODEC, while other pins deal
with the transfer of data. Because the CODEC on the DSP563xx EVM boards is configured to operate
in SM4 mode, the control information runs on a serial line separate from the data lines. Additionally,
SM4 specifies that the control information be configured only once unless a change is needed.

The full ESSI port mode is not necessary for controlling the CODEC control information. Instead,
GPIO mode transfers the control information. Any pins that control the CODEC control information
are configured for GPIO mode; otherwise ESSI mode is used. The following pins are used as GP1IO
pins to control the transfer of CODEC control information.

* SCO00 (CODEC_RESET pin)

* SCI10 (CCS pin)

* SCI11 (CCLK pin)

* SCI12 (CDIN pin)
These pins correspond to specific bits on the port data registers. For instance, the CODEC RESET pin
on the CODEC connects to the SCO0 pin on ESSIO. This pin corresponds to bit 0 on Port Data Register

C. Refer to Table 11 and Table 12 for details on the correspondence between physical pins and port
data registers.

Table 11. Port Data Register C Pin/Bit Correspondence

Bit Name (ESSIO) Bit Name (Codec) Bit Position Register C Functionality Mode

Reserve for future use | N/A 6-23 N/A

STD SDIN 5 ESSI
SRD SDOUT 4 ESSI
SCK SCLK 3 ESSI
SCo02 FSYNC 2 ESSI
SCO01 N/A 1 N/A

SCO00 CODEC_RESET 0 GPIO

Table 12. Port Data Register D Pin/Bit Correspondence

Bit Name (ESSI1) Bit Name (Codec) Bit Position Register D Functionality Mode
Reserve for future use | N/A 6-23 N/A
STD N/A 5 N/A
SRD N/A 4 N/A
SCK N/A 3 N/A
SC12 CDIN 2 GPIO
SC11 CCLK 1 GPIO
SC10 CCS 0 GPIO

1-12 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

Using the information in Table 11 and Table 12, you can define global constants to simplify
programming. Example 5 illustrates the task of defining the pin/bit correspondence for the GPIO pins.

Example 5. Defining GPIO Pin/Bit Correspondence

; ESSIO - audio data port control register C
; DSP CODEC

CODEC_RESET equ 0 . bito

; ESSI1 - control data port control register D
, DSP CODEC

SC00 ---

CCODEC_RESET~

equ 0 ; bit0 SC10 ---> CCS~
CCLK equ 1 ; bitl SCl11 ---> CCLK
CDI N equ 2 ; bit2 SCl2 ---> CDIN

After constants are set up for the GPIO pins, the port control registers must be configured. First, the
CODEC_RESET pin (pin 0) is configured to function as a GPIO pin. However, other pins on ESSIO,
are configured to work in ESSI mode. A 0 value is sent into bit 0 in Port Control Register C, while a
value of 1 is sent to the other five pertinent bits.

Additionally, the CCS pin, the CCLK pin, and CDIN pin must function as GPIO pins on the ESSI1
port. Bit 0 (CCS), bit 1 (CCLK), and bit 2 (CDIN) in Port Control Register D are set to 0 to allow those
pins to operate in GPIO mode. Since the other pins in Port Control Register D are not used, they
should be set to a value of 0 for future compatibility.

At this point, the ESSI functionality should be disabled prior to initializing the CODEC. Therefore the
pins on ESSIO are not configured to function in ESSI mode until the CODEC is initialized. However,
the GPIO pins are configured as shown in Example 6.

Example 6. GPIO Pin Configuration

; Port Control Register C

nmovep #$0000, x: M_PCRC ; Setting pin O for GPIO

; Port Control Register D

nmovep #$0000, x: M_PCRD ; Setting pin 0, pin 1, and pin 2
; to GPIO node

Since ESSIO pin 0 and ESSI1are used in GPIO mode, the direction of data flow must be declared. The
direction of flow determines which device transmits data and which device receives data. To set the
direction of data flow, we set Port Direction Registers C and D, (register C refers to ESSIO and register
D refers to ESSI1). Setting the pin/bit on the Port Direction Register to 1 configures the pin/bit as an
output; setting the pin/bit to 0 configures the pin/bit as an input. Therefore, in order to configure the
pins using the Data Direction Registers to mimic the direction flow information in Figure 2, the
following bits must be set. Table 13 and Table 14 show the bit settings for the Data Direction
Registers.

Table 13. Data Direction Register C

Bit Name Bit Position Value (Binary)

Other bits 6-23 X* (0)
STDO 5 X (0)
SRDO 4 X (0)
SCKO 3 X (0)
SC02 2 X (0)

Motorola 1-13

Programming the CS4218 CODEC

Table 13. Data Direction Register C (Continued)

Bit Name Bit Position Value (Binary)
sSco1 1 X (0)
SCO00 0 1 (CODEC_RESET is
output)

*NOTE: The X value is a “don’t care” value, but for future compatibility, a value of
0 is assigned in place of don't cares.

Table 14. Data Direction Register D

Bit Name Bit Position Value (Binary)
Other bits 6-23 X (0)*
STD1 5 X (0)
SRD1 4 X (0)
SCK1 3 X (0)
SC12 2 1 (CDIN is output)
SC11 1 1 (CCLK is output)
SC10 0 1 (CCS is output)
*NOTE: The X value is a “don’t care” value, but for future compatibility, a value of
0 is assigned in place of don't cares.

Example 7 illustrates the bit settings in the Data Direction registers.

Example 7. Code Form Settings in Data Direction Registers

Data Direction Register C

'rrovep #$0001, x: M_PRRC ; set SCO0=CODEC_RESET~ as out put
; Data Direction Register D
nmovep #$0007, x: M_PRRD ; set SCl0=CCS~ as out put

; set SCl1=CCLK as out put
; set SC12=CDI N as out put

3.2.3 Initializing the CODEC ports
The next step is initializing the CODEC, as follows:

¢ Reset the CODEC.
¢ Wait for the CODEC to reset.

¢ Send the control information for the CODEC. Note that control information needs to be sent
only when a change is made to the control parameters.

To reset the CODEC, send a 0 value into the CODEC_RESET pin. Recall that we have defined a
global variable called CODEC_RESET. Thus, to reset the CODEC, you clear the CODEC_RESET bit
in Port Data Register C on the ESSI port. In addition, set the CSS pin to 0 to notify the CODEC that
control information is to be modified. Since the CODEC requires a minimum of 50 ms to reset, you
typically program a delay into the DSP to allow for the CODEC to reset. Example 8 summarizes these
procedures.

1-14 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

Example 8. Code Format Procedures

bel r #CODEC_RESET, x: M_PDRC ; assert CODEC RESET~ (bit 0 on ESSI0)
bel r #CCS, x: M_PDRD ; assert CCS~ (bit 0 on ESSI1)
;----reset delay for codec----

do #1000, _del ay_I oop

rep #1000 ; A delay greater than 50 ns

nop
del ay|l oop

Once the CODEC is reset, the CODEC control information must be sent from the DSP to the CODEC
ports. However, the CODEC_RESET pin must first be turned off (set to 1). Refer to Table 15 for
information on the options of each bit/pin. Example 9 demonstrates the task of deasserting the
CODEC reset.

Example 9. Deasserting Code Reset
bset #CODEC_RESET, x: M_PDRC ; dissert CODEC RESET~ (pin O on ESSI0)

Table 15. CODEC Pins

Pin Name Description Values
~CODEC_RESET Resets the CODEC 0 = Reset CODEC
1 = Disable Reset
FSYNC Indicates a start of a frame Rising edge = New Frame
SCLK Serial clock Rising Edge = data is received
Falling edge = data is transmitted
SDOUT Serial data output line N/A
SDIN Serial data input line N/A
~CCSs Enables setting of CODEC control parameters 0 = enabled
1 = disabled
CDIN Serial control information input line N/A
CCLK Clock for control parameters Rising edge = control parameters sent

The CODEC is now ready to receive the control information. The CODEC ignores the first set of
control information sent after a reset. Therefore, a dummy set of control information is sent prior to
sending the correct control information. Two global variables are defined to simplify programming;:

» CTRL_WD_HI: The high word in the control information.
* CTRL WD LO: The low word in the control information.
To send the control information from the ESSI to the CODEC, perform the following steps:
1. Set up the registers to send dummy control information.
2. Send the control words.
3. Set up the registers to send correct control information.
4. Send the control words.

Example 10 illustrates these procedures.

Motorola 1-15

Programming the CS4218 CODEC

Example 10. Sending Code Information

CTRL_WD HI ds 1 ;
CTRL_WD LO ds 1 ;
dummy_contr ol

nove #0, x0

nmove x0, x: CTRL_WD_HI ;

nove x0, x: CTRL_WD_LO

jsr codec_control

set _control

nove #CTRL_WD_12, x0 ;
nmove x0, x: CTRL_WD_HI
nove #CTRL_WD_34, x0 ;
move x0,x: CTRL_WD_LO ;
jsr codec_control

wor d
wor d

Upper Control
Lower Control

send dummy control data

recall constant set previously

for upper control info

set hi control word to hi constant
recall constant set previously

for lower control info

set low control word to | ow constant

16 bit data aligned to bit 23

The control words are sent serially to the CDIN pin of the CODEC. The codec_cont r ol subroutine
performs this action. Following is one method of sending in the control words:

Send the MSB value to the CDIN pin.

Shift-left the control word.

N v kW=

Repeat 16 times.

Clear the CCS bit to allow the CODEC to accept control information.
Set the CCLK bit on the CODEC high (control bits are sent on the rising edge of the clock).

Determine whether the MSB of the control information is 1 or 0.

Set CCLK to low on the CODEC to start the next cycle.

This procedure must be performed once for the upper 16-bit control word and then once for the lower
16-bit control word. Example 11 illustrates these procedures.

Example 11. Sending in Control Words

informati on to CODEC

; assert CCS

; upper 16 bits of control
; shift out upper control
; lower 16 bits of control
; shift out |ower control
; dissert CCS

dat a
wor d

dat a
wor d

; codec_control routine
; Input: CTRL_WD LO and CTRL_WD_HI
; CQut put: CDIN
; Description: Used to send control
; NOTE: does not preserve the ‘a’ register.
codec_control
clr a
bel r #CCS, x: M_PDRD
nmove x: CTRL_WD HI, al
jsr send_codec
nove x: CTRL_WD_LO al
jsr send_codec
bset #CCS, x: M_PDRD
rts
send_codec routine
; Input: al contains control information
; Quput: sends bits to CDI N

Description: Deternmines bits to send to

CDI N

1-16

Programming the CS4218 CODEC

Motorola

Programming the CS4218 CODEC

send_codec

do #16, end_send_codec ; 16 bits per word
bset #CCLK, x: M_PDRD ; toggle CCLK clock high
jclr #23,al,bit_Il ow ; test nsb
bset #CDI N, x: M_PDRD ; send high into CDIN
jmp conti nue
bit_I ow
belr #CDI N, x: M_PDRD ; send lowinto CDIN
conti nue
rep #2 ; del ay
nop
bel r #CCLK, x: M_PDRD ; restart cycle
| sl a ; shift control word to 1 bit

; to left
end_send_codec
rts

The codec_cont r ol subroutine performs most of the work of sending the information to the
CODEC ports. First, the CSS bit is cleared to permit the modification of the control registers on the
CODEC. Then the control words are loaded into registers and sent out to another subroutine that sends
the data serial out to the CODEC ports. After both the upper and lower control words are sent, the CCS
bit is reset to 1 to disallow changing of the control information on the CODEC.

The send_codec subroutine serves as the workhorse for the codec_cont r ol routine. This routine
pushes the individual bits of the control words into the CODEC. First, it sets the clock (CCLK) high to
allow the bit to be sent. Then it determines what the most significant bit (MSB) is and either sends in a
0 or 1 to the CDIN pin, depending on the MSB. A delay is incorporated into the routine to allow the
information to be sent. Afterwards, the clock (CCLK) is set low to allow the cycle to begin again. The
control word is shifted to serve the next MSB bit. These procedures are performed 16 times to serve all
the bits in the control word.

3.2.4 Enabling Interrupts/ESSI Ports

Once the ESSI port and CODEC ports are configured and initialized, there are just three more steps to
complete the interface between the ESSI and the CODEC:

1. Set the priority level of the interrupts. This parameter is determined by the application.
2. Enable interrupts on the DSP.
3. Enable the ESSI port.

Recall that in order to set the functionality of ESSI pin, the port control registers must be configured.
Setting the corresponding pin/bit to 1 enables ESSI mode, and setting the pin/bit to 0 disables ESSI
mode and enables the GPIO mode. As stated in Section 3.2.2, "Configuring GPIO Pins" the following
pins/bits must be configured as GPIO pins:

* CODEC RESET pin (bit 0 on ESSIO)

* CCS pin (bit 0 on ESSI1)

* CCLK pin (bit 1 on ESSII)

* CDIN pin (bit 2 on ESSI1)
Therefore, on Port Control Register C, bit 0 is set to 0. Other pertinent pins should be set to 1 in order
to configure the other pins as ESSI pins. On Port Control Register D, bits 0, 1, and 2 should all be set

to the value of 0 to allow GPIO functionality on those pins. Because the other pins are not connected to
the CODEC, the other bits do not have an effect.

Motorola 1-17

Programming the CS4218 CODEC

Example 12 demonstrates setting the interrupt priority level, enabling the priority, and setting the
ESSI/GPIO functionality of the ESSI ports.

Example 12. ESSI Port Priority and Functionality Setting

nmovep #$000c, x: M_| PRP ; set interrupt priority level for ESSIO
; to 3
andi #$fc, nr ; enable interrupts
nmovep #$003e, x: M_PCRC ; enabl e ESSI node for
; bit 5/bit 4,bit 3, bit 2,bit 1.
; enable GPI O node for
; bit O
nmovep #$0000, x: M_PCRD ; enable GPI O node for

; bit 2, bit 1, bit 0.
; Other bits are don't care.

3.3 Phase lll: Data Transferring Mechanism

The three methods for transferring data from the CODEC to and from the ESSI port are polling, DMA,
and interrupts. This document demonstrates only the use of interrupts.

3.3.1 Interrupts and Interrupt Service Routines
The ESSI device has six interrupts:
» ESSI receive data with exception status
* ESSI receive data
* ESSI receive last slot
» ESSI transmit data with exception status
* ESSI transmit last slot
* ESSI transmit data

Each interrupt is triggered on certain status bits and is cleared by performing an interrupt service
routine. The following sections explain what specific status bits trigger the interrupts and what must be
done to clear the interrupts. For details on the properties and functionality of each type of interrupt and
how to set up the interrupt service routines, refer to the DSP563xx EVM user’s manual.

3.3.2 ESSI Receive Data with Exception Status Interrupt
The interrupt occurs when the following properties are true:
» The receive exception interrupt is turned on (CRB[23]).
* The receive data register is full.
* A receiver overrun error occurs.

The interrupt is triggered when the receiver overrun bit is set. When the interrupt is serviced, you must
first clear the receiver overrun bit (SSISRO[5]) and then receive the Receive BUFFER. Perform the
following steps:

1. Clear the receive overrun bit.
2. Save the necessary context.

3. Load the receive buffer pointer.

1-18 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

4. Move the received data to the receive buffer.
5. Update the receive buffer pointer.

6. Restore context.
Example 13 illustrates the procedures for servicing the ESSI Exception Status interrupt.

Example 13. Servicing the ESSI Exception Status Interrupt

; ESSI Receive Data with Exception Interrupt Service Routine

SSi _rxe_isr
; Clear receives overrun bit

belr #5, x: M_SSI SRO ; (M. SSISRO refers to status register)
; explicitly clears overrun flag

Save Cont ext

nove ro, x: (r7)+ ; Save r0 to the stack.
nove o, x: (r7)+ ; Save nD to the stack.
nove #1, nD ; Modulus 2 buffer.
nove x: RX_PTR r0 ; Load the pointer to the rx buffer.
nop ; Delay
novep x: M_RX0, x: (r0) + ; Move received data to receive buffer
nove r0, x: RX_PTR ; Update rx buffer pointer.
; Restore Context
nmove X:-(r7),nm ; Restore nD.
nove X:-(r7),r0 ; Restore rO.

rti

3.3.3 ESSI Receive Data Interrupt

The interrupt occurs when the following properties are true:
* The receive interrupt is turned on (CRB[19])
* The receive data register is full
To service the interrupt, you must receive the data in the following steps:
Save the necessary context.
Load the receive buffer pointer.
Move the received data to the receive buffer.

Update the receive buffer pointer.

A e T

Restore context.

Example 14 illustrates the procedures for servicing the ESSI Receive Data interrupt.

Motorola 1-19

Programming the CS4218 CODEC

Example 14. Servicing the ESSI Receive Data Interrupt

; ESSI Receive Data Interrupt Service Routine

Ssi_rx_isr
; Save Cont ext
nove ro, x: (r7)+ ; Save r0 to the stack.
nove no, x: (r7)+ ; Save nD to the stack.
nove #1, nD ; Modulus 2 buffer.
nove x: RX_PTR, r0 ; Load the pointer to the rx buffer.
nop ; Del ay
nmovep x: M_RX0, x: (r0) + ; Move received data to receive buffer
nove ro, x: RX_PTR ; Update rx buffer pointer.
; Restore Context
nove X:-(r7),nm ; Restore nD.
nmove X:-(r7),r0 ; Restore roO.

rti

3.3.4 ESSI Receive Last Slot Interrupt

The interrupt occurs when the following properties are true:
* The receive last slot interrupt is turned on (CRBJ[21]).
* The last time slot ends.

The receive last slot interrupt guarantees that the previous frame has been serviced and the next frame
is ready to be serviced. The interrupt allows the programmer to redefine pointers to the buffer to be
reset so that a new frame can be serviced. To prepare for the next frame, follow these steps:

1. Save Context.
2. Reset the receive buffer.
3. Restore context.

Example 15 demonstrates the steps required for servicing the ESSI Receive Last Slot interrupt.

Example 15. Servicing the ESSI Receive Last Slot Interrupt

receive last slot interrupt service routine

ssi_rxls_isr
; Save cont ext

nove ro, x: (r7)+ ; Save r0 to the stack.

nmove #RX_BUFF_BASE, r 0 ; Reset rx buffer pointer just in
; case it was corrupted.

nove ro, x: RX_PTR ; Update rx buffer pointer.

nmove X:-(r7),r0 ; Restore r0.

rti

3.3.5 ESSI Transmit Data with Exception Status Interrupt
The interrupt occurs when the following properties are true:

* The transmit exception interrupt is turned on (CRB[22]).
* The transmit data register is empty.

¢ A transmit underrun error occurs.

1-20 Programming the CS4218 CODEC Motorola

Programming the CS4218 CODEC

The interrupt is triggered when the transmit underrun bit is set. When the interrupt is serviced, you
must first clear the transmit underrun bit (SSISR0[4]) and then transmit the transmit BUFFER, as

follows:

1. Clear the transmit underrun bit.

2. Save the necessary context.

3. Load the transmit buffer pointer.

4. Move the transmit buffer data to the transmit register.
5. Update the transmit buffer pointer.

6. Restore context.

Example 16 illustrates the procedures for servicing the ESSI Transmit Data With Exception Status
interrupt.

Example 16. Servicing the ESSI Transmit Data with Exception Status Interrupt

; transmit data with exception status interrupt service routine

Ssi _txe_isr
; Clear underrun bit
belr #4, x: M_SSI SRO ; (M_SSISRO pointers to status register)

; Save Cont ext
nove ro, x:(r7)+ ; Save r0 to the stack.
nove no, x: (r7)+ ; Save nD to the stack.
nove #1, mD ; Modulus 2 buffer.
Load transmit pointer to transnmit ;
; buffer
nove x: TX_PTR, r0 ; Load the pointer to the tx buffer.
nop ; del ay
Move Transmit buffer data to transmt
; register
novep x: (r0)+, x: M_TX00 ; SSI transfer data register.
; Update transmit buffer pointer
nove r0, x: TX_PTR ; Update tx buffer pointer.
; Restore Context
nove x:-(r7),n0 ; Restore nD.
nove X:-(r7),r0 ; Restore rO.

rti

3.3.6 ESSI Transmit Last Slot Interrupt

The interrupt occurs when the following properties are true:
* The transmit last slot interrupt is turned on (CRB[20]).
* The last time slot begins.

The use of the Transmit Last Slot interrupt guarantees that the previous frame has been serviced and
the next frame is ready to be serviced. The interrupt allows the programmer to redefine pointers to the
buffer to be reset so that a new frame can be serviced. To prepare for the next frame the following
steps are followed:

1. Save context.
2. Reset the transmit buffer.

3. Restore context.

Motorola 1-21

Programming the CS4218 CODEC

Example 17 illustrates the procedures for servicing the ESSI Transmit Last Slot interrupt.

Example 17. ESSI Transmit Last Slot Interrupt Service

; transmit last slot interrupt service routine
ssi _txls_isr

; Save Cont ext
nove ro, x: (r7)+ ; Save r0 to the stack.

; Reset Transmit buffer pointer
nmove #TX_BUFF_BASE, r 0 ; Reset pointer.
nove ro, x: TX_PTR ; Reset tx buffer pointer just in

case it was corrupted.

; Restore Context
nmove X:-(r7),r0 ; Restore roO.
rti

3.3.7 ESSI Transmit Data Interrupt

The interrupt occurs when the following properties are true:
» The receive interrupt is turned on (CRB[18]).
* The transmit data register is empty.
To service the interrupt, the you must transmit the data, as follows:
Save the necessary context.
Load the transmit buffer pointer.
Move the transmit buffer data to the transmit register.

Update the transmit buffer pointer.

Al A

Restore context.
Example 18 illustrates the procedures for servicing the ESSI Transmit Data interrupt.

Example 18. Servicing the ESSI Transmit Data Interrupt

; transmit data interrupt service routine

ssi_tx_isr
Save Cont ext

nove ro, x: (r7)+ ; Save r0 to the stack.

nove nD, x: (r7)+ ; Save nD to the stack.

nove #1, nD ; Modulus 2 buffer.

nove x: TX_PTR r0 ; Load the pointer to the tx
; buffer.

nop ; del ay

novep x: (r0)+, x: M_TX00 ; SSI transfer data register.

nove ro, x: TX_PTR ; Update tx buffer pointer.
; Rest ore Cont ext

nove x:-(r7),nm0 ; Restore nD.

nove X:-(r7),r0 ; Restore r0.

rti

1-22 Programming the CS4218 CODEC

Motorola

Example Application

4 Example Application

An example program is provided to illustrate the use of the CODEC. The following files are included
in a package to be distributed with this document:

* loequ.asm Important I/O equates

* Intequ.asm Interrupt equates for the DSP EVM modules

 Ada_equ. asm Equates to initialize the CODEC

* Ada_Init.asm Initialization code for the ESSI and CODEC

* \ectors.asm Vector table for the DSP EVM modules

*+ Echo.asm Sample code that illustrates DSP processing

These files include all the procedures discussed in Section 2.3, "Digital Interface (ESSI —
CODEC)"and Section 3, "Programming the CS4218 CODEC". They assist you to quickly generate an
application using the CS4218 CODEC. If a desired property in the control information is needed, you
can make simple modifications to these files.

4.1 Echo Program

The echo program example simulates an echo of an input signal using a number of time-delayed
samples. To implement a time-delayed echo on the DSP, a sample is fed into the DSP from the
CODEC. The new sample is divided by two to maintain stability and then added to a time-delayed
sample. The sum of the signals is again divided by two and then sent out to the CODEC. Figure 3
displays the block diagram of this process.

New Sample > =2 +2 » Output

Figure 3. Block Diagram of a Delayed Sample (Echo)

4.2 Echo Code
The control information constants for the CODEC must be defined, as follows:
1. Include CODEC and I/O files.
2. Define transmit and receive buffer and pointers.

3. Define CODEC control constants.

Motorola 1-23

Example Application

Example 19 illustrates the tasks of including initialization and interface files, defining transmit and
receive buffers and pointers, and setting up control word constants.

Example 19. Include, Define, and Set-Up Tasks
IR R EEEEEEEEEEEEEEEEEEEEEEEREEREEEEEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEES

nol i st
i ncl ude 'ioequ. asm
i nclude 'intequ.asn
i ncl ude ' ada_equ. asn
i nclude 'vectors. asn

Iist

B R R R R X

---Buffer for talking to the CS4218

org x: $0
RX_BUFF_BASE
RX data_1 2
RX data_3_4
TX_BUFF_BASE
TX data_1_2
TX data_3_4
RX_PTR ds
TX_PTR ds
CTRL_WD_12 equ
CTRL_WD 34 equ

equ
ds
ds

equ
ds
ds

1
1
M N_L
M N_L

*

1 ; data tinme slot

1 ; data tine slot
*

1 ; data tinme slot

1 ; data tinme slot

Pointer for rx buffer
Pointer for tx buffer

1/2 f RX I SR (Il eft audio)
3/4 f RX I SR (right audio)
1/2 f TX ISR (l eft audi o)
3/4 f TX I SR (right audio)

EFT_ATTN+M N_RI GHT_ATTN+LI N2+RI N2
EFT_GAI N+M N_RI GHT_GAI N

After the constants are set up for the CODEC, the DSP is set up and initialized, as follows:

1. Notify the DSP of the speed at which the PLL is running. For this application the PLL is set to

86.016MHz.

Mask the interrupts with the correct values.

Initialize the hardware stack pointer.

Initialize the data interrupt stack pointer, which is the stack used in the ISR for the CODEC.

2
3
4. Operate DSP on Mode 0.
5
6

Assert linear addressing for the stack pointer used by the data interrupts.

Example 20 illustrates the initialization of the DSP.

Example 20. DSP Initialization Procedure

org p: $100

START

mai n
novep
ori
novec
nove
nove
nove

#$040006, x: M_PCTL :

#3, nr

PLL 7 X 12.288 = 86.016M¥
mask interrupts

cl ear hardware stack pointer
operating node 0

initialize stack pointer for
| i near addressing

I SR

After the DSP is initialized, the CODEC must be initialized. Using the supplied code, you can make a
jump statement to start the CODEC/ESSI initialization routine. Example 21 demonstrates this

procedure.
Example 21. Initializing CODEC/ESSI
jsr ada_init ;initialize CODEC/ ESSI
1-24 Programming the CS4218 CODEC Motorola

Example Application

The DSP and CODEC are ready to receive, process, and transmit data. The echo implementation
requires that a buffer be set up and initialized. The code in Example 22 performs these steps.

Example 22. Setting Up and Initializing Buffer

nove
nove

clr
rep
nove

#3$0400,r 4 ; start echo buffer at $400
#$03FF, mt ; make echo buffer 1024 deep
a ; clear a

#$03FF ; clear the echo buffer
a,l:(rd)+

To receive data from the ESSI port, data is received at the beginning of the frame. Check the status bits
to ensure that data receive starts at the beginning of the frame and not in the middle. Once a receive
frame synchronization is detected, data can move through the receive memory location,

RX BUFF_BASE. Then, the data can be processed and moved into the transmit pointer. All of these
procedures can be implemented in an infinite loop to receive, process, and transmit the data
continuously. Example 23 illustrates the implementation of the echo program.

Example 23. Implementation of Echo Program

echo_| oop

echo

j set
jclr
clr a
clr b
nove
nove
asr
asr
add
add
asr

asr

nove
nove
nove
nove

jm

#3, x: M_SSI SRO, * ; wait for rx frame sync

#3, x: M_SSI SRo, * ; wait for rx frame sync

X: RX_BUFF_BASE, a ; receive left

x: RX_BUFF_BASE+1, b ; receive right

a x:(r4),x0 ; divide themby 2 and get ol dest

b y:(r4),yo0 ; sanples from buffer

x0, a ; add the new sanples and the old

y0, b

a reduce magni tude of new data

(to ensure stability)

b

a, x: (r4) ; save the altered sanples
b,y:(r4)+ ; and bunp the pointer

a, x: TX_BUFF_BASE ; transmit left

b, x: TX_BUFF_BASE+1 ;transmit right

echo_| oop

The data is quickly divided by two after it is received from the left and right channels. Then the left
and right channels are added to the time-delayed samples, which are stored on the echo buffer. The
magnitude is reduced by two, and the echo buffer is updated with the newest output sample. The
left-and-right processed channels are then sent to the transmit buffers and on to the ESSI port and
finally to the CODEC. The procedures loop infinitely until manually stopped. Example 24 combines
all the separate pieces of the echo code into an application that performs the time-delayed echo.

Motorola

1-25

Example Application

Example 24. Application of Echo Code

ckkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkkhkhkkhkhkkhkkhkkhkhkkhkhkhkhkhkkhkkkkkkkkkkk*x*%
’

nol i st
i ncl ude

i ncl ude

i oequ. asni

ada_equ. asnm

i nclude 'intequ. asni

i ncl ude
list

vectors. asni

ckkkkkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkhkhkhkkhkkhkhkkhkhkkhkkhkhkkhkhkhkkhkhkkhkhkkkkkkkkkkk*x*%
’

;---Buffer for talking to the CS4218

org x: $0
RX_BUFF_BASE
RX data_1 2
RX data_3 4

TX_BUFF_BASE
TX data_1 2
TX data_3 4

RX_PTR
TX_PTR

CTRL_WD 12 equ
CTRL_WD 34 equ

org p: $100

equ *

ds 1

ds 1

equ *

ds 1

ds 1
ds 1
ds 1

M N_LEFT_ATTN+M N
M N_LEFT_GAI N\+M N

data tine slot
; data tinme slot

data tinme slot
; data tine slot

R (left audio)
R (right audio)

BN
— —h

1/ 2 for
3/4 for

TX I SR (1 eft audi o)
TX ISR (right audio)

; Pointer for rx buffer
; Pointer for tx buffer

Rl GHT_ATTN+LI N2+RI N2

RI GHT_GAI N

START
mai n
nmovep #$040006, x: M_PCTL ; PLL 7 X 12.288 = 86.016MHz
ori #3, nr ; mask interrupts
novec #0, sp ; clear hardware stack pointer
nove #0, onr ; operating node 0
nove #$40,r7 ; initialize stack pointer for isr
nove #-1,nv ; linear addressing
jsr ada_init ; initialize codec
nove #$0400, r 4 ; start echo buffer at $400
nove #$03FF, md ; make echo buffer 1024 deep
clr a ; clear a
rep #$03FF ; clear the echo buffer
nove a, l:(rd)+
echo_| oop
j set #3, x: M_SSI SRO, * ; wait for rx frame sync
jclr #3, x: M_SSI SRO, * ; wait for rx frame sync
clr a
clr b
nmove x: RX_BUFF_BASE, a ; receive left
nove x: RX_BUFF_BASE+1, b ; receive right
asr a x:(r4),x0 ; divide themby 2 and get ol dest
asr b y:(r4),y0 ; sanples from buffer
add x0, a ; add the new sanples and the old
add yO0, b
asr a ; reduce magnitude of new data
; (to ensure stability)
asr b
nove a, x: (r4) ; save the altered sanples
nove b,y:(r4)+ ; and bunmp the pointer
nove a, x: TX_BUFF_BASE ; transmit left
nove b, x: TX_BUFF_BASE+1 ; transmit right
jmp echo_l oop
include 'ada_init.asn ; used to include codec
o initialization routines
echo
end
1-26 Programming the CS4218 CODEC Motorola

Example Application

Document Order No: AN1790/D

Motorola 1-27

OnCE and Mfax are registered trademarks of Motorola, Inc.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical”
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support life,
or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and (4] are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Listed:

Motorola Literature Distribution
P.O. Box 5405

Denver, Colorado 80217
1(800) 441-2447

1 (303) 675-2140

Motorola Fax Back System (Mfax™):

TOUCHTONE (602) 244-6609
1 (800) 774-1848
RMFAXO@email.sps.mot.com

Asia/Pacific:

Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park

51 Ting Kok Road

Tai Po, N.T., Hong Kong
852-26629298

Technical Resource Center:
1 (800) 521-6274

DSP Helpline

dsphelp@dsp.sps.mot.com

Japan:

Nippon Motorola Ltd

SPD, Strategic Planning Office141
4-32-1, Nishi-Gotanda
Shinagawa-ku, Japan
81-3-5487-8488

Internet:
http://www.motorola-dsp.com/

@ MOTOROLA

	Programming the CS4218 CODEC for Use With DSP56300 Devices
	1 CODEC Overview
	2 ESSI Port Overview
	2.1 ESSI/GPIO Pins
	2.2 ESSI Port Registers
	2.2.1 ESSI/GPIO Shared Registers
	Table 2.� ESSI/GPIO Shared Registers
	Table 3.� ESSI Registers
	Table 4.� GPIO Registers�

	2.3 Digital Interface (ESSI – CODEC)

	3 Programming the CS4218 CODEC
	3.1 Phase 1: Setting Up Global Constants
	3.1.1 Setting Up Buffer Space and Pointers
	3.1.2 Defining CODEC Control Parameters

	3.2 Phase II: Initializing and Interfacing the ESSI and CODEC Ports
	3.2.1 Initialize ESSI Ports
	3.2.2 Configuring GPIO Pins
	3.2.3 Initializing the CODEC ports
	3.2.4 Enabling Interrupts/ESSI Ports

	3.3 Phase III: Data Transferring Mechanism
	3.3.1 Interrupts and Interrupt Service Routines
	3.3.2 ESSI Receive Data with Exception Status Interrupt
	Example�13. Servicing the ESSI Exception Status Interrupt

	3.3.3 ESSI Receive Data Interrupt
	Example�14. Servicing the ESSI Receive Data Interrupt

	3.3.4 ESSI Receive Last Slot Interrupt
	Example�15. Servicing the ESSI Receive Last Slot Interrupt

	3.3.5 ESSI Transmit Data with Exception Status Interrupt
	Example�16. Servicing the ESSI Transmit Data with Exception Status Interrupt

	3.3.6 ESSI Transmit Last Slot Interrupt
	Example�17. ESSI Transmit Last Slot Interrupt Service

	3.3.7 ESSI Transmit Data Interrupt
	Example�18. Servicing the ESSI Transmit Data Interrupt

	4 Example Application
	4.1 Echo Program
	4.2 Echo Code

	Disclaimer and Contact Information

