

DSP56303EVM

User’s Manual

Motorola, Incorporated
Semiconductor Products Sector
DSP Division
6501 William Cannon Drive West
Austin, TX 78735-8598

Mfax and OnCE are trademarks of Motorola, Inc.

Order this document by:
DSP56303EVMUM/AD

Introduction

This document supports the DSP56303 Evaluation Module (DSP56303EVM)
including a description of its basic structure and operation, the equipment required
to use it, the specifications of the key components, the provided software (such as the
demonstration code, the self-test code, and the software required to develop and
debug sophisticated applications), schematic diagrams, and a parts list. Section 1 is a
Quick Start Guide. Section 2 provides instructions for running the demonstration
software. Section 3 provides a simple programming example. Section 4 provides
detailed information about key components in the evaluation module. Appendix A
has detailed schematics. Appendix B is the parts list. Appendix C includes additional
notes for using the Assembler. Appendix D is a tutorial for programming the codec.
This document has been designed for users experienced with DSP development
tools. For users with little or no DSP experience, detailed information is provided in
the additional documents supplied with this kit.
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “typical”
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support
life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not
Listed:
Motorola Literature Distribution
P.O. Box 20912
Phoenix, Arizona 85036
1 (800) 441-2447 or
1 (602) 303-5454

Mfax™
RMFAX0@email.sps.mot.com
TOUCHTONE (602) 244-6609

Asia/Pacific:
Motorola Semiconductors H.K. Ltd.
8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
852-2662928

Technical Resource Center:
1 (800) 521-6274

DSP Helpline
dsphelp@dsp.sps.mot.com

Japan:
Nippon Motorola Ltd.
Tatsumi-SPD-JLDC
6F Seibu-Butsuryu-Center
3-14-2 Tatsumi Koto-Ku
Tokyo 135, Japan
03-3521-8315

Internet:
http://www.motorola-dsp.com

CONTENTS

SECTION 1 QUICK START GUIDE. 1-1
1.1 OVERVIEW . 1-3
1.2 EQUIPMENT . 1-3
1.2.1 What You Get with the DSP56303EVM. 1-3
1.2.2 What You Need to Supply . 1-4
1.3 INSTALLATION PROCEDURE . 1-4
1.3.1 Preparing the DSP56303EVM . 1-5
1.3.2 Connecting the DSP56303EVM to the PC and Power . . . 1-7
1.3.3 Installing the Software . 1-8
1.3.4 Testing the DSP56303EVM. 1-9
1.3.4.1 DSP56303EVM Self-test. 1-9
1.3.4.2 DSP56303EVM Analysis Program 1-10

SECTION 2 RUNNING THE DEMONSTRATION FILE 2-1
2.1 OVERVIEW . 2-3
2.2 SETTING UP THE DEMONSTRATION 2-3
2.3 RUNNING THE DEMONSTRATION 2-4

SECTION 3 EXAMPLE TEST PROGRAM 3-1
3.1 OVERVIEW . 3-3
3.2 WRITING THE PROGRAM . 3-4
3.2.1 Source Statement Format . 3-4
3.2.1.1 Label Field. 3-4
3.2.1.2 Operation Field . 3-4
3.2.1.3 Operand Field . 3-5
3.2.1.4 Data Transfer Fields . 3-5
3.2.1.5 Comment Field . 3-5
3.2.2 Example Program . 3-5
3.3 ASSEMBLING THE PROGRAM . 3-7
3.3.1 Assembler Command Format . 3-7
3.3.2 Assembler Options . 3-8
3.3.3 Assembler Directives . 3-11

MOTOROLA DSP56303EVMUM/AD, Preliminary iii

3.3.3.1 Assembler Significant Characters 3-11
3.3.3.2 Assembly Control . 3-12
3.3.3.3 Symbol Definition . 3-13
3.3.3.4 Data Definition/Storage Allocation 3-13
3.3.3.5 Listing Control and Options . 3-14
3.3.3.6 Object File Control . 3-14
3.3.3.7 Macros and Conditional Assembly 3-15
3.3.3.8 Structured Programming . 3-15
3.3.4 Assembling the Example Program 3-16
3.4 MOTOROLA DSP LINKER . 3-16
3.4.1 Linker Options. 3-17
3.4.2 Linker Directives . 3-23
3.5 INTRODUCTION TO THE DEBUGGER SOFTWARE 3-24
3.6 RUNNING THE PROGRAM . 3-26

SECTION 4 DSP56303EVM TECHNICAL SUMMARY 4-1
4.1 DSP56303EVM DESCRIPTION AND FEATURES 4-3
4.2 DSP56303 DESCRIPTION . 4-3
4.3 MEMORY. 4-4
4.3.1 SRAM . 4-5
4.3.1.1 SRAM Connections . 4-6
4.3.1.2 Example: Programming AAR0 4-7
4.3.2 Flash PEROM . 4-9
4.3.2.1 Flash PEROM Connections . 4-9
4.3.2.2 Programming for Stand-Alone Operation 4-9
4.4 AUDIO CODEC . 4-10
4.4.1 Codec Analog Input/Output. 4-11
4.4.2 Codec Digital Interface . 4-12
4.4.3 Codec Clock . 4-13
4.5 COMMAND CONVERTER . 4-14

 iv DSP56303EVMUM/AD, Preliminary MOTOROLA

APPENDIX A DSP56303EVM SCHEMATICSA-1

APPENDIX B DSP56303EVM PARTS LIST .B-1

APPENDIX C MOTOROLA ASSEMBLER NOTES C-1

APPENDIX D CODEC PROGRAMMING TUTORIALD-1

INDEX . INDEX -1

DSP56303EVMUM/AD, Preliminary v

MOTOROLA DSP56303EVMUM/AD, Preliminary vi

LIST OF FIGURES

Figure 1-1 DSP56303EVM Component Layout . 1-6

Figure 1-2 Connecting the DSP56303EVM Cables 1-7

Figure 1-3 DSP56303EVM Test Sample Output—Fail 1-11

Figure 1-4 DSP56303EVM Test Sample Output—Pass. 1-12

Figure 2-1 DSP56303EVM Component Layout . 2-4

Figure 3-1 Development Process Flow. 3-3

Figure 3-2 Example Debugger Window Display . 3-25

Figure 4-1 DSP56303EVM Component Layout . 4-4

Figure 4-2 DSP56303EVM Functional Block Diagram 4-5

Figure 4-3 SRAM Connections to the DSP56303. 4-6

Figure 4-4 Alternate Configurations for J9 . 4-6

Figure 4-5 Example Memory Map with the Unified External Memory. 4-7

Figure 4-6 Address Attribute Register AAR0 . 4-8

Figure 4-7 Flash PEROM Connections. 4-9

Figure 4-8 Codec Analog Input/Output Diagram. 4-11

Figure 4-9 Codec Digital Interface Connections . 4-12

Figure 4-10 Codec Clock Generation Diagram. 4-13

Figure 4-11 RS-232 Serial Interface . 4-14

LIST OF TABLES

Table B-1 DSP56303EVM Parts List . B-3

MOTOROLA DSP56303EVMUM/AD, Preliminary vii

 viii DSP56303EVMUM/AD, Preliminary MOTOROLA

SECTION 1

QUICK START GUIDE

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-1

Quick Start Guide

1.1 OVERVIEW . 1-3
1.2 EQUIPMENT . 1-3
1.2.1 What You Get with the DSP56303EVM 1-3
1.2.2 What You Need to Supply. 1-4
1.3 INSTALLATION PROCEDURE . 1-4
1.3.1 Preparing the DSP56303EVM . 1-5
1.3.2 Connecting the DSP56303EVM to the PC and Power . . . 1-7
1.3.3 Installing the Software. 1-8
1.3.4 Testing the DSP56303EVM . 1-9

1-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Overview

1.1 OVERVIEW

This section provides a summary description of the evaluation module contents,
additional requirements, and quick installation and test information. Detailed
information about the DSP56303EVM design and operation is provided in the
remaining sections of this manual.

1.2 EQUIPMENT

The following section gives a brief summary of the equipment required to use the
DSP56303 Evaluation Module (DSP56303EVM), some of which will be supplied with
the module, and some of which must be supplied by the user.

1.2.1 What You Get with the DSP56303EVM

The following material is provided with the DSP56303EVM:

• DSP56303 Evaluation Module board

• DSP56303EVM Product Information

• DSP56303 Technical Data (preliminary)

• DSP56303 Chip Errata

• DSP56300 Family Manual

• DSP56303 Product Specifications Revision 1.02

• DSP56303EVM User’s Manual (this document)

• Crystal Semiconductor CS4215 16-Bit Multimedia Audio Codec Data Sheet

• Domain Technologies Debug-56K Debugger manual for Motorola 16- and
24-bit DSPs

• Set of diskettes (3-1/2 inch) containing required software:

– GUI Debugger from Domain Technologies (1 diskette)

– Assembler/linker/example software from Motorola (1 diskette)

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-3

Quick Start Guide

Installation Procedure

1.2.2 What You Need to Supply

• PC (386 class or higher) with:

– Windows 3.1 or higher (including Windows 95)

– 4 Mbytes of memory minimum

– 3-1/2-inch, high density, diskette drive

– Hard drive with 4 Mbytes of free disk space

– Mouse

– RS-232 serial port supporting 9,600–57,600 bit-per-second transfer rates

• RS-232 interface cable (DB9 male to DB9 female)

• Power supply, 7–9 V ac or dc input into a 2.1 mm power connector

• Audio source (tape player, radio, CD player, etc.)

• Headphones

• Audio interface cable with 1/8-inch stereo plugs

1.3 INSTALLATION PROCEDURE

Installation requires four basic steps:

1. Preparing the DSP56303EVM board

2. Connecting the board to the PC and power

3. Installing the software

4. Testing the installation

1-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Installation Procedure

1.3.1 Preparing the DSP56303EVM

Locate jumper blocks J4, J7, and J9, as shown in Figure 1-1. Make sure that, for blocks
J4 and J7, all six positions on each block are jumpered, and for J9, there is a jumper
connecting pins 2 and 3. These jumpers perform the following functions:

• J4 controls the interface between the DSP56302 JTAG/OnCE port and
DSP56002 Synchronous Serial Interface (SSI).

• J7 controls the interface between the audio codec and the DSP56302 Enhanced
Synchronous Serial Interface (ESSI0).

• J9 defines the external memory map.

CAUTION

Because all electronic components are
sensitive to the effects of electrostatic
discharge (ESD) damage, correct
procedures should be used when
handling all components in this kit and
inside the supporting personal computer.
Use the following procedures to minimize
the likelihood of damage due to ESD:

– Always handle all static-sensitive
components only in a protected area,
preferably a lab with conductive
(anti-static) flooring and bench
surfaces.

– Always use grounded wrist straps
when handling sensitive components.

– Never remove components from
anti-static packaging until required for
installation.

– Always transport sensitive
components in anti-static packaging.
MOTOROLA DSP56303EVMUM/AD, Preliminary 1-5

Quick Start Guide

Installation Procedure

Figure 1-1 DSP56303EVM Component Layout

CS4215

DSP56303

DSP56002

M
C

M
63

06

AT29LV512

J7

J6

J8J9

P5

P4

P3
MC74HCT04

HDPHNE

OUT

IN

LT1085

P2

MC145407

LED

LED

LT1085

SW2

SW3

JTAG/

POWER

MC33078

MC34164

SW1

P1

Serial #

LED

MC74HCT241

J3 ISA CONNECTOR

J1

J4

COMMAND CONVERTER SELECT

J5
ESSI0 JTAG

J2

M
C

M
63

06

M
C

M
63

06 ESSI1/SCI

Debug

Power

J4

1

12

J7

12

1

J9

1

OnCE

1-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Installation Procedure

1.3.2 Connecting the DSP56303EVM to the PC and Power

Figure 1-2 shows the interconnection diagram for connecting the PC and the external
power supply to the DSP56303EVM board. Use the following steps to complete cable
connections:

1. Connect the DB9P end of the RS-232 interface cable to the RS-232 port
connection on the PC.

2. Connect the DB9S end of the cable to P1, shown in Figure 1-1, on the
DSP56303EVM board. This provides the connection to allow the PC to control
the board function.

3. Make sure that the external 7–9 V power supply does not have power
supplied to it.

4. Connect the 2.1 mm output power plug into P2, shown in Figure 1-1, on the
DSP56303EVM board.

5. Apply power to the power supply. The green Power LED will light when
power is correctly applied.

Figure 1-2 Connecting the DSP56303EVM Cables

PC-compatible

Cable

Computer

DB9 Interface

DSP56303EVM

External
7–9 V
Power

P1

P2Connect cable
to RS-232 port

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-7

Quick Start Guide

Installation Procedure

1.3.3 Installing the Software

The DSP56303EVM software includes the following:

• Motorola diskette containing:

– Assembler

– Linker

– Test code

– Demonstration code

• Domain Technologies diskette containing the windowed user interface debug
software

Use the following steps to install the software:

1. Insert the Motorola software diskette into the PC diskette drive.

2. If the system is not already running in Windows, start Windows.

3. From Windows, select a DOS window and run the install program. The
general format for the command line of the install program is
install <source>. For example, if your diskette drive is a, type in a:install a:.
The program installs the software in the default destination c:\evm30xw.

4. Close the DOS window and remove the Motorola software diskette from the
diskette drive. Insert the Domain Technologies diskette labeled Debug-56K
into the drive.

5. From Windows, run the Debugger installation program install.exe on the
diskette. This can be done from the Microsoft Windows Program Manager by
pulling down the File menu, choosing Run, entering a:install on the
command line, and clicking OK.

6. Read the README.TXT if you are installing the Debugger program for the
first time. This provides information in addition to that provided by the
Domain Technologies manual included with this kit.

7. The install program creates a program group called “evm5630x” and a
program icon called “evm30xw” within Windows. This step completes the
software installation.

1-8 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Installation Procedure

1.3.4 Testing the DSP56303EVM

The following sections describe the DSP56303EVM self-test and analysis programs.
The self-test allows the user to determine if the DSP56303EVM is properly connected
and ready for operation. The analysis program allows the user to examine the
DSP56303EVM operation in more detail to diagnose problems that may occur.

1.3.4.1 DSP56303EVM Self-test
This section describes how to run the DSP56303EVM self-test. The self-test comes
pre-loaded into the Flash PEROM of the DSP56303EVM, and is therefore very easy to
use. There are two parts to the self-test, as follows:

• The first part of the self-test examines the external memory of the
DSP56303EVM by writing to, and reading from, the external SRAM. It also
examines the analog circuitry of the DSP56303EVM by analyzing the response
of the analog circuitry to a sequence of tones. This part of the self-test begins
running immediately when the DSP56303 boots from the Flash PEROM and,
after startup, by invoking external Interrupt Request A (IRQA). IRQA can be
activated by pressing the switch labelled SW2.

• The second part of the self-test analyzes the audio circuitry of the
DSP56303EVM by moving an audio signal through the codec. The second part
of the self-test begins following a receipt of external Interrupt Request D
(IRQD). IRQD is activated by pressing the switch labelled SW3.

The following steps describe how to run the self-test code for the DSP56303EVM.

1. Install the cable with the 1/8-inch stereo plugs between the line input jack
labelled P3/IN on the DSP56303EVM and the line output jack labelled
P5/OUT on the DSP56303EVM. Refer to Figure 1-1 on page 1-6 for the
location of the line input and output jacks.

2. Press the switch labelled SW1 on the DSP56303EVM. Refer to Figure 1-1
on page 1-6 for the location of SW1. This switch resets the DSP56303 and
allows the DSP56303 to boot from the Flash PEROM, which is preloaded with
the self-test code, and begins the first part of the self-test. The red LED at D12
lights when the test begins running. When this test is complete, the LED turns
off if the DSP56303EVM passed the test. If the DSP56303EVM fails the test, the
LED flashes. To repeat the test, press SW2 to invoke IRQA.

3. Now run the second part of the self-test code to test the analog circuitry of the
DSP56303EVM. Using the cable with the 1/8-inch stereo plugs, connect the
phone output of the audio source to the line input jack labelled P3/IN on the
DSP56303EVM. Also connect a pair of headphones to the headphone jack
labelled P4/HDPHNE on the DSP56303EVM. Refer to Figure 1-1 on page 1-6

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-9

Quick Start Guide

Installation Procedure

for the locations of the line input and headphone jacks. Start the audio source
and put on the headphones.

4. Press the switch labelled SW3 on the DSP56303EVM. Refer to Figure 1-1
on page 1-6 for the location of SW3. You should hear the audio through the
headphones with a slight echo added.

To rerun the first part of the self-test, perform steps 1 and 2 above. To repeat the
second part of the test, perform steps 3 and 4 above. You can switch between the
parts at any time.

If both parts of the self-test complete correctly, the DSP56303EVM is correctly
installed, operational, and ready for use. If either part of the self-test fails,
double-check the jumper settings and cable connections (power, RS-232, and audio)
and repeat the test. If the DSP56303EVM continues to fail either test, run the
DSP56303EVM analysis program described in Section 1.3.4.2 to try to determine the
cause of the problem.

1.3.4.2 DSP56303EVM Analysis Program
This section describes how to run the DSP56303EVM analysis program. The analysis
program functions in the same way as the first part of the self-test, but provides a list
of output results. This allows the user to determine exactly how the DSP56303EVM is
failing the tests.

The following steps describe how to run the analysis program for the DSP56303EVM.

1. Run the program evmtst2.exe. This can be done from the Microsoft Windows
Program Manager by pulling down the File menu, choosing Run, entering
c:\evm30xw\evmtst2.exe on the command line, and clicking OK.

2. When prompted, install the cable with the 1/8” stereo plugs between the line
input jack labelled P3/IN on the DSP56303EVM and the line output jack
labelled P5/OUT on the DSP56303EVM. Refer to Figure 1-1 on page 1-6 for
the location of the line input and output jacks. Press any key to continue the
test.

3. Wait for the test to run.

Note: When the test is complete, the test program window will go to the
background. Click on the test window to bring it to the foreground.

4. After the test is complete, the test asks for the DSP56303EVM serial number.
The serial number can be found at the bottom of the DSP56303EVM board as
shown in Figure 1-1 on page 1-6. Type in the serial number from the board
and press the return key.

1-10 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Installation Procedure

The test program will output a set of diagnostics to the screen, similar to those shown
in Figures 1-3 and 1-4, showing the results of the analog circuitry and memory tests.
The analog circuitry results show the DC offset, the noise level, and the response of
the analog circuitry to the sequence of tones listed in the first column. The second
two columns contain the raw data received by the DSP56303 from the left and right
channels of the analog circuitry. The raw data is evaluated in decibels relative to the
maximum value and placed in the next two columns, labelled dB below MAX.

Figure 1-3 DSP56303EVM Test Sample Output—Fail

-- DSP56303EVM Performance Analysis Ver.2.00--
EVM Serial No.: 1234 Tue Jun 04 17:45:47 1996
DSP56303 Chip Revision No. 000303
 LEFT RIGHT ——————dB below MAX———————
__

DC Offset: 65535 65535 6.02 6.02 10.00

NOISE: 0 0 0.00 0.00 10.00

24 kHz: 3086 2773 -20.52 -21.45 -20.00

6 kHz: 20 24014 -64.29 -2.70 -6.00 *

1.5 kHz: 24422 22 -2.55 -63.46 -6.00 *

375 Hz: 20 19 -64.29 -64.73 -6.00 * *

94 Hz: 22772 22553 -3.16 -3.24 -6.00

23 Hz: 15563 15218 -6.47 -6.66 0.00

12 Hz: 8627 8401 -11.59 -11.82 0.00

6 Hz: 2701 2567 -21.68 -22.12 -20.00

Pass: 6 Address: X:8200 Y:8200

Expected: 000000 000000

Received: 000000 FF0000

MEMORY ERRORS FOUND! (check J9 is in correct position)

AUDIO FAIL

 *** FAIL *** FAIL *** FAIL *** FAIL ***

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-11

Quick Start Guide

Installation Procedure

The last column shows the acceptable responses, in dB, of the analog circuitry for the
various tones. The dB levels for each channel are compared to the acceptable
responses to determine if the DSP56303EVM passed the analog circuitry test. The dB
levels must be below the acceptable responses for DC offset, noise, 24 kHz, 23 Hz, 12
Hz, and 6 Hz and above the acceptable responses for 6 kHz, 1.5 kHz, 375 Hz, and
94 Hz for the DSP56303EVM to pass the analog circuitry test. If either channel’s dB
levels do not satisfy the acceptable responses, an asterisk will be located at the end of
the row that did not pass the analog circuitry test. For example, in Figure 1-3, the left
channel did not satisfy the acceptable response for 6 kHz, the right channel did not
satisfy the acceptable response for 1.5 kHz, and both channels did not satisfy the
acceptable response for 375 Hz. If the DSP56303EVM passed the analog circuitry
test, no asterisks will be seen at the end of the rows, as in Figure 1-4.

Figure 1-4 DSP56303EVM Test Sample Output—Pass

 -- DSP56303EVM Performance Analysis Ver.2.00--
 EVM Serial No.: 1234 Tue Jun 04 17:45:47 1996
DSP56303 Chip Revision No. 000303

LEFT RIGHT ————dB below MAX—————

DC Offset: 65535 65535 6.02 6.02 10.00

NOISE: 0 0 0.00 0.00 10.00

24 kHz: 3086 2773 -20.52 -21.45 -20.00

6 kHz: 24481 24014 -2.53 -2.70 -6.00

1.5 kHz: 24422 24140 -2.55 -2.65 -6.00

375 Hz: 24040 23868 -2.69 -2.75 -6.00

94 Hz: 22772 22553 -3.16 -3.24 -6.00

23 Hz: 15563 15218 -6.47 -6.66 0.00

12 Hz: 8627 8401 -11.59 -11.82 0.00

6 Hz: 2701 2567 -21.68 -22.12 -20.00

Pass: 6 Address: X:0000 Y:0000

Expected: 000000 000000

Received: 000000 000000

-------- PASS --------

1-12 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Installation Procedure

The results of the memory test are shown below the results of the analog circuitry
test. These results tell how many passes of the external memory test were run and if
the DSP56303EVM passed the test. If all the values in the Address, Expected, and
Received fields are zero, as in Figure 1-4, the DSP56303EVM passed the external
memory test. If the DSP56303EVM failed the external memory test, these fields will
tell which memory location caused the failure, the value that was expected to be
read, and the value that was actually read from that memory location, as in
Figure 1-3.

The last line of the diagnostics tells if the DSP56303EVM passed or failed the test. If
the last line says PASS, as in Figure 1-4, then the DSP56303EVM passed the test and
is ready for use. If the last line says FAIL, as in Figure 1-3, double check the jumpers
and the power, RS-232, and stereo connections and repeat the test. If the
DSP56303EVM continues to fail the test, email the DSP help line at
dsphelp@dsp.sps.mot.com.

Now the test is complete and the DSP56303EVM is ready for operation.

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-13

Quick Start Guide

Installation Procedure

1-14 DSP56303EVMUM/AD, Preliminary MOTOROLA

SECTION 2

RUNNING THE DEMONSTRATION FILE

MOTOROLA DSP56303EVMUM/AD, Preliminary 2-1

Running the Demonstration File

2.1 OVERVIEW . 2-3
2.2 SETTING UP THE DEMONSTRATION 2-3
2.3 RUNNING THE DEMONSTRATION 2-4

2-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

Running the Demonstration File

Overview

2.1 OVERVIEW

This section describes the demonstration that is included with the DSP56303EVM.
The demonstration is designed to show the advantage of 24-bit DSPs over 16-bit
DSPs. Even if the system input data is limited by a 16-bit data converter, the system
can still benefit greatly from using the 24-bit DSP architecture.

This demonstration takes an input signal, digitizes it, and adds a 60 Hz tone to
simulate the noise that can be generated by a 60 Hz AC power line. The signal is then
filtered using one of three sets of coefficients.

The first set of coefficients performs no filtering, simply allowing the corrupted
signal to pass through. The second set of coefficients use 24-bit coefficients to
correspond to a 60 Hz notch filter that removes the 60 Hz portion of the corrupted
signal. The final set of coefficients are the same as those used for the 24-bit filtering,
only rounded to 16 bits.

The following sections give step-by-step instructions on how to run this demo.

2.2 SETTING UP THE DEMONSTRATION

Perform the following steps to set up the demonstration:

1. Set up the audio source, preferably a music source with a headphone output,
such as a portable radio, tape player, or CD player.

2. Make sure the DSP56303EVM has been installed and tested, as described in
Section 1.

3. Using the cable with the 1/8-inch stereo plugs, connect the output of the audio
source to the stereo input jack labelled P3/IN on the DSP56303EVM.

4. Connect a pair of headphones to the stereo headphone jack labelled
P4/HDPHNE on the DSP56303EVM. Refer to Figure 2-1 for the locations of
the line input and headphone jacks.

Start the audio source and put on the headphones.

MOTOROLA DSP56303EVMUM/AD, Preliminary 2-3

Running the Demonstration File

Running the Demonstration

2.3 RUNNING THE DEMONSTRATION

To run the demonstration:

1. Start Windows.

2. Invoke the Debugger by double-clicking on the icon labelled evm30xw in the
evm5630x program group.

3. Click on the command window and type force r to reset the DSP56303 and
enter the debug mode.

4. Type in load 60hzdemo to load the demonstration file into the DSP56303.

5. Finally, type go to begin the demonstration. The first set of coefficients (no
filtering) is used when the demonstration begins. The first set of coefficients
performs no filtering, simply allowing the corrupted signal to pass. Thus, the
output contains the input signal with the added 60 Hz tone when the demo
begins.

Figure 2-1 DSP56303EVM Component Layout

CS4215

DSP56303

DSP56002

M
C

M
63

06

AT29LV512

J7

J6

J8J9

P5

P4

P3
MC74HCT04

HDPHNE

OUT

IN

LT1085

P2

MC145407

LED

LED

LT1085

SW2

SW3

JTAG/

POWER

MC33078

MC34164

SW1

P1

Serial #

LED

MC74HCT241

J3 ISA CONNECTOR

J1

J4

COMMAND CONVERTER SELECT

J5
ESSI0 JTAG

J2

M
C

M
63

06

M
C

M
63

06 ESSI1/SCI

Debug

Power

OnCE

Timer

Reset

IRQA

IRQD

Codec

SRAM

Command
Converter

PEROM

2-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

Running the Demonstration File

Running the Demonstration

6. Briefly press SW2 to invoke external internal request A (IRQA). Invoking
IRQA causes the DSP to use the 24-bit filter coefficients. Refer to Figure 2-1 for
the location of SW2.

7. To hear the results of using the 16-bit coefficients, briefly press the switch
labeled SW3. This invokes the external interrupt request D (IRQD), which
causes the DSP to use the 16-bit filter coefficients. Refer to Figure 2-1 for the
location of SW3.

Note: You will hear a significant difference between filtering with the 24-bit and
16-bit coefficients. The reason for this contrast is that it is impossible to
place the notch of the filter exactly on 60 Hz with 16-bit coefficients. The
16-bit filter notch is slightly offset and, therefore, misses the frequency of
the noise. With the 24-bit coefficients, it is possible to place the filter notch
exactly on 60 Hz.

8. To stop the execution of the demo, type force r in the command window in the
bottom left corner of the screen.

9. To exit the Debugger, type quit.

MOTOROLA DSP56303EVMUM/AD, Preliminary 2-5

Running the Demonstration File

Running the Demonstration

2-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

SECTION 3

EXAMPLE TEST PROGRAM

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-1

Example Test Program

3.1 OVERVIEW . 3-3
3.2 WRITING THE PROGRAM . 3-4
3.2.1 Source Statement Format . 3-4
3.2.2 Example Program . 3-5
3.3 ASSEMBLING THE PROGRAM . 3-7
3.3.1 Assembler Command Format . 3-7
3.3.2 Assembler Options . 3-8
3.3.3 Assembler Directives . 3-11
3.3.4 Assembling the Example Program 3-16
3.4 MOTOROLA DSP LINKER . 3-16
3.4.1 Linker Options. 3-17
3.4.2 Linker Directives . 3-23
3.5 INTRODUCTION TO THE DEBUGGER SOFTWARE 3-24
3.6 RUNNING THE PROGRAM . 3-26

3-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Overview

3.1 OVERVIEW

This section contains an example that illustrates how to develop a very simple
program for the DSP56303. This example has been designed for users who have little
or no experience with the DSP development tools. The example demonstrates the
form of assembly programs, gives instructions on how to assemble programs, and
shows how the Debugger can be used to verify the operation of programs.

Figure 3-1 shows the development process flow for assembly programs. The
rounded blocks represent the assembly and object files. The white blocks represent
software programs to assemble and link the assemble programs. The gray blocks
represent hardware products. The following sections give basic information
regarding the assembly program, the Assembler, the Linker and the object files.
Detailed information about these subjects can be found in the Assembler and Linker
manuals provided with the Motorola DSP CLAS software package available through
your Motorola sales office or distributor. The documentation is also available
through the Motorola DSP internet URL http://www.motorola-dsp.com.

Figure 3-1 Development Process Flow

Assembly Program

Assembler

Relocatable

Linker

Executable

Object File

Object File

DSP56303EVM

*.asm

*.cln

*.cld

ADS Command

Converter Card

DSP56303

DSP56002

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-3

Example Test Program

Writing the Program

3.2 WRITING THE PROGRAM

The following sections describe the format of assembly language source statements
and give an example assembly program.

3.2.1 Source Statement Format

Programs written in assembly language consist of a sequence of source statements.
Each source statement may include up to six fields separated by one or more spaces
or tabs: a label field, an operation field, an operand field, up to two data transfer
fields, and a comment field. For example, the following source statement shows all
six possible fields:

3.2.1.1 Label Field
The label field is the first field of a source statement and can take one of the following
forms:

• A space or tab as the first character on a line ordinarily indicates that the label
files is empty and that the line has no label.

• An alphabetic character as the first character indicates that the line contains a
symbol called a label.

• An underscore as the first character indicated that the label is a local label.

With the exception of some directives, a label is assigned the value of the location
counter of the first word of the instruction or data being assembled. A line consisting
of a label only is a valid line and has the effect of assigning the value of the location
counter to the label.

3.2.1.2 Operation Field
The operation field appears after the label field and must be preceded by at least one
space or tab. Entries in the operation field may be one of three types:

• Opcode—mnemonics that correspond directly to DSP machine instructions

• Directive—special operation codes known to the Assembler which control the
assembly process

trm mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0 ;Text

Label Operation Operand X Data Transfer Y Data Transfer Comment

3-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Writing the Program

• Macro call—invocation of a previously defined macro which is to be inserted
in place of the macro call

3.2.1.3 Operand Field
The interpretation of the operand field is dependent on the contents of the operation
field. The operand field, if present, must follow the operation field and must be
preceded by at least one space or tab.

3.2.1.4 Data Transfer Fields
Most opcodes can specify one or more data transfers to occur during the execution of
the instruction. These data transfers are indicated by two addressing mode operands
separated by a comma, with no embedded blanks. If two data transfers are specified,
they must be separated by one or more blanks or tabs. Refer to the DSP56300 Family
Manual for a complete discussion of addressing modes that are applicable to data
transfer specifications.

3.2.1.5 Comment Field
Comments are not considered significant to the Assembler, but can be included in the
source file for documentation purposes. A comment field is composed of any
characters that are preceded by a semicolon.

3.2.2 Example Program

This program takes two lists of data, one in X memory, and one in Y memory, and
calculates the sum of the products of the two lists. Calculating the sum of products is
the basis for many DSP functions. Therefore, the DSP56303 has a special instruction
(MAC) which multiplies two values and adds the result to the contents of an
accumulator. This program is provided as example.asm on the DSP56303EVM
diskette and is placed in the evm30xw directory by the installation procedure.

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-5

Example Test Program

Writing the Program

Example 3-1 Simple DSP56303 Code Example

;***
;A SIMPLE PROGRAM: CALCULATING THE SUM OF PRODUCTS
;***
PBASE EQU $100 ;instruct the assembler to replace

;every occurrence of PBASE with $200
XBASE EQU $0 ;used to define the position of the

;data in X memory
YBASE EQU $0 ;used to define the position of the

;data in Y memory
;***
;X MEMORY
;***

org x:XBASE ;instructs the assembler that we
;are referring to X memory starting
;at location XBASE

list1 dc $475638,$738301,$92673a,$898978,$091271,$f25067
dc $987153,$3A8761,$987237,$34b852,$734623,$233763
dc $f76756,$423423,$324732,$f40029

;***
;Y MEMORY
;***

org y:YBASE ;instructs the assembler that we
;are referring to Y memory starting
;at location YBASE

list2 dc $f98734,$800000,$fedcba,$487327,$957572,$369856
dc $247978,$8a3407,$734546,$344787,$938482,$304f82
dc $123456,$657784,$567123,$675634

;***
;PROGRAM
;***

org p:0 ;put following program in program
;memory starting at location 0

jmp begin ;p:0 is the reset vector i.e. where
;the DSP looks for instructions
;after a reset

org p:PBASE ;start the main program at p:PBASE

begin
move #list1,r0 ;set up pointer to start of list1
move #list2,r4 ;set up pointer to start of list2
clr a ;clear accumulator a
move x:(r0)+,x0 y:(r4)+,y0

;load the value of X memory pointed
;to by the contents of r0 into x0 and
;post-increment r0
;load the value of Y memory pointed
;to by the contents of r4 into y0 and
;post-increment r4

3-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Assembling the Program

3.3 ASSEMBLING THE PROGRAM

The following sections describe the format of the Assembler command, give a list of
Assembler special characters and directives, and give instructions to assemble the
example program.

3.3.1 Assembler Command Format

The Motorola DSP Assembler is included with the DSP56303EVM on the Motorola
3-1/2 inch diskette and can be installed by following the instructions in
Section 1.3.3. The Motorola DSP Assembler is a program that translates assembly
language source statements into object programs compatible with the DSP56303. The
general format of the command line to invoke the Assembler is:

asm56300 [options] <filenames>

where asm56300 is the name of the Motorola DSP Assembler program, and
<filenames> is a list of the assembly language programs to be assembled. The
following section describes the Assembler options. To avoid ambiguity, the option
arguments should immediately follow the option letter with no blanks between
them.

do #15,endloop;do 15 times
mac x0,y0,a x:(r0)+,x0 y:(r4)+,y0

;multiply and accumulate, and load
;next values

endloop jmp * ;this is equivalent to
;label jmp label
;and is therefore a never-ending,
;empty loop

;***
;END OF THE SIMPLE PROGRAM
;***

Example 3-1 Simple DSP56303 Code Example (Continued)

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-7

Example Test Program

Assembling the Program

3.3.2 Assembler Options

-A

This option indicates that the Assembler should run in absolute mode, generating an
absolute object file when the -B command line option is given. By default, the
Assembler produces a relocatable object file that is subsequently processed by the
Motorola DSP Linker.

-B<objfil>

This option specifies that an object file is to be created for Assembler output. <objfil>
can be any legal operating system filename, including an optional pathname. The
type of object file produced depends on the Assembler operation mode. If the -A
option is supplied on the command line, the Assembler operates in absolute mode
and generates an absolute object (.cld) file. If there is no -A option on the command
line, the Assembler operates in relative mode and creates a relocatable object (.cln)
file. If the -B option is not specified, the Assembler will not generate an object file. If
no <objfil> is specified, the Assembler will use the basename (filename without
extension) of the first filename encountered in the source input file list and append
the appropriate file type (.cln or.cld) to the basename. The -B option should be
specified only once.

Example: asm56300 -Bfilter main.asm fft.asm fio.asm

This example assembles the files main.asm, fft.asm, and fio.asm together to produce
the relocatable object file filter.cln.

-D <symbol> <string>

This option replaces all occurrences of <symbol> with <string> in the source files to
be assembled.

Example: asm56300 -DPOINTS 16 prog.asm

This example replaces all occurrences of the symbol POINTS in the program
prog.asm by the string ‘16’.

-EA<errfil> or -EW<errfil>

These options allow the standard error output file to be reassigned on hosts that do
not support error output redirection from the command line. <errfil> must be
present as an argument, but can be any legal operating system filename, including an

3-8 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Assembling the Program

optional pathname. The -EA option causes the standard error stream to be written to
<errfil>; if <errfil> exists, the output stream is appended to the end of the file. The
-EW option also writes the standard error stream to <errfil>; if <errfil> exists, it will
be overwritten.

Example: asm56300 -EWerrors prog.asm

This example redirects the standard output to the file errors. If the file already exists,
it will be overwritten.

-F<argfil>

This option indicates that the Assembler should read command line input from
<argfil>. <argfil> can be any legal operation system filename, including an optional
pathname. <argfil> is a text file containing further options, arguments, and filenames
to be passed to the Assembler. The arguments in the file need to be separated only by
some form of white space. A semicolon on a line following white space makes the
rest of the line a comment.

Example: asm56300 -Fopts.cmd

This example invokes the Assembler and takes the command line options and source
filenames from the command file opts.cmd.

-G

This option sends the source file line number information to the object file. This
option is valid only in conjunction with the -B command line option. The generated
line number information can be used by debuggers to provide source-level
debugging.

Example: asm56300 -B -Gmyprog.asm

This example assembles the file myprog.asm and sends the source file line number
information to the resulting object file myprog.cln.

-I<pathname>

This option causes the Assembler to look in the directory defined by <pathname> for
any include file not found in the current directory. <pathname> can be any legal
operating system pathname.

Example: asm56300 -I\project\ testprog

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-9

Example Test Program

Assembling the Program

This example uses IBM PC pathname conventions, and would cause the Assembler
to prefix any include files not found in the current directory with the \project\
pathname.

-L<lstfil>

This option specifies that a listing file is to be created for Assembler output. <lstfil>
can be any legal operating system filename, including an optional pathname. If no
<lstfil> is specified, the Assembler will use the basename (filename without
extension) of the first filename encountered in the source input file list and append
.lst to the basename. The -L option should be specified only once.

Example: asm56300 -L filter.asm gauss.asm

This example assembles the files filter.asm and gauss.ams together to produce a
listing file. Because no filename was given, the output file will be named using the
basename of the first source file, in this case filter, and the listing file will be called
filter.lst.

-M<pathname>

This option causes the Assembler to look in the directory defined by <pathname> for
any macro file not found in the current directory. <pathname> can be any legal
operating system pathname.

Example: asm56300 -Mfftlib\ trans.asm

This example uses IBM PC pathname conventions, and would cause the Assembler
to look in the fftlib subdirectory of the current directory for a file with the name of the
currently invoked marco found in the source file, trans.asm.

-V

This option causes the Assembler to report assembly progress to the standard error
output stream.

-Z

This option causes the Assembler to strip symbol information from the absolute load
file. Normally symbol information is retained in the object file for symbolic
references purposes. This option is only valid with the -A and -B options.

Note: Multiple options can be used. A typical string might be:

Example: asm56300 -A -B -L -G filename.asm
3-10 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Assembling the Program

3.3.3 Assembler Directives

In addition to the DSP56303 instruction set, the assembly programs can contain
mnemonic directives which specify auxiliary actions to be performed by the
Assembler. These are the Assembler directives. These directives are not always
translated into machine language. The following sections briefly describe the various
types of Assembler directives.

3.3.3.1 Assembler Significant Characters
There are several one and two character sequences that are significant to the
Assembler. The Assembler significant characters are:

; - Comment delimiter

;; - Unreported comment delimiter

\ - Line continuation character or macro dummy argument
concatenation operator

? - Macro value substitution operator

% - Macro hex value substitution operator

^ - Macro local label override operator

“ - Macro string delimiter or quoted string DEFINE expansion character

@ - Function delimiter

* - Location counter substitution

++ - String concatenation operator

[] - Substring delimiter

<< - I/O short addressing mode force operator

< - Short addressing mode force operator

> - Long addressing mode force operator

- Immediate addressing mode operator

#< - Immediate short addressing mode force operator

#> - Immediate long addressing mode force operator

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-11

Example Test Program

Assembling the Program

3.3.3.2 Assembly Control
The directives used for assembly control are:

COMMENT - Start comment lines

DEFINE - Define substitution string

END - End of source program

FAIL - Programmer generated error message

FORCE - Set operand forcing mode

HIMEM - Set high memory bounds

INCLUDE - Include secondary file

LOMEM - Set low memory bounds

MODE - Change relocation mode

MSG - Programmer generated message

ORG - Initialize memory space and location counters

RADIX - Change input radix for constants

RDIRECT - Remove directive or mnemonic from table

SCSJMP - Set structured control branching mode

SCSREG - Reassign structured control statement registers

UNDEF - Undefine DEFINE symbol

WARN - Programmer generated warning

3-12 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Assembling the Program
3.3.3.3 Symbol Definition
The directives used to control symbol definition are:

ENDSEC - End section

EQU - Equate symbol to a value

GLOBAL - Global section symbol declaration

GSET - Set global symbol to a value

LOCAL - Local section symbol declaration

SECTION - Start section

SET - Set symbol to a value

XDEF - External section symbol definition

XREF - External section symbol reference

3.3.3.4 Data Definition/Storage Allocation
The directives used to control constant data definition and storage allocation are:

BADDR - Set buffer address

BSB - Block storage bit-reverse

BSC - Block storage of constant

BSM - Block storage modulo

BUFFER - Start buffer

DC - Define constant

DCB - Define constant byte

DS - Define storage

DSM - Define modulo storage

DSR - Define reverse carry storage

ENDBUF - End buffer

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-13

Example Test Program

Assembling the Program
3.3.3.5 Listing Control and Options
The directives used to control the output listing are:

LIST - List the assembly

LSTCOL - Set listing field widths

NOLIST - Stop assembly listing

OPT - Assembler options

PAGE - Top of page/size page

PRCTL - Send control string to printer

STITLE - Initialize program subtitle

TABS - Set listing tab stops

TITLE - Initialize program title

3.3.3.6 Object File Control
The directives used for control of the object file are:

COBJ - Comment object code

IDENT - Object code identification record

SYMOBJ - Write symbol information to object file

3-14 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Assembling the Program
3.3.3.7 Macros and Conditional Assembly
The directives used for macros and conditional assembly are:

DUP - Duplicate sequence of source lines

DUPA - Duplicate sequence with arguments

DUPC - Duplicate sequence with characters

DUPF - Duplicate sequence in loop

ENDIF - End of conditional assembly

ENDM - End of macro definition

EXITM - Exit macro

IF - Conditional assembly directive

MACLIB - Macro library

MACRO - Macro definition

PMACRO - Purge macro definition

3.3.3.8 Structured Programming
The directives used for structured programming are:

.BREAK - Exit from structured loop construct

.CONTINUE - Continue next iteration of structured loop

.ELSE - Perform following statements when .IF false

.ENDF - End of .FOR loop

.ENDI - End of .IF condition

.ENDL - End of hardware loop

.ENDW - End of .WHILE loop

.FOR - Begin .FOR loop

.IF - Begin .IF condition

.LOOP - Begin hardware loop

.REPEAT - Begin .REPEAT loop

.UNTIL - End of .REPEAT loop

.WHILE - Begin .WHILE loop

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-15

Example Test Program

Motorola DSP Linker
3.3.4 Assembling the Example Program

The Assembler is a MS-DOS based program, thus to use the Assembler you will need
to exit Windows or open a MS-DOS Prompt Window. To assemble the example
program, type asm56300 -a -b -l -g example.asm in the evm303w directory created by
the installation process from Section 1.3.3. This will create two additional files:
example.cld and example.lst. The example.cld file is the absolute object file of the
program, and this is what will be downloaded into the DSP56303. The example.lst
file is the listing file and gives full details of where the program and data will be
placed in the DSP56303 memory.

3.4 MOTOROLA DSP LINKER

Though not needed for our simple example, the Motorola DSP Linker is also
included with the DSP56303EVM. The Motorola DSP Linker is a program that
processes relocatable object files produced by the Motorola DSP Assembler,
generating an absolute executable file which can be downloaded to the DSP56303.
The Motorola DSP Linker is included on the Motorola 3-1/2 inch diskette and can be
installed by following the instructions in Section 1.3.3. The general format of the
command line to invoke the Linker is:

dsplnk [options] <filenames>

where dsplnk is the name of the Motorola DSP Linker program, and <filenames> is a
list of the relocatable object files to be linked. The following section describes the
Linker options. To avoid ambiguity, the option arguments should immediately
follow the option letter with no blanks between them.

3-16 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Motorola DSP Linker
3.4.1 Linker Options

-A

This option auto-aligns circular buffers. Any modulo or reverse-carry buffers defined
in the object file input sections are relocated independently in order to optimize
placement in memory. Code and data surrounding the buffer are packed to fill the
space formerly occupied by the buffer and any corresponding alignment gaps.

Example: dsplnk -A myprog.cln

This example links the file myprog.cln and optimally aligns any buffers encountered
in the input.

-B<objfil>

This option specifies that an object file is to be created for Linker output. <objfil> can
be any legal operating system filename, including an optional pathname. If no
filename is specified, or if the -B option is not present, the Linker will use the
basename (filename without extension) of the first filename encountered in the input
file list and append .cld to the basename. If the -I option is present (see below), an
explicit filename must be given. This is because if the Linker followed the default
action, it possibly could overwrite one of the existing input files. The -B option
should be specified only once. If the file named in the -B option already exists, it will
be overwritten.

Example: dsplnk -Bfilter.cld main.cln fft.cln fio.cln

In this example, the files main.cln, fft.cln, and fio.cln are linked together to produce
the absolute executable file filter.cld.

-EA<errfil> or -EW<errfil>

These options allow the standard error output file to be reassigned on hosts that do
not support error output redirection from the command line. <errfil> must be
present as an argument, but can be any legal operating system filename, including an
optional pathname. The -EA option causes the standard error stream to be written to
<errfil>; if <errfil> exists, the output stream is appended to the end of the file. The
-EW option also writes the standard error stream to <errfil>; if <errfil> exists it will
be overwritten.

Example: dsplnk -EWerrors myprog.cln

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-17

Example Test Program

Motorola DSP Linker
This example redirects the standard error output to the file errors. If the file already
exists, it will be overwritten.

-F<argfil>

This option indicates that the Linker should read command line input from <argfil>.
<argfil> can be any legal operating system filename, including an optional
pathname. <argfil> is a text file containing further options, arguments, and filenames
to be passed to the Linker. The arguments in the file need be separated only by some
form of white space. A semicolon on a line following white space makes the rest of
the line a comment.

Example: dsplnk -Fopts.cmd

This example invokes the Linker and takes command line options and input
filenames from the command file opts.cmd.

-G

This option sends source file line number information to the object file. The generated
line number information can be used by debuggers to provide source-level
debugging.

Example: dsplnk -B -Gmyprog.cln

This example links the file myprog.cln and sends source file line number information
to the resulting object file myprog.cld.

-I

The Linker ordinarily produces an absolute executable file as output. When the -I
option is given, the Linker combines the input files into a single relocatable object file
suitable for reprocessing by the Linker. No absolute addresses are assigned and no
errors are issued for unresolved external references. Note that the -B option must be
used when performing incremental linking in order to give an explicit name to the
output file. If the filename were allowed to default, it could overwrite an existing
input file.

Example: dsplnk -I -Bfilter.cln main.cln fft.cln fio.cln

In this example, the files main.cln, fft.cln, and fio.cln are combined to produce the
relocatable object file filter.cln.

3-18 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Motorola DSP Linker
-L<library>

The Linker ordinarily processes a list of input files which each contain a single
relocatable code module. If the -L option is encountered, the Linker treats the
following argument as a library file and searches the file for any outstanding
unresolved references. If a module is found in the library that resolves an
outstanding external reference, the module is read from the library and included in
the object file output. The Linker continues to search a library until all external
references are resolved or no more references can be satisfied within the current
library. The Linker searches a library only once, when it is encountered on the
command line. Therefore, the position of the -L option on the command line is
significant.

Example: dsplnk -B filter main fir -Lio

This example illustrates linking with a library. The files main.cln and fir.cln are
combined with any needed modules in the library io.lib to create the file filter.cld.

-M<mapfil>

This option indicates that a map file is to be created. <mapfil> can be any legal
operating system filename, including an optional pathname. If no filename is
specified, the Linker will use the basename (filename without extension) of the first
filename encountered in the input file list and append .map to the basename. If the
-M option is not specified, then the Linker will not generate a map file. The -M option
should be specified only once. If the file named in the -M option already exists, it will
be overwritten.

Example: dsplnk -M filter.cln gauss.cln

In this example, the files filter.cln and gauss.cln are linked together to produce a map
file. Because no filename was given with the -M option, the output file will be named
using the basename of the first input file, in this case filter. The map file will be called
filter.map.

-N

The Linker considers case significant in symbol names. When the -N option is given
the Linker ignores case in symbol names; all symbols are mapped to lower case.

Example: dsplnk -N filter.cln fft.cln fio.cln

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-19

Example Test Program

Motorola DSP Linker
In this example, the files filter.cln, fft.cln, and fio.cln are linked to produce the
absolute executable file filetr.cld. All symbol references are mapped to lower case.

-O<mem>[<ctr>][<map>]:<origin>

By default the Linker generates instructions and data for the output file beginning at
absolute location zero for all DSP memory spaces. This option allows the
programmer to redefine the start address for any memory space and associated
location counter. <mem> is one of the single-character memory space identifiers (X,
Y, L, P). The letter may be upper or lower case. The optional <ctr> is a letter
indicating the High (H) or Low (L) location counters. If no counter is specified the
default counter is used. <map> is also optional and signifies the desired physical
mapping for all relocatable code in the given memory space. It may be I for Internal
memory, E for External memory, R for ROM, A for Port A, and B for Port B. If <map>
is not supplied, then no explicit mapping is presumed. The <origin> is a hexadecimal
number signifying the new relocation address for the given memory space. The -O
option may be specified as many times as needed on the command line. This option
has no effect if incremental linking is being done (see the -I option).

Example: dsplnk -Ope:200 myprog -Lmylib

This example initializes the default P memory counter to hex 200 and maps the
program space to external memory.

-P<pathname>

When the Linker encounters input files, the current directory (or the directory given
in the library specification) is first searched for the file. If it is not found and the -P
option is specified, the Linker prefixes the filename (and optional pathname) of the
file specification with <pathname> and searches the newly formed directory
pathname for the file.The pathname must be a legal operating system pathname. The
-P option may be repeated as many times as desired.

Example: dsplnk -P\project\ testprog

This example uses IBM PC pathname conventions, and would cause the Linker to
prefix any library files not found in the current directory with the \project\
pathname.

-R<ctlfil>

This option indicates that a memory control file is to be read to determine the
placement of sections in DSP memory and other Linker control functions. <ctlfil> can

3-20 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Motorola DSP Linker
be any legal operating system filename, including an optional pathname. If a
pathname is not specified, an attempt will be made to open the file in the current
directory. If no filename is specified, the Linker will use the basename (filename
without extension) of the first filename encountered in the link input file list and
append .ctl to the basename. If the -R option is not specified, then the Linker will not
use a memory control file. The -R option should be specified only once.

Example: dsplnk -Rproj filter.cln gauss.cln

In this example, the files filter.cln and gauss.cln are linked together using the
memory file proj.ctl.

-U<symbol>

This option allows the declaration of an unresolved reference from the command
line. <symbol> must be specified. This option is useful for creating an undefined
external reference in order to force linking entirely from a library.

Example: dsplnk -Ustart -Lproj.lib

This example declares the symbol start undefined so that it will be resolved by code
within the library proj.lib.

-V

This option causes the Linker to report linking progress (beginning of passes,
opening and closing of input files) to the standard error output stream. This is useful
to insure that link editing is proceeding normally.

Example: dsplnk -V myprog.cln

This example links the file myprog.cln and sends progress lines to the standard error
output.

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-21

Example Test Program

Motorola DSP Linker
-X<opt>[,<opt>,...,<opt>]

The -X option provides for link time options that alter the standard operation of the
Linker. The options are described below (* means default). All options may be
preceded by NO to reverse their meaning. The -X<opt> sequence can be repeated for
as many options as desired.

Option Meaning

ABC* Perform address bounds checking

AEC* Check form of address expressions

ASC Enable absolute section bounds checking

CSL Cumulate section length data

ESO Do not allocate memory below ordered sections

OVLP Warn on section overlap

RO Allow region overlap

RSC* Enable relative section bounds checking

SVO Preserve object file on errors

WEX Add warning count to exit status

Example: dsplnk -XWEX filter.cln fft.cln fio.cln

This example allows the Linker to add the warning count to the exit status so that a
project build will abort on warnings as well as errors.

-Z

This option allows the Linker to strip source file line number and symbol information
from the output file. Symbol information normally is retained for debugging
purposes. This option has no effect if incremental linking is being done (see the -I
option).

Example: dsplnk -Zfilter.cln fft.cln fio.cln

In this example, the files filter.cln, fft.cln, and fio.cln are linked to produce the
absolute object file filter.cln. The output file will contain no symbol or line number
information.

3-22 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Motorola DSP Linker
3.4.2 Linker Directives

Similar to the Assembler directives, the Linker includes mnemonic directives which
specify auxiliary actions to be performed by the Linker. The following sections
briefly describe the Linker directives.

BALIGN -Auto-align circular buffers

BASE - Set region base address

IDENT - Object module identification

INCLUDE - Include directive file

MAP - Map file format control

MEMORY - Set region high memory address

REGION - Establish memory region

RESERVE - Reserve memory block

SBALIGN - Auto-align section buffers

SECSIZE - Pad section length

SECTION - Set section base address

SET - Set symbol value

SIZSYM - Set size symbol

START - Establish start address

SYMBOL - Set symbol value

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-23

Example Test Program

Introduction to the Debugger Software
3.5 INTRODUCTION TO THE DEBUGGER SOFTWARE

This section will give a brief introduction of the Domain Technologies Debugger,
detailing only that which is required to work through this example. Full details of the
Debugger and an informative tutorial can be found in the Debug-56K Manual. The
Domain Technologies Debugger is a software development system for the DSP56303.
The Domain Technologies Debugger is included with the DSP56303EVM on the
Domain Technologies 3-1/2 inch diskette and can be installed by following the
instructions in Section 1.3.3. To invoke the Debugger, double-click on the icon
labelled EVM303W in the EVM56303 program group that was created when the
Debugger was installed.

The Debugger display will be similar to Figure 3-2 with the screen divided into four
windows: the command window, the data window, the unassembly window, and
the registers window. The command window is the window selected, which means
that key strokes will be placed in the command window. As shown in the
demonstration from Section 2, the command window is where commands are
entered. The data window is used to display DSP56303 data. The unassembly
window is used to display the DSP56303 programs. The next instruction to be
executed will be highlighted. The registers window shows the contents of the
DSP56303 internal registers.

3-24 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Introduction to the Debugger Software
When the command window is selected as in Figure 3-2, the tool-bar at the top of the
screen contains buttons for the most often used commands. From right to left the
commands are: go, stop, step, jump, automatic update, reset and radix. The go button
runs the DSP56303 from the program counter. The stop button stops the DSP56303.
The step button executes a single instruction. The jump button is similar to the step
button, except that subroutines are treated as one instruction. The automatic update
button turns the automatic screen update mode on, so that the DSP56303 is
interrupted periodically to update the data and registers windows. The reset button
resets the DSP56303. The radix button can be used to change the radix of the selected
window. Other buttons will appear when other windows are selected, and the
function of these buttons can be found in the Debug-56K Manual.

Figure 3-2 Example Debugger Window Display

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-25

Example Test Program

Running the Program
3.6 RUNNING THE PROGRAM

To load the example program developed above into the Debugger, click in the
command window and type load example. The instruction at line 33 will be
highlighted in the unassembly window as this will be the first instruction to be
executed. However, before we start to execute the program, we should check that the
values we expect to be in data memory are there. To do this, type display x:0 and
display y:0. The data will be displayed in the data window.

To step through the program, type step at the command window prompt. As a
shortcut, you can click on the step button or you can type the start of the command
and press the space bar, and the debugger will complete the remainder of the
command. To repeat the last command, simply press return. As you step through the
code, you will see the registers in the registers window being changed by the
instructions. After each cycle, any register that has been changed will be brightened.
Once you have stepped through the program, ensure that the program has executed
correctly by checking that the result in accumulator a is: $FE 9F2051 6DFCC2.

Stepping through the program like this is good for short programs, but it is
impractical for large complex programs. The way to debug large programs is to set
breakpoints. These are user-defined points at which execution of the code will stop,
allowing the user to step through the section of interest. To set a breakpoint in the
example to check that the values in r0 and r4 are correct before the do loop, type
break p:$106 in the command window. You will see the line before the loop brighten
in the unassembly window, indicating the breakpoint has been set. To point the
DSP56303 back to the start point of the program, type change pc 0. This changes the
program counter such that it is pointing to the reset vector. To start the program
running type go or click on the go button. The DSP56303 will stop when it reaches the
breakpoint, and you will be able to step through the remainder of the code.

To exit the Debugger, type quit at the command prompt.

3-26 DSP56303EVMUM/AD, Preliminary MOTOROLA

SECTION 4

DSP56303EVM TECHNICAL SUMMARY

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-1

DSP56303EVM Technical Summary

4.1 DSP56303EVM DESCRIPTION AND FEATURES 4-3
4.2 DSP56303 DESCRIPTION . 4-3
4.3 MEMORY. 4-4
4.3.1 SRAM . 4-5
4.3.2 Flash PEROM . 4-9
4.4 AUDIO CODEC . 4-10
4.4.1 Codec Analog Input/Output. 4-11
4.4.2 Codec Digital Interface . 4-12
4.4.3 Codec Clock . 4-13
4.5 COMMAND CONVERTER . 4-14

4-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary

DSP56303EVM Description and Features

4.1 DSP56303EVM DESCRIPTION AND FEATURES

An overview description of the DSP56303EVM is provided in the DSP56303EVM
Product Information document (order number DSP56303EVMP/D) included with
this kit. The main features of the DSP56303EVM include the following:

• DSP56303 24-Bit Digital Signal Processor

• Memory

• 16-bit CD-quality audio codec

• Command Converter

4.2 DSP56303 DESCRIPTION

A full description of the DSP56303, including functionality and user information is
provided in the following documents included as a part of this kit:

• DSP56303 Technical Data (order number DSP56303/D): Provides features list
and specifications including signal descriptions, DC power requirements, AC
timing requirements, and available packaging

• DSP56303 User’s Manual (order number DSP56303UM/AD): Provides an
overview description of the DSP and detailed information about the on-chip
components including the memory and I/O maps, peripheral functionality,
and control and status register descriptions for each subsystem

Note: The DSP56303 User’s Manual is currently not available. The DSP56303
Product Specification, Revision 1.02 is being supplied with this kit as a
replacement document.

• DSP56300 Family Manual (order number DSP56300FM/AD): Provides a
detailed description of the core processor including internal status and control
registers and a detailed description of the family instruction set.

Refer to these documents for detailed information about chip functionality and
operation.

Note: A detailed list of known chip errata is also provided with this kit. Refer to
the DSP56303 Chip Errata document for information that has changed since
the publication of the reference documentation listed above. The latest
version can be obtained on the Motorola DSP worldwide web site at
http://www.motorola-dsp.com.

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-3

DSP56303EVM Technical Summary

Memory

4.3 MEMORY

The DSP56303EVM uses the following memory:

• 32 K × 24-bit Fast Static RAM (SRAM) for expansion memory

• 64 K × 8-bit Flash Programmable Erasable Read-Only Memory (PEROM) for
stand-alone operation

Refer to Figure 4-1 for the location of the SRAM and PEROM on the DSP56303EVM.
Figure 4-2 shows a functional block diagram of the DSP56303EVM including the
memory devices.

Figure 4-1 DSP56303EVM Component Layout

CS4215

DSP56303

DSP56002

M
C

M
63

06

AT29LV512

J7

J6

J8J9

P5

P4

P3
MC74HCT04

HDPHNE

OUT

IN

LT1085

P2

MC145407

LED

LED

LT1085

SW2

SW3

JTAG/

POWER

MC33078

MC34164

SW1

P1

Serial #

LED

MC74HCT241

J3 ISA CONNECTOR

J1

J4

COMMAND CONVERTER SELECT

J5
ESSI0 JTAG

J2

M
C

M
63

06

M
C

M
63

06 ESSI1/SCI

Debug

Power

OnCE

4-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary

Memory

4.3.1 SRAM

The DSP56303EVM uses three banks of 32 K × 8-bit fast Static RAM (Motorola
MCM6306, labelled U4, U5, and U6) for memory expansion.The MCM6306 uses a
single 3.3 volt power supply and has an access time of 15 ns. The following sections
give more details on the operation of the SRAM.

Figure 4-2 DSP56303EVM Functional Block Diagram

CS4125

DSP56303DSP56002

JTAG/

ESSI0

HI08SSISCI

J7

J8J4

EXTAL

EXTAL

H
O
S
T

I
S
A

I
n
t
e
r
f
a
c
e

SRAM

SRAM

SRAM

Flash

PEROM

Address BusData Bus

In

Headphone

Out

24.576 MHz

RS-232

16.9344 MHz
19.6608 MHz

P
C

(optional)

SCLK

153.6 KHz

Oscillator

OnCE™ Port

Three 32 K × 8

64 K × 8

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-5

DSP56303EVM Technical Summary

Memory

4.3.1.1 SRAM Connections
The basic connection for the SRAM is shown in Figure 4-3.

The data input/output pins DQ0-DQ7 for the first bank of SRAM are connected to
the DSP56303 D0–D7 pins. Similarly, pins D8–D15 and D16–D23 of the DSP56303 are
connected to the second and third bank of SRAM. The SRAM Write (W) and output
(G) enable lines are connected to the DSP56303 Write (WR) and Read (RD) lines,
respectively. The SRAM chip Enable (E) is generated by the DSP56303 Address
Attribute 0 (AA0). The SRAM activity is controlled by AA0 and the corresponding
Address Attribute Register 0 (AAR0). The SRAM Address input pins A0–A13 are
connected to the respective Port A address pins of the DSP. The SRAM address line
A14 may be connected to the DSP56303 Address Attribute 3 (AA3) or to the
DSP56303 address pin A14. If the jumper on J9 connects pin 1 and 2 as in Figure 4-4a,
then the SRAM address line A14 is connected to AA3 on the DSP56303. If the jumper
on J9 connects pin 2 and 3 as in Figure 4-4b, then the SRAM address line A14 is
connected to A14 on the DSP56303.

Currently, the jumper on J9 MUST connect pins 2 and 3 so that the SRAM address
line A14 is connected to the DSP56303 address line A14. This configuration selects a
unified memory map of 32 K words. The unified memory does not contain
partitioned X data, Y data, and program memory. Thus, access to P:$1000, X:$1000,

Figure 4-3 SRAM Connections to the DSP56303

Figure 4-4 Alternate Configurations for J9

SRAMDSP56303

A0-A13

D0–D7
AA0
RD
WR

A0-A13

DQ0-DQ7
E
G
W

A14
A14

AA3

A14

J9

1 2 3

J9

a b

SRAM DSP
AA3 A14

SRAM DSP
A14

1 2 3

4-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary

Memory

and Y:$1000 are treated as accesses to the same memory cell and 48-bit long memory
data moves are not possible to or from the external SRAM.

4.3.1.2 Example: Programming AAR0
As mentioned above, the SRAM activity is controlled by the DSP56303 pin AA0 and
the corresponding AAR0. AAR0 controls the external access type, the memory type,
and which external memory addresses access the SRAM. Figure 4-5 shows the
memory map that is attained with the AAR0 settings described in this example. (In
this example, the Memory Switch bit in the Operating Mode Register (OMR) is set
and the sixteen-bit compatibility bit in the status register is cleared.) In Figure 4-5, the
SRAM responds to the 32 K of X and Y data memory addresses between $010000 and
$017FFF. However, with the unified memory map, accesses to the same external
memory location are treated as accesses to the same memory cell.

The settings of AAR0 for this example are shown in Figure 4-6. The external Access
Type bits (BAT1 and BAT0) are set to 0 and 1, respectively, to denote SRAM access.
The Address Attribute Polarity bit (BAAP) is cleared to define AA0 as active low.
Address multiplexing is not supported in the DSP56303; therefore, the address
multiplexing bit BAM is cleared. Packing is not needed with the SRAM; thus, the
packing enable bit BPAC is cleared to disable this option.

Figure 4-5 Example Memory Map with the Unified External Memory

Program X Data Y Data

= Internal

$000800
$001000

$FF0000

Memory Map (MS = 1, SC = 0)

$FFFFFF

$000000

 Memory

Unified SRAM
$010000

$018000

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-7

DSP56303EVM Technical Summary

Memory

The P, X data, and Y data space Enable bits (BPEN, BXEN, and BYEN) define
whether the SRAM is activated during external P, X data, or Y data space accesses
respectively. For this example, the BXEN and BYEN bits are set, and BPEN is cleared
to allow the SRAM to respond to X and Y data memory accesses only.

The number of address bits to compare BNC(3:0) and the address to compare bits
BAC(11:0) determine which external memory addresses access the SRAM. The BNC
bits define the number of upper address bits that are compared between the BAC bits
and the external address to determine if the SRAM is accessed. For this example, the
SRAM is assigned to respond to addresses between $010000 and $017FFF. Thus, the
BNC bits are set to $9 and the BAC bits are set to $010. If the nine Most Significant
Bits of the external address are 000000010, the SRAM is accessed.

Figure 4-6 Address Attribute Register AAR0

BNC3 BNC2 BNC1 BNC0 BPAC BAM BYEN BXEN BPEN BAAP BAT1 BAT0

External Access Type
AA pin polarity
Program space Enable
X data space enable
Y data space Enable
Address Multiplexing
Packing Enable
Number of Address

Address to Compare

 bits to compare

100 0 0

BAC11 BAC10 BAC9 BAC8 BAC7 BAC6 BAC5 BAC4 BAC3 BAC2 BAC1 BAC0

1 1 0101 0

0 000 0 0 10 0 000

011

1223

X:$FFFFF9

4-8 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary

Memory

4.3.2 Flash PEROM

The DSP56303EVM uses an Atmel AT29LV512 chip (U7) to provide a 64 K × 8 bit
CMOS Flash PEROM for stand-alone operation (i.e., operation without accessing the
DSP56303 through the OnCE port). The AT29LV512 uses a 3.3 V power supply and
has a read access time of 200 ns.

4.3.2.1 Flash PEROM Connections
The basic connection for the Flash PEROM is shown in Figure 4-7.

The Flash PEROM Address input pins (A0–A15) are connected to the respective Port
A address pins on the DSP. The Flash PEROM data Input/Output pins I/O0–I/O7
are connected to the DSP56303 D0–D7 pins. The Flash Write Enable (WE) and Output
Enable (OE) lines are connected to the DSP56303 Write (WR) and Read (RD) enable
lines, respectively. Address Attribute 1 (AA1) generates the Flash chip enable CE.

4.3.2.2 Programming for Stand-Alone Operation
The Flash PEROM allows the DSP56303EVM to work in stand-alone operation. The
DSP56303 mode pins determine the chip operating mode and start-up procedure
when the DSP56303 exits the Reset state. The switch at SW1 resets the DSP56303 by
asserting and then clearing the RESET pin of the DSP56303. The mode pins MODA,
MODB, MODC, and MODD are sampled as the DSP56303 exits the Reset state.The
mode pins for the DSP56303EVM are set so that the DSP56303 will boot from the
Flash PEROM after reset (Mode 1: MODA is set, MODB and MODC are cleared, and
MODD is at either state).

The flash.asm file, included on the DSP56303EVM diskette, allows the user to
program the Flash PEROM with the code to be run by the DSP56303 in stand-alone
operation. To prepare to program, the Flash PEROM stand-alone code should be
written to program memory. After the stand-alone code is written into program
memory, the size of the stand-alone code in words should be loaded into the register
R1, and the address of the first word of stand-alone code should be loaded into the
register R0. When invoked, flash.asm reads the stand-alone code from program

Figure 4-7 Flash PEROM Connections

A0–A15

DSP56303 FLASH

D0–D7
AA1

WR

I/O0–I/O7
A0–A15

RD OE
CE

WE

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-9

DSP56303EVM Technical Summary

Audio Codec

memory starting at the address pointed to by R0 and ending at the location defined
by the value in R1, and writes the stand-alone code into the Flash PEROM. When the
DSP56303 is reset, the internal bootstrap program will run. The bootstrap program
reads the stand-alone code from the Flash PEROM and writes it to program memory.
The bootstrap program then begins execution of the stand-alone code.

4.4 AUDIO CODEC

The DSP56303EVM analog section uses Crystal Semiconductor’s CS4215 for two
channels of 16 bit A/D conversion and two channels of 16-bit D/A conversion. Refer
to Figure 4-1 on page 4-4 for the location of the codec on the DSP56303EVM and to
Figure 4-2 on page 4-5 for a functional diagram of the codec within the evaluation
module. The codec is very flexible, offering software selectable sampling frequencies
of 8, 9.6, 16, 32, and 48 kHz. Other frequencies are achievable by changing the crystal
or by adding a second crystal to the codec XTAL2I and XTAL2O pins. The CS4215
uses a 5 volt power supply. Thus, Motorola’s MC74HCT241A is used to convert the
voltage levels to and from the 3.3 volt DSP56303. Refer to the CS4215 data sheet
included with this kit for more information.

The ada_init.asm and echo.asm files included on the Motorola diskette give examples
on how to program the codec. The ada_init.asm file contains the initialization code
for the codec and the basic interrupt service routines for the ESSI transmit and
receive interrupts. The echo.asm file is an example program that moves audio
through the codec and adds a noticeable echo to the audio. The echo.asm file uses the
ada_init.asm file. The ada_init.asm and echo.asm files have been set up such that the
parameters can be changed by the user easily by changing one of a few control
words.

The codec is connected to the DSP56303 ESSI0 through the shorting jumpers on J7
shown in Figure 4-1 on page 4-4. By removing these jumpers, the user has full access
to the ESSI0 pins of the DSP56303. The following sections describe the connections
for the analog and digital sections of the codec.

4-10 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary

Audio Codec

4.4.1 Codec Analog Input/Output

The DSP56303EVM contains 1/8-inch stereo jacks for stereo input, output, and
headphones. Figure 4-8 shows the analog circuitry of the codec.

The stereo jack labelled P3/IN on the DSP56303EVM connects to the codec left and
right microphone inputs MINL and MINR through an attenuating buffer stage
provided by Motorola’s MC33078 dual op-amp at U10. Standard line level inputs are
2 VP and the codec requires that input levels be limited to 1 VP. Thus, the buffer stage
forms a 6 dB attenuator. Additional internal amplifiers with a programmable 20 dB
gain block are provided for the microphone inputs. The 20 dB gain block may be
disabled using the control mode of the codec.

The analog outputs of the codec are routed via an attenuator to a pair of line outputs,
to a pair of headphone outputs, and to a pair of mono monitor speaker outputs. The
Mono speaker Outputs (MOUT1 and MOUT2) are not used. The Headphone outputs
(HEADL and HEADR) are connected to the stereo jack labelled P4/HDPHNE on the
DSP56303EVM, which permits direct connection of stereo headphones to the
DSP56303EVM. The Headphone Common return (HEADC) is the return path for
large currents when driving headphones from HEADL and HEADR.

The Line Outputs (LOUTR and LOUTL) provide the output analog signal through
the stereo jack labelled P5/OUT on the DSP56303EVM. This jack can be selected in
software to provide output swings of 2 VP or 2-8 VP. Refer to the CS4215 data sheet
for technical details of the programming steps required to choose the output voltage
swing.

Figure 4-8 Codec Analog Input/Output Diagram

MOUT1

MOUT2

HEADL
HEADR
HEADC

Headphones

LOUTR

LOUTL

Stereo

CS4215

MINR

MINL

LINR

LINL

Stereo

Unused

Unused

Input

Output

(P3)

(P4)

(P5)

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-11

DSP56303EVM Technical Summary

Audio Codec

4.4.2 Codec Digital Interface

Figure 4-9 shows the digital interface to the codec.

The serial interface of the codec transfers digital audio data and control data into and
out of the device. The codec communicates with the DSP56303 through the ESSI0,
which consists of independent transmitter and receiver sections.

On the DSP56303 side, the Serial Transmit Data (STD0) pin transmits data to the
codec. The Serial Receive Data 0 (SRD0) pin receives data from the codec. These two
pins are connected to the codec Serial Data Input (SDIN) and Serial Data Output
(SDOUT) pins, respectively. The DSP56303 bidirectional Serial Clock (SCK0) pin
provides the serial bit rate clock for the ESSI0 interface. It is connected to the codec
Serial Clock (SCLK) pin. Data is transmitted on the rising edge of SCLK and is
received on the falling edge of SCLK.

The DSP56303 Serial Control 0 (SC00) pin is programmed to control the codec Reset
signal RESET. Serial Control 1 (SC01) pin is programmed to control the codec
Data/Control (D/C) select input pin . When D/C is low, SDIN and SDOUT contain
control information. When D/C is high, SDIN and SDOUT contain data information.
The Serial Control 2 (SC02) pin is connected to the codec Frame Sync (FSYNC) signal.
A rising edge on FSYNC indicates that a new frame is about to start. FSYNC may be
an input to the codec, or it may be an output from the codec.

Figure 4-9 Codec Digital Interface Connections

STD0

SRD0

SCK0

SC00

SC01

SC02

SDIN

SDOUT

SCLK

RESET

D/C

FSYNC

DSP56303 CS4215

4-12 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary

Audio Codec

4.4.3 Codec Clock

Figure 4-10 shows the clock generation diagram.

Two external crystals may be attached to the XTL1IN, XTL1OUT, XTL2IN, and
XTL2OUT pins. The XTAL1IN oscillator is intended for use at 24.576 MHz and the
XTAL2IN oscillator is intended for use at 16.9344 MHz, although other frequencies
may be used. Refer to the CS4215 data sheet for information regarding selection of
the correct clock source and divide ratios.

The codec on the DSP56303EVM is driven by a 24.576 MHz crystal between XTL1IN
and XTL1OUT. The 24.576 MHz oscillator provides the master clock to run the codec.
FSYNC and SCLK must be synchronous to this master clock. The external Clock
Input (CLKIN), which is provided for potential use with an external AES/EBU
receiver or an already existing system clock, is not used. The master Clock Output
(CLKOUT) is also not used.

Figure 4-10 Codec Clock Generation Diagram

XTL1IN

XTL1OUT

XTL2IN

XTL2OUT

CLKIN

CLKOUT

27 pF

27 pF

24.576 MHz

CS4215

27 pF

27 pF

16.9344 MHz
(optional)

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-13

DSP56303EVM Technical Summary

Command Converter

4.5 COMMAND CONVERTER

The DSP56303EVM uses Motorola’s DSP56002 to perform OnCE/JTAG command
conversion. The DSP56002 Serial Communications Interface (SCI) communicates
with the host PC through an RS-232 connector. The DSP56002 SCI receives
commands from the host PC. The set of commands may include read data, write
data, reset OnCE, reset DSP56303 (the HA2 pin of the DSP56002 is then used to reset
the DSP56303), request OnCE, or release OnCE. The DSP56002 command converter
software interprets the commands received from the PC and sends a sequence of
instructions to the DSP56303 OnCE/JTAG port. The DSP56303 may then continue to
receive data or it may transmit data back to the DSP56002. The DSP56002 sends a
reply to the host PC to give status information. The set of replies may include
acknowledge good, acknowledge bad, in Debug mode, out of Debug mode, or data
read. When the DP56303 is in the Debug state, the red Debug LED (D6) is lluminated.

The DSP56002 is connected to the DSP56303 OnCE port through the shorting jumpers
on J4. By removing the jumpers, the user has full access to the OnCE/JTAG pins of
the DSP56303. Refer to Figure 4-1 on page 4-4 for the location of J4 on the
DSP56303EVM and to Figure 4-2 on page 4-5 for a functional diagram. Figure 4-11
shows the RS-232 serial interface diagram.

Motorola’s 5 Volt-Only Driver/Receiver MC145407 is used to transmit the signals
between the host PC and the DSP56002. Serial data is transmitted from the host PC
Transmitted Data (TD) signal and received on the DSP56002 Receive Data (RXD) pin.
Serial data is similarly transmitted from the DSP56002 Transmit Data (TXD) signal
and received on the host PC Received Data (RD) signal. The Data Terminal Ready
(DTR) pin asserts the RESET pin of the DSP56002. As an option, the DSP56303EVM
14-pin JTAG connector at J5 allows the user to connect an ADS command converter
card directly to the DSP56303EVM if the DSP56002 command converter software is
not used (J4 jumpers removed). Pin 8 has been removed from J5. The JTAG cable
from the ADS command converter is similarly keyed so that the cable cannot be
connected to the DSP56303EVM incorrectly.

Figure 4-11 RS-232 Serial Interface

DSP56002 RS-232 TRANSCEIVER

RXD

TXD

TD

RD

HOST PC

RESET DTR

D01

DI1

D02

Rx1

Tx1

Rx2
4-14 DSP56303EVMUM/AD, Preliminary MOTOROLA

MOTOROLA DSP56303EVMUM/AD, Preliminary A-1

APPENDIX A

DSP56303EVM SCHEMATICS

A-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Schematics

A-3 DSP56303EVMUM/AD, Preliminary MOTOROLA

+
+

MOTOROLA DSP56303EVMUM/AD, Preliminary A-4

A-5 DSP56303EVMUM/AD, Preliminary MOTOROLA

+
+

+

+

MOTOROLA DSP56303EVMUM/AD, Preliminary A-6

+

+

++

+

+

A-7 DSP56303EVMUM/AD, Preliminary MOTOROLA

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+

+

+
+

+

+
+

+
+

+
+

+

+
+

+
+

+

+
+

+
+

+

+

MOTOROLA DSP56303EVMUM/AD, Preliminary A-8

APPENDIX B

DSP56303EVM PARTS LIST

MOTOROLA DSP56303EVMUM/AD, Preliminary B-1

DSP56303EVM Parts List

B-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Parts List

B.1 PARTS LISTING

The following table contains information on the parts and devices on the
DSP56303EVM.

Table B-1 DSP56303EVM Parts List

Designator Manufacturer Part Number Description

U1 Motorola DSP56303 DSP

U2 Motorola DSP56002 DSP (OnCE)

U3 Crystal
Semiconductor

CS4215KL Audio Codec

U4 U5 U6 Motorola MCM6306DJ15 SRAM

U7 Atmel AT29LV512-20JC Flash PEROM

U8 Linear
Technologies

LT1085CT-5 5V Regulator

U9 Linear
Technologies

LT1085CT-3.3 3.3V Regulator

U10 Motorola MC33078D Dual Op-Amp

U11 Motorola MC145407DW RS-232
Transceiver

U12 Motorola MC34164D-3 Undervolt Sensor

U13 Motorola MC74HCT241ADW Octal
Noninverting
Buffer

U14 Motorola MC74HCT04AD Hex Inverter

D1 D2 D3 D4 D9 D10
D11

Rectron FM4001 Diode

D5 Rectron FM5817 Schottky Diode

D6 D12 Quality
Technologies

HLMP1700 Red LED

D8 Quality
Technologies

HLMP1790 Green LED

MOTOROLA DSP56303EVMUM/AD, Preliminary B-3

DSP56303EVM Parts List

Y1 Ecliptek EC2-169-16.9344MHZ 16.9344 MHz
Crystal

Y2 ECS OECS-196.6-3-C3X1A 19.6608 MHz
Crystal

Y3 Ecliptek EC2-246-24.576MHZ 24.576 MHz
Crystal

SW1 SW2 SW3 Panasonic EVQ-QS205K 6 mm Switch

P1 Mouser 152-3409 DB-9 Female
Connector

P2 Switchcraft RAPC-722 2.1 mm DC
Power Jack

P3 P4 P5 Switchcraft 35RAPC4BHN2 3.5 mm Miniature
Jack

J1 Robinson
Nugent

NSH-8DB-S2-TG Header 8 pin
double row

J2 J3 Robinson
Nugent

NSH-16DB-S2-TG Header 16 pin
double row

J4 J6 J7 Robinson
Nugent

NSH-12DB-S2-TG Header 12 pin
double row

J5 Robinson
Nugent

NSH-14DB-S2-TG Header 14 pin
double row

J8 Robinson
Nugent

P2DN-40A-S1-TR Header 40 pin
double row

J9 Robinson
Nugent

NSH-3SB-S2-TG Header 3 pin
single row

C51 Xicon MR16V10 10 µF Capacitor

C33 C34 C47 C56 C57
C58 C59 C82 C83

Murata GRM42-6Y5V105Z025BL 1.0 µF Capacitor

Table B-1 DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description

B-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Parts List

C7 C8 C10 C12 C14
C15 C17 C20 C22 C24
C26 C27 C29 C30 C31
C50 C52 C54 C55 C64
C68 C70 C71 C72 C77
C79 C84 C87 C88

Murata GRM40-X7R104K025BL 0.1 µF Capacitor

C9 C11 C13 C16 C18
C19 C21 C23 C25 C28
C37 C39 C40 C65 C69
C73 C74 C75 C76 C78
C80 C81

Murata GRM40-X7R103K050BL 0.01 µF Capacitor

C53 Kemet T491B475K016AS 4.7 µF Capacitor

C41 C42 Murata GRM40-COG220J050BL 22 pF Capacitor

C48 C49 C66 C67 Murata GRM40-COG270J050BL 27 pF Capacitor

C2 C3 C4 C44 C46
C85 C86

Murata GRM42-6Y5V334Z025BL 0.33 µF Capacitor

C38 Murata GRM42-6Y5V474Z025BL 0.47 µF Capacitor

C43 C45 Murata GRM40-COG470J050BL 47 pF Capacitor

C35 C36 Murata GRM40-COG222J050BL 2200 pF Capacitor

C62 Murata GRM40-X7R821K050BL 820 pF Capacitor

C63 Murata GRM40-X7R182K050BL 1800 pF Capacitor

C5 C6 C60 C61 Xicon MLRL10V47 47 µF Capacitor

C1 Xicon XAL16V1000 1000 µF Capacitor

L1 L2 L3 L4 Murata BL01RN1-A62 Ferrite Bead

R1 R43 NIC NRC12RF1001TR 1 K Resistor

R30 NIC NRC12RF5001TR 5 K Resistor

Table B-1 DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description

MOTOROLA DSP56303EVMUM/AD, Preliminary B-5

DSP56303EVM Parts List

R4 R5 R6 R7 R20 R21
R22 R23 R24 R25 R29
R31 R32 R34 R35 R36
R37 R38 R39 R40 R41
R42 R44

NIC NRC12RF1002TR 10 K Resistor

R8 R9 NIC NRC25RF15R8TR 15.8 KΩ Resistor

R14 R15 NIC NRC12RF1500TR 150 Ω Resistor

R16 R18 NIC NRC12RF2212TR 22.1 KΩ Resistor

R12 R13 NIC NRC12RF3922TR 39.2 KΩ Resistor

R17 R19 NIC NRC12RF4752TR 47.5 KΩ Resistor

R45 NIC NRC12RF5600TR 2.7 KΩ Resistor

R10 R11 R46 NIC NRC12RF6040TR 604 Ω Resistor

R28 NIC NRC12RF6803TR 680 KΩ Resistor

Table B-1 DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description

B-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

APPENDIX C

MOTOROLA ASSEMBLER NOTES

MOTOROLA DSP56303EVMUM/AD, Preliminary C-1

Motorola Assembler Notes

C.1 INTRODUCTION . C-3
C.2 ASSEMBLER SIGNIFICANT CHARACTERS C-3
C.3 ASSEMBLER DIRECTIVES . C-13
C.4 STRUCTURED CONTROL STATEMENTS C-64

C-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Introduction

C.1 INTRODUCTION

This appendix supplements information in Section 3 of this document and provides
a detailed description of the following components used with the Motorola
Assembler:

• Special characters significant to the assembler

• Assembler directives

• Structure control statements

C.2 ASSEMBLER SIGNIFICANT CHARACTERS

There are several one and two character sequences that are significant to the
assembler. The following subsections define these characters and their use.

C.2.1 ; Comment Delimiter Character

Any number of characters preceded by a semicolon (;), but not part of a literal string,
is considered a comment. Comments are not significant to the assembler, but they
can be used to document the source program. Comments will be reproduced in the
assembler output listing. Comments are normally preserved in macro definitions, but
this option can be turned off (see the OPT directive).

Comments can occupy an entire line, or can be placed after the last
assembler-significant field in a source statement. A comment starting in the first
column of the source file will be aligned with the label field in the listing file.
Otherwise, the comment will be shifted right and aligned with the comment field in
the listing file.

Example B-1 Example of Comment Delimiter

; THIS COMMENT BEGINS IN COLUMN 1 OF THE SOURCE FILE
LOOP JSR COMPUTE; THIS IS A TRAILING COMMENT

; THESE TWO COMMENTS ARE PRECEDED
; BY A TAB IN THE SOURCE FILE

MOTOROLA DSP56303EVMUM/AD, Preliminary C-3

Motorola Assembler Notes

Assembler Significant Characters

C.2.2 ;; Unreported Comment Delimiter Characters

Unreported comments are any number of characters preceded by two consecutive
semicolons (;;) that are not part of a literal string. Unreported comments are not
considered significant by the assembler, and can be included in the source statement,
following the same rules as normal comments. However, unreported comments are
never reproduced on the assembler output listing, and are never saved as part of
macro definitions.

C.2.3 \ Line Continuation Character or Macro Argument
Concatenation Character Line Continuation

C.2.3.1 Line Continuation
The backslash character (\), if used as the last character on a line, indicates to the
assembler that the source statement is continued on the following line. The
continuation line will be concatenated to the previous line of the source statement,
and the result will be processed by the assembler as if it were a single line source
statement. The maximum source statement length (the first line and any continuation
lines) is 512 characters.

C.2.3.2 Macro Argument Concatenation
The backslash (\) is also used to cause the concatenation of a macro dummy
argument with other adjacent alphanumeric characters. For the macro processor to
recognize dummy arguments, they must normally be separated from other
alphanumeric characters by a non-symbol character. However, sometimes it is
desirable to concatenate the argument characters with other characters. If an
argument is to be concatenated in front of or behind some other symbol characters,
then it must be followed by or preceded by the backslash, respectively.

Example B-2 Example of Unreported Comment Delimiter

;; THESE LINES WILL NOT BE REPRODUCED
;; IN THE SOURCE LISTING

Example B-3 Example of Line Continuation Character

; THIS COMMENT \
EXTENDS OVER \
THREE LINES

C-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Significant Characters

C.2.4 ? Return Value of Symbol Character

The ?<symbol> sequence, when used in macro definitions, will be replaced by an
ASCII string representing the value of <symbol>. This operator may be used in
association with the backslash (\) operator. The value of <symbol> must be an
integer (not floating point).

Example B-4 Example of Macro Concatenation

Suppose the source input file contained the following macro definition:

SWAP_REG MACRO REG1,REG2 ;swap REG1,REG2 using D4.L as temp
MOVE R\REG1,D4.L
MOVE R\REG2,R\REG1
MOVE D4.L,R\REG2
ENDM

The concatenation operator (\) indicates to the macro processor that the substitution
characters for the dummy arguments are to be concatenated in both cases with the
character R. If this macro were called with the following statement,

SWAP_REG 0,1

the resulting expansion would be:

MOVE R0,D4.L
MOVE R1,R0
MOVE D4.L,R1

Example B-5 Example of Use of Return Value Character

Consider the following macro definition:

SWAP_SYMMACRO REG1,REG2;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1

 MOVE D4.L,R\?REG2
ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1

SWAP_SYM AREG,BREG

the resulting expansion as it would appear on the source listing would be:

MOTOROLA DSP56303EVMUM/AD, Preliminary C-5

Motorola Assembler Notes

Assembler Significant Characters

C.2.5 % Return Hex Value of Symbol Character

The %<symbol> sequence, when used in macro definitions, will be replaced by an
ASCII string representing the hexadecimal value of <symbol>. This operator may be
used in association with the backslash (\) operator. The value of <symbol> must be
an integer (not floating point).

C.2.6 ^ Macro Local Label Override

The circumflex (^), when used as a unary expression operator in a macro expansion,
will cause any local labels in its associated term to be evaluated at normal scope
rather than macro scope. This means that any underscore labels in the expression
term following the circumflex will not be searched for in the macro local label list.
The operator has no effect on normal labels or outside of a macro expansion. The
circumflex operator is useful for passing local labels as macro arguments to be used
as referents in the macro.

MOVE R0,D4.L
MOVE R1,R0
MOVE D4.L,R1

Example B-6 Example of Return Hex Value Symbol Character

Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL STMT

ENDM

If this macro were called as follows,

NUM SET 10
GEN_LAB HEX,NUM,'NOP'

The resulting expansion as it would appear in the listing file would be:

HEXA NOP

Example B-5 Example of Use of Return Value Character

C-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Significant Characters

Note: The circumflex is also used as the binary exclusive OR operator.

C.2.7 " Macro String Delimiter or Quoted String DEFINE
Expansion Character

C.2.7.1 Macro String
The double quote ("), when used in macro definitions, is transformed by the macro
processor into the string delimiter, the single quote ('). The macro processor examines
the characters between the double quotes for any macro arguments. This mechanism
allows the use of macro arguments as literal strings.

Example B-7 Example of Local Label Override Character

Consider the following macro definition:

LOAD MACRO ADDR
MOVE P:̂ ADDR,R0
ENDM

If this macro were called as follows,

_LOCAL
LOAD _LOCAL

the assembler would ordinarily issue an error since _LOCAL is not defined within
the body of the macro. With the override operator the assembler recognizes the
_LOCAL symbol outside the macro expansion and uses that value in the MOVE
instruction.

Example B-8 Example of a Macro String Delimiter Character

Using the following macro definition,

CSTR MACRO STRING
DC "STRING"
ENDM

and a macro call,

CSTR ABCD

the resulting macro expansion would be:

DC 'ABCD'

MOTOROLA DSP56303EVMUM/AD, Preliminary C-7

Motorola Assembler Notes

Assembler Significant Characters
C.2.7.2 Quoted String DEFINE Expansion
A sequence of characters which matches a symbol created with a DEFINE directive
will not be expanded if the character sequence is contained within a quoted string.
Assembler strings generally are enclosed in single quotes ('). If the string is enclosed
in double quotes (") then DEFINE symbols will be expanded within the string. In all
other respects usage of double quotes is equivalent to that of single quotes.

C.2.8 @ Function Delimiter

All assembler built-in functions start with the @ symbol.

C.2.9 * Location Counter Substitution

When used as an operand in an expression, the asterisk represents the current integer
value of the runtime location counter.

Example B-9 Example of a Quoted String DEFINE Expression

Consider the source fragment below:

DEFINE LONG 'short'
STR_MAC MACRO STRING

MSG 'This is a LONG STRING'
MSG "This is a LONG STRING"
ENDM

If this macro were invoked as follows,

STR_MAC sentence

then the resulting expansion would be:

MSG 'This is a LONG STRING'
MSG 'This is a short sentence'

Example B-10 Example of a Function Delimiter Character

SVAL EQ @SQT(FVAL) ; OBTAIN SQUARE ROOT

Example B-11 Example of a Location Counter Substitution

ORG X:$100
XBASE EQU *+$20 ; XBASE = $120

C-8 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Significant Characters
C.2.10 ++ String Concatenation Operator

Any two strings can be concatenated with the string concatenation operator (++). The
two strings must each be enclosed by single or double quotes, and there must be no
intervening blanks between the string concatenation operator and the two strings.

C.2.11 [] Substring Delimiter [<string>,<offset><length>]

Square brackets delimit a substring operation. The <string> argument is the source
string. <offset> is the substring starting position within <string>. <length> is the
length of the desired substring. <string> may be any legal string combination,
including another substring. An error is issued if either <offset> or <length> exceed
the length of <string>.

C.2.12 << I/O Short Addressing Mode Force Operator

Many DSP instructions allow an I/O short form of addressing. If the value of an
absolute address is known to the assembler on pass one, then the assembler will
always pick the shortest form of addressing consistent with the instruction format. If
the absolute address is not known to the assembler on pass one (that is, the address is
a forward or external reference), then the assembler will pick the long form of
addressing by default. If this is not desired, then the I/O short form of addressing
can be forced by preceding the absolute address by the I/O short addressing mode
force operator (<<).

Example B-12 Example of a String Concatenation Operator

'ABC'++'DEF' = 'ABCDEF'

Example B-13 Example of a Substring Delimiter

DEFINE ID ['DSP56000',3,5] ; ID = '56000'

Example B-14 Example of an I/O Short Addressing Mode Force Operator

Since the symbol IOPORT is a forward reference in the following sequence of source
lines, the assembler would pick the long absolute form of addressing by default:

BTST #4,Y:IOPORT
IOPORT EQU Y:$FFF3

MOTOROLA DSP56303EVMUM/AD, Preliminary C-9

Motorola Assembler Notes

Assembler Significant Characters
C.2.13 < Short Addressing Mode Force Operator

Many DSP instructions allow a short form of addressing. If the value of an absolute
address is known to the assembler on pass one, or the FORCE SHORT directive is
active, then the assembler will always pick the shortest form of addressing consistent
with the instruction format. If the absolute address is not known to the assembler on
pass one (that is, the address is a forward or external reference), then the assembler
will pick the long form of addressing by default. If this is not desired, then the short
absolute form of addressing can be forced by preceding the absolute address by the
short addressing mode force operator (<).

C.2.14 > Long Addressing Mode Force Operator

Many DSP instructions allow a long form of addressing. If the value of an absolute
address is known to the assembler on pass one, then the assembler will always pick
the shortest form of addressing consistent with the instruction format, unless the

Because the long absolute addressing mode would cause the instruction to be two
words long instead of one word for the I/O short absolute addressing mode, it
would be desirable to force the I/O short absolute addressing mode as shown
below:

BTST #4,Y:<<IOPORT
IOPORT EQU Y:$FFF3

Example B-15 Example of a Short Addressing Mode Force Operator

Since the symbol DATAST is a forward reference in the following sequence of
source lines, the assembler would pick the long absolute form of addressing by
default:

MOVE D0.L,Y:DATAST
DATAST EQU Y:$23

Because the long absolute addressing mode would cause the instruction to be two
words long instead of one word for the short absolute addressing mode, it would be
desirable to force the short absolute addressing mode as shown below:

MOVE D0.L,Y:<DATAST
DATAST EQU Y:$23

Example B-14 Example of an I/O Short Addressing Mode Force Operator

C-10 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Significant Characters
FORCE LONG directive is active. If this is not desired, then the long absolute form of
addressing can be forced by preceding the absolute address by the long addressing
mode force operator (>).

C.2.15 # Immediate Addressing Mode

The pound sign (#) is used to indicate to the assembler to use the immediate
addressing mode.

C.2.16 #< Immediate Short Addressing Mode Force Operator

Many DSP instructions allow a short immediate form of addressing. If the immediate
data is known to the assembler on pass one (not a forward or external reference), or
the FORCE SHORT directive is active, then the assembler will always pick the
shortest form of immediate addressing consistent with the instruction. If the
immediate data is a forward or external reference, then the assembler will pick the
long form of immediate addressing by default. If this is not desired, then the short

Example B-16 Example of a Long Addressing Mode Force Operator

Since the symbol DATAST is a not a forward reference in the following sequence of
source lines, the assembler would pick the short absolute form of addressing:

DATAST EQU Y:$23
MOVE D0.L,Y:DATAST

If this is not desirable, then the long absolute addressing mode can be forced as
shown below:

DATAST EQU Y:$23
MOVE D0.L,Y:>DATAST

Example B-17 Example of Immediate Addressing Mode

CNST EQU $5
MOVE #CNST,D0.L

MOTOROLA DSP56303EVMUM/AD, Preliminary C-11

Motorola Assembler Notes

Assembler Significant Characters
form of addressing can be forced using the immediate short addressing mode force
operator (#<).

C.2.17 #> Immediate Long Addressing Mode Force Operator

Many DSP instructions allow a long immediate form of addressing. If the immediate
data is known to the assembler on pass one (not a forward or external reference),
then the assembler will always pick the shortest form of immediate addressing
consistent with the instruction, unless the FORCE LONG directive is active. If this is
not desired, then the long form of addressing can be forced using the immediate long
addressing mode force operator (#>).

Example B-18 Example of Immediate Short Addressing Mode Force Operator

In the following sequence of source lines, the symbol CNST is not known to the
assembler on pass one, and therefore, the assembler would use the long immediate
addressing form for the MOVE instruction.

MOVE #CNST,D0.L
CNST EQU $5

Because the long immediate addressing mode makes the instruction two words
long instead of one word for the immediate short addressing mode, it may be
desirable to force the immediate short addressing mode as shown below:

MOVE #<CNST,D0.L
CNST EQU $5

Example B-19 Example of an Immediate Long Addressing Mode Operator

In the following sequence of source lines, the symbol CNST is known to the
assembler on pass one, and therefore, the assembler would use the short immediate
addressing form for the MOVE instruction.

CNST EQU $5
MOVE #CNST,D0.L

If this is not desirable, then the long immediate form of addressing can be forced as
shown below:

CNST EQU $5
MOVE #>CNST,D0.L

C-12 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3 ASSEMBLER DIRECTIVES

C.3.1 BADDR Set Buffer Address

BADDR <M | R>,<expression>

The BADDR directive sets the runtime location counter to the address of a buffer of
the given type, the length of which in words is equal to the value of <expression>.
The buffer type may be either Modulo or Reverse-carry. If the runtime location
counter is not zero, this directive first advances the runtime location counter to a base
address that is a multiple of 2k, where 2k >= <expression>. An error will be issued if
there is insufficient memory remaining to establish a valid base address. Unlike other
buffer allocation directives, the runtime location counter is not advanced by the
value of the integer expression in the operand field; the location counter remains at
the buffer base address. The block of memory intended for the buffer is not initialized
to any value.

The result of <expression> may have any memory space attribute but must be an
absolute integer greater than zero and cannot contain any forward references
(symbols that have not yet been defined). If a Modulo buffer is specified, the
expression must fall within the range 2 ≤ <expression> ≤ m, where m is the maximum
address of the target DSP. If a Reverse-carry buffer is designated and <expression> is
not a power of two a warning will be issued. A label is not allowed with this
directive.

Note: See also BSM, BSB, BUFFER, DSM, DSR

C.3.2 BSB Block Storage Bit-Reverse

[<label>] BSB <expression>[,<expression>]

The BSB directive causes the assembler to allocate and initialize a block of words for
a reverse-carry buffer. The number of words in the block is given by the first
expression, which must evaluate to an absolute integer. Each word is assigned the
initial value of the second expression. If there is no second expression, an initial value

Example B-20 Example BADDR Directive

ORG X:$100
M_BUF BADDR M,24 ; CIRCULAR BUFFER MOD 24

MOTOROLA DSP56303EVMUM/AD, Preliminary C-13

Motorola Assembler Notes

Assembler Directives
of zero is assumed. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2k,
where 2k is greater than or equal to the value of the first expression. An error will
occur if the first expression contains symbols that are not yet defined (forward
references) or if the expression has a value of less than or equal to zero. Also, if the
first expression is not a power of two a warning will be generated. Both expressions
can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a
valid base address has been established.

Only one word of object code will be shown on the listing, regardless of how large
the first expression is. However, the runtime location counter will be advanced by
the number of words generated.

Note: See also BSC, BSM, DC.

C.3.3 BSC Block Storage of Constant

[<label>] BSC <expression>[,<expression>]

The BSC directive causes the assembler to allocate and initialize a block of words.
The number of words in the block is given by the first expression, which must
evaluate to an absolute integer. Each word is assigned the initial value of the second
expression. If there is no second expression, an initial value of zero is assumed. If the
first expression contains symbols that are not yet defined (forward references) or if
the expression has a value of less than or equal to zero, an error will be generated.
Both expressions can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the directive processing.

Example B-21 Buffer Directive

BUFFER BSB BUFSIZ ; INITIALIZE BUFFER TO ZEROS

C-14 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
Only one word of object code will be shown on the listing, regardless of how large
the first expression is. However, the runtime location counter will be advanced by
the number of words generated.

Note: See also BSM, BSB, DC.

C.3.4 BSM Block Storage Modulo

[<label>] BSM <expression>[,<expression>]

The BSM directive causes the assembler to allocate and initialize a block of words for
a modulo buffer. The number of words in the block is given by the first expression,
which must evaluate to an absolute integer. Each word is assigned the initial value of
the second expression. If there is no second expression, an initial value of zero is
assumed. If the runtime location counter is not zero, this directive first advances the
runtime location counter to a base address that is a multiple of 2k, where 2k is greater
than or equal to the value of the first expression. An error will occur if the first
expression contains symbols that are not yet defined (forward references), has a
value of less than or equal to zero, or falls outside the range 2 ≤ <expression> ≤ m,
where m is the maximum address of the target DSP. Both expressions can have any
memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a
valid base address has been established.

Only one word of object code will be shown on the listing, regardless of how large
the first expression is. However, the runtime location counter will be advanced by
the number of words generated.

Note: See also BSC, BSB, DC.

Example B-22 Block Storage of Constant Directive

UNUSED BSC $2FFF-@LCV(R),$FFFFFFFF; FILL UNUSED EPROM

Example B-23 Block Storage Modulo Directive

BUFFER BSM BUFSIZ,$FFFFFFFF; INITIALIZE BUFFER TO ALL ONES

MOTOROLA DSP56303EVMUM/AD, Preliminary C-15

Motorola Assembler Notes

Assembler Directives
C.3.5 BUFFER Start Buffer

 BUFFER <M | R>,<expression>

The BUFFER directive indicates the start of a buffer of the given type. Data is
allocated for the buffer until an ENDBUF directive is encountered. Instructions and
most data definition directives may appear between the BUFFER and ENDBUF pair,
although BUFFER directives may not be nested and certain types of directives such
as MODE, ORG, SECTION, and other buffer allocation directives may not be used.
The <expression> represents the buffer size. If less data is allocated than the size of
the buffer, the remaining buffer locations will be uninitialized. If more data is
allocated than the specified size of the buffer, an error is issued.

The BUFFER directive sets the runtime location counter to the address of a buffer of
the given type, the length of which in words is equal to the value of <expression>.
The buffer type may be either Modulo or Reverse-carry. If the runtime location
counter is not zero, this directive first advances the runtime location counter to a base
address that is a multiple of 2k, where 2k >= <expression>. An error will be issued if
there is insufficient memory remaining to establish a valid base address. Unlike other
buffer allocation directives, the runtime location counter is not advanced by the
value of the integer expression in the operand field; the location counter remains at
the buffer base address.

The result of <expression> may have any memory space attribute but must be an
absolute integer greater than zero and cannot contain any forward references
(symbols that have not yet been defined). If a Modulo buffer is specified, the
expression must fall within the range 2 ≤ <expression> ≤ m, where m is the maximum
address of the target DSP. If a Reverse-carry buffer is designated and <expression> is
not a power of two a warning will be issued.

Note: A label is not allowed with this directive.

Note: See also BADDR, BSM, BSB, DSM, DSR, ENDBUF.

Example B-24 Buffer Directive

ORG X:$100
BUFFER M,24 ; CIRCULAR BUFFER MOD 24

M_BUF DC 0.5,0.5,0.5,0.5
DS 20 ; REMAINDER UNINITIALIZED
ENDBUF

C-16 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3.6 COBJ Comment Object File

COBJ <string>

The COBJ directive is used to place a comment in the object code file. The <string>
will be put in the object file as a comment.

Note: A label is not allowed with this directive.

Note: See also IDENT.

C.3.7 COMMENT Start Comment Lines

COMMENT <delimiter>
.
.
<delimiter>

The COMMENT directive is used to define one or more lines as comments. The first
non-blank character after the COMMENT directive is the comment delimiter. The
two delimiters are used to define the comment text. The line containing the second
comment delimiter will be considered the last line of the comment. The comment text
can include any printable characters and the comment text will be reproduced in the
source listing as it appears in the source file.

Note: A label is not allowed with this directive.

C.3.8 DC Define Constant

<label>] DC <arg>[,<arg>,...,<arg>]

Example B-25 COBM Directive

COBJ 'Start of filter coefficients'

Example B-26 COMMENT Directive

COMMENT + This is a one line comment +
COMMENT * This is a multiple line

comment. Any number of lines
can be placed between the two delimiters.

 *

MOTOROLA DSP56303EVMUM/AD, Preliminary C-17

Motorola Assembler Notes

Assembler Directives
The DC directive allocates and initializes a word of memory for each <arg>
argument. <arg> may be a numeric constant, a single or multiple character string
constant, a symbol, or an expression. The DC directive may have one or more
arguments separated by commas. Multiple arguments are stored in successive
address locations. If multiple arguments are present, one or more of them can be null
(two adjacent commas), in which case the corresponding address location will be
filled with zeros. If the DC directive is used in L memory, the arguments will be
evaluated and stored as long word quantities. Otherwise, an error will occur if the
evaluated argument value is too large to represent in a single DSP word.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the directive processing.

Integer arguments are stored as is; floating point numbers are converted to binary
values. Single and multiple character strings are handled in the following manner:

• Single character strings are stored in a word whose lower seven bits represent
the ASCII value of the character.

• Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the
string (unless the NOPS option is specified; see the OPT directive). If the
number of characters is not an even multiple of the number of bytes per DSP
word, then the last word will have the remaining characters left aligned and
the rest of the word will be zero-filled. If the NOPS option is given, each
character in the string is stored in a word whose lower seven bits represent the
ASCII value of the character.

Note: See also BSC, DCB.

Example B-27 Single Character String Definition

'R' = $000052

Example B-28 Multiple Character String Definition

'ABCD' = $414243
$440000

Example B-29 DC Directive

TABLE DC 1426,253,$2662,'ABCD'
CHARS DC 'A','B','C','D'

C-18 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3.9 DCB Define Constant Byte

[<label>] DCB <arg>[,<arg>,...,<arg>]

The DCB directive allocates and initializes a byte of memory for each <arg>
argument. <arg> may be a byte integer constant, a single or multiple character string
constant, a symbol, or a byte expression. The DCB directive may have one or more
arguments separated by commas. Multiple arguments are stored in successive byte
locations. If multiple arguments are present, one or more of them can be null (two
adjacent commas), in which case the corresponding byte location will be filled with
zeros.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the directive processing.

Integer arguments are stored as is, but must be byte values (e.g. within the range
0-255); floating point numbers are not allowed. Single and multiple character strings
are handled in the following manner:

• Single character strings are stored in a word whose lower seven bits represent
the ASCII value of the character. (See Example B-27.)

• Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the
string (unless the NOPS option is specified; see the OPT directive). If the
number of characters is not an even multiple of the number of bytes per DSP
word, then the last word will have the remaining characters left aligned and
the rest of the word will be zero-filled. If the NOPS option is given, each
character in the string is stored in a word whose lower seven bits represent the
ASCII value of the character. (See Example B-28.)

Note: See also BSC, DC.

C.3.10 DEFINE Define Substitution String

DEFINE <symbol> <string>

Example B-30 DCB Directive

TABLE DCB 'two',0,'strings',0
CHARS DCB 'A','B','C','D'

MOTOROLA DSP56303EVMUM/AD, Preliminary C-19

Motorola Assembler Notes

Assembler Directives
The DEFINE directive is used to define substitution strings that will be used on all
following source lines. All succeeding lines will be searched for an occurrence of
<symbol>, which will be replaced by <string>. This directive is useful for providing
better documentation in the source program. <symbol> must adhere to the
restrictions for non-local labels. That is, it cannot exceed 512 characters, the first of
which must be alphabetic, and the remainder of which must be either alphanumeric
or the underscore(_). A warning will result if a new definition of a previously defined
symbol is attempted. The assembler output listing will show lines after the DEFINE
directive has been applied and therefore redefined symbols will be replaced by their
substitution strings (unless the NODXL option in effect; see the OPT directive).

Macros represent a special case. DEFINE directive translations will be applied to the
macro definition as it is encountered. When the macro is expanded any active
DEFINE directive translations will again be applied.

DEFINE directive symbols that are defined within a section will only apply to that
section. See the SECTION directive.

Note: A label is not allowed with this directive.

Note: See also UNDEF.

C.3.11 DS Define Storage

[<label>] DS <expression>

The DS directive reserves a block of memory the length of which in words is equal to
the value of <expression>. This directive causes the runtime location counter to be
advanced by the value of the absolute integer expression in the operand field.
<expression> can have any memory space attribute. The block of memory reserved is

Example B-31 DEFINE Directive

If the following DEFINE directive occurred in the first part of the source program:

DEFINE ARRAYSIZ '10 * SAMPLSIZ'

then the source line below:

DS ARRAYSIZ

would be transformed by the assembler to the following:

DS 10 * SAMPLSIZ

C-20 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
not initialized to any value. The expression must be an integer greater than zero and
cannot contain any forward references (symbols that have not yet been defined).

<label>, if present, will be assigned the value of the runtime location counter at the
start of the directive processing.

Note: See also DSM, DSR.

C.3.12 DSM Define Modulo Storage

[<label>] DSM <expression>

The DSM directive reserves a block of memory the length of which in words is equal
to the value of <expression>. If the runtime location counter is not zero, this directive
first advances the runtime location counter to a base address that is a multiple of 2k,
where 2k >= <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Next the runtime location counter is
advanced by the value of the integer expression in the operand field. <expression>
can have any memory space attribute. The block of memory reserved is not
initialized to any given value. The result of <expression> must be an absolute integer
greater than zero and cannot contain any forward references (symbols that have not
yet been defined). The expression also must fall within the range:

2 ≤ <expression> ≤ m,
where m is the maximum address of the target DSP.

<label>, if present, will be assigned the value of the runtime location counter after a
valid base address has been established.

Note: See also DS, DSR.

Example B-32 DS Directive

S_BUF DS 12 ; SAMPLE BUFFER

Example B-33 DSM Directive

ORG X:$100
M_BUF DSM 24 ; CIRCULAR BUFFER MOD 24

MOTOROLA DSP56303EVMUM/AD, Preliminary C-21

Motorola Assembler Notes

Assembler Directives
C.3.13 DSR Define Reverse Carry Storage

[<label>] DSR <expression>

The DSR directive reserves a block of memory the length of which in words is equal
to the value of <expression>. If the runtime location counter is not zero, this directive
first advances the runtime location counter to a base address that is a multiple of 2k,
where 2k ≥ <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Next the runtime location counter is
advanced by the value of the integer expression in the operand field. <expression>
can have any memory space attribute. The block of memory reserved is not
initialized to any given value. The result of <expression> must be an absolute integer
greater than zero and cannot contain any forward references (symbols that have not
yet been defined). Since the DSR directive is useful mainly for generating FFT
buffers, if <expression> is not a power of two a warning will be generated.

<label>, if present, will be assigned the value of the runtime location counter after a
valid base address has been established.

Note: See also DS, DSM.

C.3.14 DUP Duplicate Sequence of Source Lines

[<label>] DUP <expression>
.
.
 ENDM

The sequence of source lines between the DUP and ENDM directives will be
duplicated by the number specified by the integer <expression>. <expression> can
have any memory space attribute. If the expression evaluates to a number less than
or equal to 0, the sequence of lines will not be included in the assembler output. The
expression result must be an absolute integer and cannot contain any forward
references (symbols that have not already been defined). The DUP directive may be
nested to any level.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the DUP directive processing.

Example B-34 DSR Directive

ORG X:$100
R_BUF DSR 8 ; REVERSE CARRY BUFFER FOR 16 POINT FFT

C-22 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
Note: See also DUPA, DUPC, DUPF, ENDM, MACRO

Note: See the OPT directive in this appendix for more information on the MD
and MEX options.

C.3.15 DUPA Duplicate Sequence With Arguments

[<label>] DUPA <dummy>,<arg>[<,<arg>,...,<arg>]
.
.
ENDM

The block of source statements defined by the DUPA and ENDM directives will be
repeated for each argument. For each repetition, every occurrence of the dummy
parameter within the block is replaced with each succeeding argument string. If the

Example B-35 DUP Directive

The sequence of source input statements,

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR D0
ENDM

would generate the following in the source listing:

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR D0
ASR D0
ASR D0
ENDM

Note that the lines

DUP COUNT ;ASR BY COUNT
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

ASR D0
ASR D0
ASR D0

will only be shown on the source listing if the MEX option is enabled.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-23

Motorola Assembler Notes

Assembler Directives
argument string is a null, then the block is repeated with each occurrence of the
dummy parameter removed. If an argument includes an embedded blank or other
assembler-significant character, it must be enclosed with single quotes.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the DUPA directive processing.

Note: See also DUP, DUPC, DUPF, ENDM, MACRO.

Note: See the OPT directive in this appendix for more information on the MD
and MEX options.

Example B-36 DUPA Directive

If the input source file contained the following statements,

DUPA VALUE,12,32,34
DC VALUE
ENDM

then the assembled source listing would show

DUPA VALUE,12,32,34
DC 12
DC 32
DC 34
ENDM

Note that the lines

DUPA VALUE,12,32,34
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 12
DC 32
DC 34

will only be shown on the source listing if the MEX option is enabled.

C-24 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3.16 DUPC Duplicate Sequence With Characters

[<label>] DUPC <dummy>,<string>
.
.
 ENDM

The block of source statements defined by the DUPC and ENDM directives will be
repeated for each character of <string>. For each repetition, every occurrence of the
dummy parameter within the block is replaced with each succeeding character in the
string. If the string is null, then the block is skipped.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the DUPC directive processing.

Note: See also DUP, DUPA, DUPF, ENDM, MACRO.

Note: See the OPT directive in this appendix for more information on the MD
and MEX options.

Example B-37 DUPC Directive

If input source file contained the following statements,

DUPC VALUE,'123'
DC VALUE
ENDM

then the assembled source listing would show:

DUPC VALUE,'123'
DC 1
DC 2
DC 3
ENDM

Note that the lines

DUPC VALUE,'123'
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 1
DC 2
DC 3

will only be shown on the source listing if the MEX option is enabled.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-25

Motorola Assembler Notes

Assembler Directives
C.3.17 DUPF Duplicate Sequence In Loop

[<label>] DUPF <dummy>,[<start>],<end>[,<increment>]
.
.
 ENDM

The block of source statements defined by the DUPF and ENDM directives will be
repeated in general (<end> - <start>) + 1 times when <increment> is 1. <start> is the
starting value for the loop index; <end> represents the final value. <increment> is the
increment for the loop index; it defaults to 1 if omitted (as does the <start> value).
The <dummy> parameter holds the loop index value and may be used within the
body of instructions.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the DUPF directive processing.

Note: See also DUP, DUPA, DUPC, ENDM, MACRO.

Example B-38 DUPF Directive

If input source file contained the following statements,

DUPF NUM,0,7
MOVE #0,R\NUM
ENDM

then the assembled source listing would show:

DUPF NUM,0,7
MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7
ENDM

Note that the lines

DUPF NUM,0,7
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

C-26 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
Note: See the OPT directive in this appendix for more information on the MD
and MEX options.

C.3.18 END End of Source Program

END [<expression>]

The optional END directive indicates that the logical end of the source program has
been encountered. Any statements following the END directive are ignored. The
optional expression in the operand field can be used to specify the starting execution
address of the program. <expression> may be absolute or relocatable, but must have
a memory space attribute of Program or None. The END directive cannot be used in
a macro expansion.

Note: A label is not allowed with this directive.

C.3.19 ENDBUF End Buffer

ENDBUF

The ENDBUF directive is used to signify the end of a buffer block. The runtime
location counter will remain just beyond the end of the buffer when the ENDBUF
directive is encountered.

Note: A label is not allowed with this directive.

MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7

will only be shown on the source listing if the MEX option is enabled.

Example B-39 END Directive

END BEGIN ; BEGIN is the starting execution address

Example B-38 DUPF Directive (Continued)

MOTOROLA DSP56303EVMUM/AD, Preliminary C-27

Motorola Assembler Notes

Assembler Directives
Note: See also BUFFER.

C.3.20 ENDIF End of Conditional Assembly

ENDIF

The ENDIF directive is used to signify the end of the current level of conditional
assembly. Conditional assembly directives can be nested to any level, but the ENDIF
directive always refers to the most previous IF directive.

Note: A label is not allowed with this directive.

Note: See also IF.

C.3.21 ENDM End of Macro Definition

ENDM

Every MACRO, DUP, DUPA, and DUPC directive must be terminated by an ENDM
directive.

Note: A label is not allowed with this directive.

Example B-40 ENDBUF Directive

ORG X:$100
BUF BUFFER R,64 ; uninitialized reverse-carry buffer

ENDBUF

Example B-41 ENDIF Directive

IF @REL()
SAVEPC SET * ; Save current program counter

ENDIF

C-28 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
Note: See also DUP, DUPA, DUPC, MACRO.

C.3.22 ENDSEC End Section

ENDSEC

Every SECTION directive must be terminated by an ENDSEC directive.

Note: A label is not allowed with this directive.

Note: See also SECTION.

C.3.23 EQU Equate Symbol to a Value

<label> EQU [{X: | Y: | L: | P: | E:}]<expression>

The EQU directive assigns the value and memory space attribute of <expression> to
the symbol <label>. If <expression> has a memory space attribute of None, then it
can optionally be preceded by any of the indicated memory space qualifiers to force a
memory space attribute. An error will occur if the expression has a memory space
attribute other than None and it is different than the forcing memory space attribute.
The optional forcing memory space attribute is useful to assign a memory space
attribute to an expression that consists only of constants but is intended to refer to a
fixed address in a memory space.

The EQU directive is one of the directives that assigns a value other than the program
counter to the label. The label cannot be redefined anywhere else in the program (or

Example B-42 ENDM Directive

SWAP_SYM MACRO REG1,REG ;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1

 MOVE D4.L,R\?REG2
ENDM

Example B-43 ENDSEC Directive

SECTION COEFF
ORG Y:

VALUES BSC $100 ; Initialize to zero
ENDSEC

MOTOROLA DSP56303EVMUM/AD, Preliminary C-29

Motorola Assembler Notes

Assembler Directives
section, if SECTION directives are being used). The <expression> may be relative or
absolute, but cannot include a symbol that is not yet defined (no forward references
are allowed).

Note: See also SET.

C.3.24 EXITM Exit Macro

EXITM

The EXITM directive will cause immediate termination of a macro expansion. It is
useful when used with the conditional assembly directive IF to terminate macro
expansion when error conditions are detected.

Note: A label is not allowed with this directive.

Note: See also DUP, DUPA, DUPC, MACRO.

Example B-44 EQU Directive

A_D_PORT EQU X:$4000

This would assign the value $4000 with a memory space attribute of X to the symbol
A_D_PORT.

COMPUTE EQU @LCV(L)

@LCV(L) is used to refer to the value and memory space attribute of the load
location counter. This value and memory space attribute would be assigned to the
symbol COMPUTE.

Example B-45 EXITM Directive

CALC MACRO XVAL,YVAL
IF XVAL<0
FAIL 'Macro parameter value out of range'
EXITM ; Exit macro
ENDIF
.
.
.
ENDM

C-30 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3.25 FAIL Programmer Generated Error

FAIL [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The FAIL directive will cause an error message to be output by the assembler. The
total error count will be incremented as with any other error. The FAIL directive is
normally used in conjunction with conditional assembly directives for exceptional
condition checking. The assembly proceeds normally after the error has been printed.
An arbitrary number of strings and expressions, in any order but separated by
commas with no intervening white space, can be specified optionally to describe the
nature of the generated error.

Note: A label is not allowed with this directive.

Note: See also MSG, WARN.

C.3.26 FORCE Set Operand Forcing Mode

FORCE {SHORT | LONG | NONE}

The FORCE directive causes the assembler to force all immediate, memory, and
address operands to the specified mode as if an explicit forcing operator were used.
Note that if a relocatable operand value forced short is determined to be too large for
the instruction word, an error will occur at link time, not during assembly. Explicit
forcing operators override the effect of this directive.

Note: A label is not allowed with this directive.

Note: See also <, >, #< , #>.

Example B-46 FAIL Directive

FAIL 'Parameter out of range'

Example B-47 FORCE Directive

FORCE SHORT ; force operands short

MOTOROLA DSP56303EVMUM/AD, Preliminary C-31

Motorola Assembler Notes

Assembler Directives
C.3.27 GLOBAL Global Section Symbol Declaration

GLOBAL <symbol>[,<symbol>,...,<symbol>]

The GLOBAL directive is used to specify that the list of symbols is defined within the
current section, and that those definitions should be accessible by all sections. This
directive is only valid if used within a program block bounded by the SECTION and
ENDSEC directives. If the symbols that appear in the operand field are not defined
in the section, an error will be generated.

Note: A label is not allowed with this directive.

Note: See also SECTION, XDEF, XREF.

C.3.28 GSET Set Global Symbol to a Value

<label> GSET <expression>
GSET <label> <expression>

The GSET directive is used to assign the value of the expression in the operand field
to the label. The GSET directive functions somewhat like the EQU directive.
However, labels defined via the GSET directive can have their values redefined in
another part of the program (but only through the use of another GSET or SET
directive). The GSET directive is useful for resetting a global SET symbol within a
section, where the SET symbol would otherwise be considered local. The expression
in the operand field of a GSET must be absolute and cannot include a symbol that is
not yet defined (no forward references are allowed).

Note: See also EQU, SET.

Example B-48 GLOBAL Directive

SECTION IO
GLOBAL LOOPA ; LOOPA will be globally accessible by other sections
.
.
.
ENDSEC

Example B-49 GSET Directive

COUNT GSET 0 ; INITIALIZE COUNT

C-32 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3.29 HIMEM Set High Memory Bounds

HIMEM <mem>[<rl>]:<expression>[,...]

The HIMEM directive establishes an absolute high memory bound for code and data
generation. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl>
is one of the letters R for runtime counter or L for load counter. The <expression> is
an absolute integer value within the address range of the machine. If during
assembly the specified location counter exceeds the value given by <expression>, a
warning is issued.

Note: A label is not allowed with this directive.

Note: See also LOMEM.

C.3.30 IDENT Object Code Identification Record

[<label>] IDENT <expression1>,<expression2>

The IDENT directive is used to create an identification record for the object module.
If <label> is specified, it will be used as the module name. If <label> is not specified,
then the filename of the source input file is used as the module name. <expression1>
is the version number; <expression2> is the revision number. The two expressions
must each evaluate to an integer result. The comment field of the IDENT directive
will also be passed on to the object module.

Note: See also COBJ.

Example B-50 HIMEM Directive

HIMEM XR:$7FFF,YR:$7FFF ; SET X/Y RUN HIGH MEM BOUNDS

Example B-51 IDENT Directive

If the following line was included in the source file,

FFILTER IDENT 1,2 ; FIR FILTER MODULE

then the object module identification record would include the module name
(FFILTER), the version number (1), the revision number (2), and the comment field
(; FIR FILTER MODULE).

MOTOROLA DSP56303EVMUM/AD, Preliminary C-33

Motorola Assembler Notes

Assembler Directives
C.3.31 IF Conditional Assembly Directive

IF <expression>
.
.
[ELSE] (the ELSE directive is optional)
.
.
ENDIF

 Part of a program that is to be conditionally assembled must be bounded by an
IF-ENDIF directive pair. If the optional ELSE directive is not present, then the source
statements following the IF directive and up to the next ENDIF directive will be
included as part of the source file being assembled only if the <expression> has a
nonzero result. If the <expression> has a value of zero, the source file will be
assembled as if those statements between the IF and the ENDIF directives were
never encountered. If the ELSE directive is present and <expression> has a nonzero
result, then the statements between the IF and ELSE directives will be assembled,
and the statements between the ELSE and ENDIF directives will be skipped.
Alternatively, if <expression> has a value of zero, then the statements between the IF
and ELSE directives will be skipped, and the statements between the ELSE and
ENDIF directives will be assembled.

The <expression> must have an absolute integer result and is considered true if it has
a nonzero result. The <expression> is false only if it has a result of 0. Because of the
nature of the directive, <expression> must be known on pass one (no forward
references allowed). IF directives can be nested to any level. The ELSE directive will
always refer to the nearest previous IF directive as will the ENDIF directive.

Note: A label is not allowed with this directive.

Note: See also ENDIF.

Example B-52 IF Directive

IF @LST>0
DUP @LST ; Unwind LIST directive stack
NOLIST
ENDM
ENDIF

C-34 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3.32 INCLUDE Include Secondary File

INCLUDE <string> | <<string>>

This directive is inserted into the source program at any point where a secondary file
is to be included in the source input stream. The string specifies the filename of the
secondary file. The filename must be compatible with the operating system and can
include a directory specification. If no extension is given for the filename, a default
extension of .ASM is supplied.

The file is searched for first in the current directory, unless the <<string>> syntax is
used, or in the directory specified in <string>. If the file is not found, and the -I
option was used on the command line that invoked the assembler, then the string
specified with the -I option is prefixed to <string> and that directory is searched. If
the <<string>> syntax is given, the file is searched for only in the directories specified
with the -I option.

Note: A label is not allowed with this directive.

Note: See also MACLIB.

C.3.33 LIST List the Assembly

LIST

Print the listing from this point on. The LIST directive will not be printed, but the
subsequent source lines will be output to the source listing. The default is to print the
source listing. If the IL option has been specified, the LIST directive has no effect
when encountered within the source program.

The LIST directive actually increments a counter that is checked for a positive value
and is symmetrical with respect to the NOLIST directive.

Example B-53 INCLUDE Directive

INCLUDE 'headers/io.asm'; Unix example
INCLUDE 'storage\mem.asm'; MS-DOS example
INCLUDE <data.asm> ; Do not look in current directory

MOTOROLA DSP56303EVMUM/AD, Preliminary C-35

Motorola Assembler Notes

Assembler Directives
Note the following sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was issued.

Note: A label is not allowed with this directive.

Note: See also NOLIST, OPT.

C.3.34 LOCAL Local Section Symbol Declaration

LOCAL <symbol>[,<symbol>,...,<symbol>]

The LOCAL directive is used to specify that the list of symbols is defined within the
current section, and that those definitions are explicitly local to that section. It is
useful in cases where a symbol is used as a forward reference in a nested section
where the enclosing section contains a like-named symbol. This directive is only
valid if used within a program block bounded by the SECTION and ENDSEC
directives. The LOCAL directive must appear before <symbol> is defined in the
section. If the symbols that appear in the operand field are not defined in the section,
an error will be generated.

Note: A label is not allowed with this directive.

Note: See also SECTION, XDEF, XREF.

Example B-54 LIST Directive

IF LISTON
LIST ; Turn the listing back on
ENDIF

C-36 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3.35 LOMEM Set Low Memory Bounds

LOMEM <mem>[<rl>]:<expression>[,...]

The LOMEM directive establishes an absolute low memory bound for code and data
generation. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl>
is one of the letters R for runtime counter or L for load counter. The <expression> is
an absolute integer value within the address range of the machine. If during
assembly the specified location counter falls below the value given by <expression>,
a warning is issued.

Note: A label is not allowed with this directive.

Note: See also HIMEM.

C.3.36 LSTCOL Set Listing Field Widths

LSTCOL [<labw>[,<opcw>[,<oprw>[,<opc2w>[,<opr2w>[,<xw>[,<yw>]]]]]]]

Sets the width of the output fields in the source listing. Widths are specified in terms
of column positions. The starting position of any field is relative to its predecessor
except for the label field, which always starts at the same position relative to page left
margin, program counter value, and cycle count display. The widths may be
expressed as any positive absolute integer expression. However, if the width is not
adequate to accommodate the contents of a field, the text is separated from the next
field by at least one space.

Example B-55 LOCAL Directive

SECTION IO
LOCAL LOOPA ; LOOPA local to this section
.
.
.
ENDSEC

Example B-56 LOMEM Directive

LOMEM XR:$100,YR:$100 ; SET X/Y RUN LOW MEM BOUNDS

MOTOROLA DSP56303EVMUM/AD, Preliminary C-37

Motorola Assembler Notes

Assembler Directives
Any field for which the default is desired may be null. A null field can be indicated
by two adjacent commas with no intervening space or by omitting any trailing fields
altogether. If the LSTCOL directive is given with no arguments all field widths are
reset to their default values.

Note: A label is not allowed with this directive.

Note: See also PAGE.

C.3.37 MACLIB Macro Library

MACLIB <pathname>

This directive is used to specify the <pathname> (as defined by the operating system)
of a directory that contains macro definitions. Each macro definition must be in a
separate file, and the file must be named the same as the macro with the extension
.ASM added. For example, BLOCKMV.ASM would be a file that contained the
definition of the macro called BLOCKMV.

If the assembler encounters a directive in the operation field that is not contained in
the directive or mnemonic tables, the directory specified by <pathname> will be
searched for a file of the unknown name (with the .ASM extension added). If such a
file is found, the current source line will be saved, and the file will be opened for
input as an INCLUDE file. When the end of the file is encountered, the source line is
restored and processing is resumed. Because the source line is restored, the
processed file must have a macro definition of the unknown directive name, or else
an error will result when the source line is restored and processed. However, the
processed file is not limited to macro definitions, and can include any legal source
code statements.

Multiple MACLIB directives may be given, in which case the assembler will search
each directory in the order in which it is encountered.

Note: A label is not allowed with this directive.

Example B-57 LSTCOL Directive

LSTCOL 40,,,,,20,20 ; Reset label, X, and Y data field widths

C-38 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
Note: See also INCLUDE.

C.3.38 MACRO Macro Definition

<label> MACRO [<dummy argument list>]
.
.
<macro definition statements>
.
.
ENDM

The dummy argument list has the form:

[<dumarg>[,<dumarg>,...,<dumarg>]]

The required label is the symbol by which the macro will be called. If the macro is
named the same as an existing assembler directive or mnemonic, a warning will be
issued. This warning can be avoided with the RDIRECT directive.

The definition of a macro consists of three parts: the header, which assigns a name to
the macro and defines the dummy arguments; the body, which consists of prototype
or skeleton source statements; and the terminator. The header is the MACRO
directive, its label, and the dummy argument list. The body contains the pattern of
standard source statements. The terminator is the ENDM directive.

The dummy arguments are symbolic names that the macro processor will replace
with arguments when the macro is expanded (called). Each dummy argument must
obey the same rules as symbol names. Dummy argument names that are preceded
by an underscore are not allowed. Within each of the three dummy argument fields,
the dummy arguments are separated by commas. The dummy argument fields are
separated by one or more blanks.

Macro definitions may be nested but the nested macro will not be defined until the
primary macro is expanded.

Example B-58 MACLIB Directive

MACLIB 'macros\mymacs\'; IBM PC example
MACLIB 'fftlib/' ; UNIX example

MOTOROLA DSP56303EVMUM/AD, Preliminary C-39

Motorola Assembler Notes

Assembler Directives
Note: See also DUP, DUPA, DUPC, DUPF, ENDM

C.3.39 MODE Change Relocation Mode

MODE <ABS[OLUTE] | REL[ATIVE]>

Causes the assembler to change to the designated operational mode. The MODE
directive may be given at any time in the assembly source to alter the set of location
counters used for section addressing. Code generated while in absolute mode will
be placed in memory at the location determined during assembly. Relocatable code
and data are based from the enclosing section start address. The MODE directive
has no effect when the command line -A option is issued.

Note: A label is not allowed with this directive.

Note: See also ORG.

C.3.40 MSG Programmer Generated Message

MSG [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The MSG directive will cause a message to be output by the assembler. The error
and warning counts will not be affected. The MSG directive is normally used in
conjunction with conditional assembly directives for informational purposes. The
assembly proceeds normally after the message has been printed. An arbitrary
number of strings and expressions, in any order but separated by commas with no
intervening white space, can be specified optionally to describe the nature of the
message.

Example B-59 MACRO Directive

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using X0 as temp
MOVE R\?REG1,X0
MOVE R\?REG2,R\?REG1
MOVE X0,R\?REG2
ENDM

Example B-60 MODE Directive

MODE ABS ; Change to absolute mode

C-40 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
Note: A label is not allowed with this directive.

Note: See also FAIL, WARN.

C.3.41 NOLIST Stop Assembly Listing

NOLIST

Do not print the listing from this point on (including the NOLIST directive).
Subsequent source lines will not be printed.

The NOLIST directive actually decrements a counter that is checked for a positive
value and is symmetrical with respect to the LIST directive. Note the following
sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was issued.

Note: A label is not allowed with this directive.

Note: See also LIST, OPT.

Example B-61 MSG Directive

MSG 'Generating sine tables'

Example B-62 NOLIST Directive

IF LISTOFF
NOLIST ; Turn the listing off
ENDIF

MOTOROLA DSP56303EVMUM/AD, Preliminary C-41

Motorola Assembler Notes

Assembler Directives
C.3.42 OPT Assembler Options

OPT <option>[,<option>,...,<option>][<comment>]

The OPT directive is used to designate the assembler options. Assembler options are
given in the operand field of the source input file and are separated by commas.
Options also may be specified using the command line -O option. All options have a
default condition. Some options are reset to their default condition at the end of pass
one. Some are allowed to have the prefix NO attached to them, which then reverses
their meaning.

Note: A label is not allowed with this directive.

Options can be grouped by function into five different types:

1. Listing format control

2. Reporting options

3. Message control

4. Symbol options

5. Assembler operation

C.3.42.1 Listing Format Control
These options control the format of the listing file:

• FC—Fold trailing comments

• FF— Form feeds for page ejects

• FM—Format messages

• PP—Pretty print listing

• RC—Relative comment spacing

C.3.42.2 Reporting Options
These options control what is reported in the listing file:

• CEX—Print DC expansions

• CL—Print conditional assembly directives

• CRE—Print symbol cross-reference

• DXL—Expand DEFINE directive strings in listing

C-42 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
• HDR—Generate listing headers

• IL—Inhibit source listing

• LOC—Print local labels in cross-reference

• MC—Print macro calls

• MD—Print macro definitions

• MEX—Print macro expansions

• MU—Print memory utilization report

• NL—Print conditional assembly and section nesting levels

• S—Print symbol table

• U—Print skipped conditional assembly lines

C.3.42.3 Message Control
These options control the types of assembler messages that are generated:

• AE—Check address expressions

• MSW—Warn on memory space incompatibilities

• UR—Flag unresolved references

• W—Display warning messages

C.3.42.4 Symbol Options
These options deal with the handling of symbols by the assembler:

• DEX—Expand DEFINE symbols within quoted strings

• IC—Ignore case in symbol names

• NS—Support symbol scoping in nested sections

• SCL—Scope structured control statement labels

• SCO—Structured control statement labels to listing/object file

• SO—Write symbols to object file

• XLL—Write local labels to object file

• XR—Recognize XDEFed symbols without XREF

C.3.42.5 Assembler Operation
Miscellaneous options having to do with internal assembler operation:

MOTOROLA DSP56303EVMUM/AD, Preliminary C-43

Motorola Assembler Notes

Assembler Directives
• CC—Enable cycle counts

• CK—Enable checksumming

• CM—Preserve comment lines within macros

• CONST—Make EQU symbols assembly time constants

• CONTCK—Continue checksumming

• DLD—Do not restrict directives in loops

• GL—Make all section symbols global

• GS—Make all sections global static

• INTR—Perform interrupt location checks

• LB—Byte increment load counter

• LDB—Listing file debug

• MI—Scan MACLIB directories for include files

• PS—Pack strings

• PSM—Programmable short addressing mode

• RP—Generate NOP to accommodate pipeline delay

• RSV—Check reserve data memory locations

• SI—Interpret short immediate as long or sign extended

• SVO—Preserve object file on errors

Following are descriptions of the individual options. The parenthetical inserts
specify default if the option is the default condition, and reset if the option is reset to
its default state at the end of pass one.

• AE—(default, reset) Check address expressions for appropriate arithmetic
operations. For example, this will check that only valid add or subtract
operations are performed on address terms.

• CC—Enable cycle counts and clear total cycle count. Cycle counts will be
shown on the output listing for each instruction. Cycle counts assume a full
instruction fetch pipeline and no wait states.

• CEX—Print DC expansions.

• CK—Enable checksumming of instruction and data values and clear
cumulative checksum. The checksum value can be obtained using the
@CHK() function.

C-44 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
• CL—(default, reset) Print the conditional assembly directives.

• CM—(default, reset) Preserve comment lines of macros when they are
defined. Note that any comment line within a macro definition that starts with
two consecutive semicolons (;;) is never preserved in the macro definition.

• CONST—EQU symbols are maintained as assembly time constants and will
not be sent to the object file. This option, if used, must be specified before the
first symbol in the source program is defined.

• CONTC—Re-enable cycle counts. Does not clear total cycle counts. The cycle
count for each instruction will be shown on the output listing.

• CONTCK—Re-enable checksumming of instructions and data. Does not clear
cumulative checksum value.

• CRE—Print a cross reference table at the end of the source listing. This option,
if used, must be specified before the first symbol in the source program is
defined.

• DEX—Expand DEFINE symbols within quoted strings. Can also be done on a
case-by-case basis using double-quoted strings.

• DLD—Do not restrict directives in DO loops. The presence of some directives
in DO loops does not make sense, including some OPT directive variations.
This option suppresses errors on particular directives in loops.

• DXL—(default, reset) Expand DEFINE directive strings in listing.

• FC—Fold trailing comments. Any trailing comments that are included in a
source line will be folded underneath the source line and aligned with the
opcode field. Lines that start with the comment character will be aligned with
the label field in the source listing. The FC option is useful for displaying the
source listing on 80 column devices.

• FF—Use form feeds for page ejects in the listing file.

• FM—Format assembler messages so that the message text is aligned and
broken at word boundaries.

• GL—Make all section symbols global. This has the same effect as declaring
every section explicitly GLOBAL. This option must be given before any
sections are defined explicitly in the source file.

• GS—(default, reset in absolute mode) Make all sections global static. All
section counters and attributes will be associated with the GLOBAL section.
This option must be given before any sections are defined explicitly in the
source file.

• HDR—(default, reset) Generate listing header along with titles and subtitles.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-45

Motorola Assembler Notes

Assembler Directives
• IC—Ignore case in symbol, section, and macro names. This directive must be
issued before any symbols, sections, or macros are defined.

• IL—Inhibit source listing. This option will stop the assembler from producing
a source listing.

• INTR—(default, reset in absolute mode) Perform interrupt location checks.
Certain DSP instructions may not appear in the interrupt vector locations in
program memory. This option enables the assembler to check for these
instructions when the program counter is within the interrupt vector bounds.

• LB—Increment load counter (if different from runtime) by number of bytes in
DSP word to provide byte-wide support for overlays in bootstrap mode. This
option must appear before any code or data generation.

• LDB—Use the listing file as the debug source file rather than the assembly
language file. The -L command line option to generate a listing file must be
specified for this option to take effect.

• LOC—Include local labels in the symbol table and cross-reference listing.
Local labels are not normally included in these listings. If neither the S or CRE
options are specified, then this option has no effect. The LOC option must be
specified before the first symbol is encountered in the source file.

• MC—(default, reset) Print macro calls.

• MD—(default, reset) Print macro definitions.

• MEX—Print macro expansions.

• MI—Scan MACLIB directory paths for include files. The assembler
ordinarily looks for included files only in the directory specified in the
INCLUDE directory or in the paths given by the -I command line option. If
the MI option is used the assembler will also look for included files in any
designated MACLIB directories.

• MSW—(default, reset) Issue warning on memory space incompatibilities.

• MU—Include a memory utilization report in the source listing. This option
must appear before any code or data generation.

• NL—Display conditional assembly (IF-ELSE-ENDIF) and section nesting
levels on listing.

• NOAE—Do not check address expressions.

• NOCC—(default, reset) Disable cycle counts. Does not clear total cycle count.

• NOCEX—(default, reset) Do not print DC expansions.

C-46 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
• NOCK—(default, reset) Disable checksumming of instruction and data
values.

• NOCL—Do not print the conditional assembly directives.

• NOCM—Do not preserve comment lines of macros when they are defined.

• NODEX—(default, reset) Do not expand DEFINE symbols within quoted
strings.

• NODLD—(default, reset) Restrict use of certain directives in DO loop.

• NODXL—Do not expand DEFINE directive strings in listing.

• NOFC—(default, reset) Inhibit folded comments.

• NOFF—(default, reset) Use multiple line feeds for page ejects in the listing
file.

• NOFM—(default, reset) Do not format assembler messages.

• NOGS—(default, reset in relative mode) Do not make all sections global
static.

• NOHDR—Do not generate listing header. This also turns off titles and
subtitles.

• NOINTR—(default, reset in relative mode) Do not perform interrupt location
checks.

• NOMC—Do not print macro calls.

• NOMD—Do not print macro definitions.

• NOMEX—(default, reset) Do not print macro expansions.

• NOMI—(default, reset) Do not scan MACLIB directory paths for include files.

• NOMSW—Do not issue warning on memory space incompatibilities.

• NONL—(default, reset) Do not display nesting levels on listing.

• NONS—Do not allow scoping of symbols within nested sections.

• NOPP—Do not pretty print listing file. Source lines are sent to the listing file
as they are encountered in the source, with the exception that tabs are
expanded to spaces and continuation lines are concatenated into a single
physical line for printing.

• NOPS—Do not pack strings in DC directive. Individual bytes in strings will
be stored one byte per word.

• NORC—(default, reset) Do not space comments relatively.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-47

Motorola Assembler Notes

Assembler Directives
• NORP—(default, reset) Do not generate instructions to accommodate pipeline
delay.

• NOSCL—Do not maintain the current local label scope when a structured
control statement label is encountered.

• NOU—(default, reset) Do not print the lines excluded from the assembly due
to a conditional assembly directive.

• NOUR—(default, reset) Do not flag unresolved external references.

• NOW—Do not print warning messages.

• NS—(default, reset) Allow scoping of symbols within nested sections.

• PP—(default, reset) Pretty print listing file. The assembler attempts to align
fields at a consistent column position without regard to source file formatting.

• PS—(default, reset) Pack strings in DC directive. Individual bytes in strings
will be packed into consecutive target words for the length of the string.

• RC—Space comments relatively in listing fields. By default, the assembler
always places comments at a consistent column position in the listing file.
This option allows the comment field to float: on a line containing only a label
and opcode, the comment would begin in the operand field.

• RP—Generate NOP instructions to accommodate pipeline delay. If an
address register is loaded in one instruction then the contents of the register is
not available for use as a pointer until after the next instruction. Ordinarily
when the assembler detects this condition it issues an error message. The RP
option will cause the assembler to output a NOP instruction into the output
stream instead of issuing an error.

• S—Print symbol table at the end of the source listing. This option has no effect
if the CRE option is used.

• SCL—(default, reset) Structured control statements generate non-local labels
that ordinarily are not visible to the programmer. This can create problems
when local labels are interspersed among structured control statements. This
option causes the assembler to maintain the current local label scope when a
structured control statement label is encountered.

• SCO—Send structured control statement labels to object and listing files.
Normally the assembler does not externalize these labels. This option must
appear before any symbol definition.

• SO—Write symbol information to object file. This option is recognized but
performs no operation in COFF assemblers.

C-48 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
• SVO—Preserve object file on errors. Normally any object file produced by the
assembler is deleted if errors occur during assembly. This option must be
given before any code or data is generated.

• U—Print the unassembled lines skipped due to failure to satisfy the condition
of a conditional assembly directive.

• UR—Generate a warning at assembly time for each unresolved external
reference. This option works only in relocatable mode.

• W—(default, reset) Print all warning messages.

• WEX—Add warning count to exit status. Ordinarily the assembler exits with
a count of errors. This option causes the count of warnings to be added to the
error count.

• XLL—Write underscore local labels to object file. This is primarily used to aid
debugging. This option, if used, must be specified before the first symbol in
the source program is defined.

• XR—Causes XDEFed symbols to be recognized within other sections without
being XREFed. This option, if used, must be specified before the first symbol
in the source program is encountered.

C.3.43 ORG Initialize Memory Space and Location Counters

 ORG <rms>[<rlc>][<rmp>]:[<exp1>][,<lms>[<llc>][<lmp>]:[<exp2>]]
 ORG <rms>[<rmp>][(<rce>)]:[<exp1>][,<lms>[<lmp>][(<lce>)]:[<exp2>]]

The ORG directive is used to specify addresses and to indicate memory space and
mapping changes. It also can designate an implicit counter mode switch in the
assembler and serves as a mechanism for initiating overlays.

Note: A label is not allowed with this directive.

The parameters used with the ORG directive are:

• <rms>—Which memory space (X, Y, L, P, or E) will be used as the runtime
memory space. If the memory space is L, any allocated datum with a value
greater than the target word size will be extended to two words; otherwise, it
is truncated. If the memory space is E, then depending on the memory space

Example B-63 OPT Directive

OPT CEX,MEX ; Turn on DC and macro expansions
OPT CRE,MU ; Cross reference, memory utilization

MOTOROLA DSP56303EVMUM/AD, Preliminary C-49

Motorola Assembler Notes

Assembler Directives
qualifier, any generated words will be split into bytes, one byte per word, or a
16/8-bit combination.

• <rlc>—Which runtime counter H, L, or default (if neither H or L is specified),
that is associated with the <rms> will be used as the runtime location counter.

• <rmp>—Indicates the runtime physical mapping to DSP memory: I - internal,
E - external, R - ROM, A - port A, B - port B. If not present, no explicit
mapping is done.

• <rce>—Non-negative absolute integer expression representing the counter
number to be used as the runtime location counter. Must be enclosed in
parentheses. Should not exceed the value 65535.

• <exp1>—Initial value to assign to the runtime counter used as the <rlc>. If
<exp1> is a relative expression the assembler uses the relative location
counter. If <exp1> is an absolute expression the assembler uses the absolute
location counter. If <exp1> is not specified, then the last value and mode that
the counter had will be used.

• <lms>—Which memory space (X, Y, L, P, or E) will be used as the load
memory space. If the memory space is L, any allocated datum with a value
greater than the target word size will be extended to two words; otherwise, it
is truncated. If the memory space is E, then depending on the memory space
qualifier, any generated words will be split into bytes, one byte per word, or a
16/8-bit combination.

• <llc>—Which load counter, H, L, or default (if neither H or L is specified), that
is associated with the <lms> will be used as the load location counter.

• <lmp>—Indicates the load physical mapping to DSP memory: I - internal, E -
external, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

• <lce>—Non-negative absolute integer expression representing the counter
number to be used as the load location counter. Must be enclosed in
parentheses. Should not exceed the value 65535.

• <exp2>—Initial value to assign to the load counter used as the <llc>. If
<exp2> is a relative expression the assembler uses the relative location
counter. If <exp2> is an absolute expression the assembler uses the absolute
location counter. If <exp2> is not specified, then the last value and mode that
the counter had will be used.

If the last half of the operand field in an ORG directive dealing with the load
memory space and counter is not specified, then the assembler will assume that the
load memory space and load location counter are the same as the runtime memory
space and runtime location counter. In this case, object code is being assembled to be

C-50 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
loaded into the address and memory space where it will be when the program is run,
and is not an overlay.

If the load memory space and counter are given in the operand field, then the
assembler always generates code for an overlay. Whether the overlay is absolute or
relocatable depends upon the current operating mode of the assembler and whether
the load counter value is an absolute or relative expression. If the assembler is
running in absolute mode, or if the load counter expression is absolute, then the
overlay is absolute. If the assembler is in relative mode and the load counter
expression is relative, the overlay is relocatable. Runtime relocatable overlay code is
addressed relative to the location given in the runtime location counter expression.
This expression, if relative, may not refer to another overlay block.

Note: See also MODE.

Example B-64 ORG Directive

ORG P:$1000

Sets the runtime memory space to P. Selects the default runtime counter (counter 0)
associated with P space to use as the runtime location counter and initializes it to
$1000. The load memory space is implied to be P, and the load location counter is
assumed to be the same as the runtime location counter.

ORG PHE:

Sets the runtime memory space to P. Selects the H load counter (counter 2)
associated with P space to use as the runtime location counter. The H counter will
not be initialized, and its last value will be used. Code generated hereafter will be
mapped to external (E) memory. The load memory space is implied to be P, and
the load location counter is assumed to be the same as the runtime location counter.

ORG PI:OVL1,Y:

Indicates code will be generated for an overlay. The runtime memory space is P, and
the default counter is used as the runtime location counter. It will be reset to the
value of OVL1. If the assembler is in absolute mode via the -A command line option
then OVL1 must be an absolute expression. If OVL1 is an absolute expression the
assembler uses the absolute runtime location counter. If OVL1 is a relocatable value
the assembler uses the relative runtime location counter. In this case OVL1 must not
itself be an overlay symbol (e.g. defined within an overlay block). The load memory
space is Y. Since neither H, L, nor any counter expression was specified as the load
counter, the default load counter (counter 0) will be used as the load location
counter. The counter value and mode will be whatever it was the last time it was
referenced.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-51

Motorola Assembler Notes

Assembler Directives
C.3.44 PAGE Top of Page/Size Page

PAGE [<exp1>[,<exp2>...,<exp5>]]

The PAGE directive has two forms:

1. If no arguments are supplied, then the assembler will advance the listing to
the top of the next page. In this case, the PAGE directive will not be output.

2. The PAGE directive with arguments can be used to specify the printed format
of the output listing. Arguments may be any positive absolute integer
expression. The arguments in the operand field (as explained below) are
separated by commas. Any argument can be left as the default or last set
value by omitting the argument and using two adjacent commas. The PAGE
directive with arguments will not cause a page eject and will be printed in the
source listing.

Note: A label is not allowed with this directive.

The arguments in order are:

• PAGE_WIDTH <exp1>—Page width in terms of number of output columns
per line (default 80, min 1, max 255).

ORG XL:,E8:

Sets the runtime memory space to X. Selects the L counter (counter 1) associated
with X space to use as the runtime location counter. The L counter will not be
initialized, and its last value will be used. The load memory space is set to E, and the
qualifier 8 indicates a bytewise RAM configuration. Instructions and data will be
generated eight bits per output word with byte-oriented load addresses. The default
load counter will be used and there is no explicit load origin.

ORG P(5):,Y:$8000

Indicates code will be generated for an absolute overlay. The runtime memory
space is P, and the counter used as the runtime location counter is counter 5. It will
not be initialized, and the last previous value of counter 5 will be used. The load
memory space is Y. Since neither H, L, nor any counter expression was specified as
the load counter, the default load counter (counter 0) will be used as the load
location counter. The default load counter will be initialized to $8000.

Example B-64 ORG Directive (Continued)

C-52 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
• PAGE_LENGTH <exp2>—Page length in terms of total number of lines per
page (default 66, min 10, max 255). As a special case a page length of 0 (zero)
turns off all headers, titles, subtitles, and page breaks.

• BLANK_TOP <exp3>—Blank lines at top of page. (default 0, min 0, max see
below).

• BLANK_BOTTOM <exp4>—Blank lines at bottom of page. (default 0, min 0,
max see below).

• BLANK_LEFT <exp5>—Blank left margin. Number of blank columns at the
left of the page. (default 0, min 0, max see below).

The following relationships must be maintained:

BLANK_TOP + BLANK_BOTTOM <= PAGE_LENGTH - 10
BLANK_LEFT < PAGE_WIDTH

Note: See also LSTCOL.

C.3.45 PMACRO Purge Macro Definition

PMACRO <symbol>[,<symbol>,...,<symbol>]

The specified macro definition will be purged from the macro table, allowing the
macro table space to be reclaimed.

Note: A label is not allowed with this directive.

Note: See also MACRO.

Example B-65 PAGE Directive

PAGE 132,,3,3 ; Set width to132, 3 line top/bottom margins
PAGE ; Page eject

Example B-66 PMACRO Directive

PMACRO MAC1,MAC2

This statement would cause the macros named MAC1 and MAC2 to be purged.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-53

Motorola Assembler Notes

Assembler Directives
C.3.46 PRCTL Send Control String to Printer

PRCTL <exp>I<string>,...,<exp>I<string>

PRCTL simply concatenates its arguments and ships them to the listing file (the
directive line itself is not printed unless there is an error). <exp> is a byte expression
and <string> is an assembler string. A byte expression would be used to encode
non-printing control characters, such as ESC. The string may be of arbitrary length,
up to the maximum assembler-defined limits.

PRCTL may appear anywhere in the source file and the control string will be output
at the corresponding place in the listing file. However, if a PRCTL directive is the
last line in the last input file to be processed, the assembler insures that all error
summaries, symbol tables, and cross-references have been printed before sending out
the control string. This is so a PRCTL directive can be used to restore a printer to a
previous mode after printing is done. Similarly, if the PRCTL directive appears as
the first line in the first input file, the control string will be output before page
headings or titles.

The PRCTL directive only works if the -L command line option is given; otherwise it
is ignored.

Note: A label is not allowed with this directive.

C.3.47 RADIX Change Input Radix for Constants

RADIX <expression>

Changes the input base of constants to the result of <expression>. The absolute
integer expression must evaluate to one of the legal constant bases (2, 10, or 16). The
default radix is 10. The RADIX directive allows the programmer to specify constants
in a preferred radix without a leading radix indicator. The radix prefix for base 10
numbers is the grave accent (`). Note that if a constant is used to alter the radix, it
must be in the appropriate input base at the time the RADIX directive is
encountered.

Example B-67 PRCTL Directive

PRCTL $1B,'E' ; Reset HP LaserJet printer

C-54 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
Note: A label is not allowed with this directive.

C.3.48 RDIRECT Remove Directive or Mnemonic from Table

RDIRECT <direc>[,<direc>,...,<direc>]

The RDIRECT directive is used to remove directives from the assembler directive
and mnemonic tables. If the directive or mnemonic that has been removed is later
encountered in the source file, it will be assumed to be a macro. Macro definitions
that have the same name as assembler directives or mnemonics will cause a warning
message to be output unless the RDIRECT directive has been used to remove the
directive or mnemonic name from the assembler’s tables. Additionally, if a macro is
defined through the MACLIB directive which has the same name as an existing
directive or opcode, it will not automatically replace that directive or opcode as
previously described. In this case, the RDIRECT directive must be used to force the
replacement.

Since the effect of this directive is global, it cannot be used in an explicitly-defined
section (see SECTION directive). An error will result if the RDIRECT directive is
encountered in a section.

Note: A label is not allowed with this directive.

Example B-68 RADIX Directive

_RAD10 DC 10 ; Evaluates to hex A
RADIX 2

_RAD2 DC 10 ; Evaluates to hex 2
RADIX 1̀6

_RAD16 DC 10 ; Evaluates to hex 10
RADIX 3 ; Bad radix expression

Example B-69 RDIRECT Directive

RDIRECT PAGE,MOVE

This would cause the assembler to remove the PAGE directive from the directive
table and the MOVE mnemonic from the mnemonic table.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-55

Motorola Assembler Notes

Assembler Directives
C.3.49 SCSJMP Set Structured Control Statement Branching
Mode

SCSJMP {SHORT | LONG | NONE}

The SCSJMP directive is analogous to the FORCE directive, but it only applies to
branches generated automatically by structured control statements (See Section C.4
on page C-64). There is no explicit way, as with a forcing operator, to force a branch
short or long when it is produced by a structured control statement. This directive
will cause all branches resulting from subsequent structured control statements to be
forced to the specified mode.

Just like the FORCE pseudo-op, errors can result if a value is too large to be forced
short. For relocatable code, the error may not occur until the linking phase.

Note: See also FORCE, SCSREG.

Note: A label is not allowed with this directive.

C.3.50 SCSREG Reassign Structured Control Statement
Registers

SCSREG [<srcreg>[,<dstreg>[,<tmpreg>[,<extreg>]]]]

The SCSREG directive reassigns the registers used by structured control statement
(SCS) directives. It is convenient for reclaiming default SCS registers when they are
needed as application operands within a structured control construct. <srcreg> is
ordinarily the source register for SCS data moves. <dstreg> is the destination
register. <tmpreg> is a temporary register for swapping SCS operands. <extreg> is
an extra register for complex SCS operations. With no arguments SCSREG resets the
SCS registers to their default assignments.

The SCSREG directive should be used judiciously to avoid register context errors
during SCS expansion. Source and destination registers may not necessarily be used
strictly as source and destination operands. The assembler does no checking of
reassigned registers beyond validity for the target processor. Errors can result when a
structured control statement is expanded and an improper register reassignment has
occurred. It is recommended that the MEX option (see the OPT directive) be used to

Example B-70 SCSJMP Directive

SCSJMP SHORT ; force all subsequent SCS jumps short

C-56 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
examine structured control statement expansion for relevant constructs to determine
default register usage and applicable reassignment strategies.

Note: See also OPT (MEX), SCSJMP.

Note: A label is not allowed with this directive.

C.3.51 SECTION Start Section

SECTION <symbol> [GLOBAL | STATIC | LOCAL]
.
.
<section source statements>
.
.
ENDSEC

The SECTION directive defines the start of a section. All symbols that are defined
within a section have the <symbol> associated with them as their section name. This
serves to protect them from like-named symbols elsewhere in the program. By
default, a symbol defined inside any given section is private to that section unless the
GLOBAL or LOCAL qualifier accompanies the SECTION directive.

Any code or data inside a section is considered an indivisible block with respect to
relocation. Code or data associated with a section is independently relocatable within
the memory space to which it is bound, unless the STATIC qualifier follows the
SECTION directive on the instruction line.

Symbols within a section are generally distinct from other symbols used elsewhere in
the source program, even if the symbol name is the same. This is true as long as the
section name associated with each symbol is unique, the symbol is not declared
public (XDEF/GLOBAL), and the GLOBAL or LOCAL qualifier is not used in the
section declaration. Symbols that are defined outside of a section are considered
global symbols and have no explicit section name associated with them. Global
symbols may be referenced freely from inside or outside of any section, as long as the
global symbol name does not conflict with another symbol by the same name in a
given section.

Example B-71 SCSREG Directive

SCSREG Y0,B ; reassign SCS source and dest. registers

MOTOROLA DSP56303EVMUM/AD, Preliminary C-57

Motorola Assembler Notes

Assembler Directives
If the GLOBAL qualifier follows the <section name> in the SECTION directive, then
all symbols defined in the section until the next ENDSEC directive are considered
global. The effect is as if every symbol in the section were declared with GLOBAL.
This is useful when a section needs to be independently relocatable, but data hiding
is not desired.

If the STATIC qualifier follows the <section name> in the SECTION directive, then
all code and data defined in the section until the next ENDSEC directive are
relocated in terms of the immediately enclosing section. The effect with respect to
relocation is as if all code and data in the section were defined within the parent
section. This is useful when a section needs data hiding, but independent relocation
is not required.

If the LOCAL qualifier follows the <section name> in the SECTION directive, then
all symbols defined in the section until the next ENDSEC directive are visible to the
immediately enclosing section. The effect is as if every symbol in the section were
defined within the parent section. This is useful when a section needs to be
independently relocatable, but data hiding within an enclosing section is not
required.

The division of a program into sections controls not only labels and symbols, but also
macros and DEFINE directive symbols. Macros defined within a section are private
to that section and are distinct from macros defined in other sections even if they
have the same macro name. Macros defined outside of sections are considered global
and may be used within any section. Similarly, DEFINE directive symbols defined
within a section are private to that section and DEFINE directive symbols defined
outside of any section are globally applied. There are no directives that correspond to
XDEF for macros or DEFINE symbols, and therefore, macros and DEFINE symbols
defined in a section can never be accessed globally. If global accessibility is desired,
the macros and DEFINE symbols should be defined outside of any section.

Sections can be nested to any level. When the assembler encounters a nested section,
the current section is stacked and the new section is used. When the ENDSEC
directive of the nested section is encountered, the assembler restores the old section
and uses it. The ENDSEC directive always applies to the most previous SECTION
directive. Nesting sections provides a measure of scoping for symbol names, in that
symbols defined within a given section are visible to other sections nested within it.
For example, if section B is nested inside section A, then a symbol defined in section
A can be used in section B without XDEFing in section A or XREFing in section B.
This scoping behavior can be turned off and on with the NONS and NS options
respectively (see the OPT directive, this chapter).

C-58 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
Sections may also be split into separate parts. That is, <section name> can be used
multiple times with SECTION and ENDSEC directive pairs. If this occurs, then these
separate (but identically named) sections can access each others symbols freely
without the use of the XREF and XDEF directives. If the XDEF and XREF directives
are used within one section, they apply to all sections with the same section name.
The reuse of the section name is allowed to permit the program source to be arranged
in an arbitrary manner (for example, all statements that reserve X space storage
locations grouped together), but retain the privacy of the symbols for each section.

When the assembler operates in relative mode (the default), sections act as the basic
grouping for relocation of code and data blocks. For every section defined in the
source a set of location counters is allocated for each DSP memory space. These
counters are used to maintain offsets of data and instructions relative to the
beginning of the section. At link time sections can be relocated to an absolute
address, loaded in a particular order, or linked contiguously as specified by the
programmer. Sections which are split into parts or among files are logically
recombined so that each section can be relocated as a unit.

Sections may be relocatable or absolute. In the assembler absolute mode (command
line -A option) all sections are considered absolute. A full set of locations counters is
reserved for each absolute section unless the GS option is given (see the OPT
directive, this chapter). In relative mode, all sections are initially relocatable.
However, a section or a part of a section may be made absolute either implicitly by
using the ORG directive, or explicitly through use of the MODE directive.

Note: A label is not allowed with this directive.

Note: See also MODE, ORG, GLOBAL, LOCAL, XDEF, XREF.

Example B-72 SECTION Directive

SECTION TABLES ; TABLES will be the section name

MOTOROLA DSP56303EVMUM/AD, Preliminary C-59

Motorola Assembler Notes

Assembler Directives
C.3.52 SET Set Symbol to a Value

<label> SET <expression>
SET <label> <expression>

The SET directive is used to assign the value of the expression in the operand field to
the label. The SET directive functions somewhat like the EQU directive. However,
labels defined via the SET directive can have their values redefined in another part of
the program (but only through the use of another SET directive). The SET directive is
useful in establishing temporary or reusable counters within macros. The expression
in the operand field of a SET must be absolute and cannot include a symbol that is
not yet defined (no forward references are allowed).

Note: See also EQU, GSET.

C.3.53 STITLE Initialize Program Sub-Title

STITLE [<string>]

The STITLE directive initializes the program subtitle to the string in the operand
field. The subtitle will be printed on the top of all succeeding pages until another
STITLE directive is encountered. The subtitle is initially blank. The STITLE directive
will not be printed in the source listing. An STITLE directive with no string
argument will cause the current subtitle to be blank.

Note: A label is not allowed with this directive.

Note: See also TITLE.

Example B-73 SET Directive

COUNT SET 0 ; INITIALIZE COUNT

Example B-74 STITLE Directive

STITLE 'COLLECT SAMPLES'

C-60 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3.54 SYMOBJ Write Symbol Information to Object File

SYMOBJ <symbol>[,<symbol>,...,<symbol>]

The SYMOBJ directive causes information for each <symbol> to be written to the
object file. This directive is recognized but currently performs no operation in COFF
assemblers.

Note: A label is not allowed with this directive.

C.3.55 TABS Set Listing Tab Stops

TABS <tabstops>

The TABS directive allows resetting the listing file tab stops from the default value of
8.

Note: A label is not allowed with this directive.

Note: See also LSTCOL.

C.3.56 TITLE Initialize Program Title

TITLE [<string>]

The TITLE directive initializes the program title to the string in the operand field.
The program title will be printed on the top of all succeeding pages until another
TITLE directive is encountered. The title is initially blank. The TITLE directive will
not be printed in the source listing. A TITLE directive with no string argument will
cause the current title to be blank.

Note: A label is not allowed with this directive.

Example B-75 SYMOBJ

SYMOBJ XSTART,HIRTN,ERRPROC

Example B-76 TABS Directive

TABS 4 ; Set listing file tab stops to 4

MOTOROLA DSP56303EVMUM/AD, Preliminary C-61

Motorola Assembler Notes

Assembler Directives
Note: See also STITLE.

C.3.57 UNDEF Undefine DEFINE Symbol

UNDEF [<symbol>]

The UNDEF directive causes the substitution string associated with <symbol> to be
released, and <symbol> will no longer represent a valid DEFINE substitution. See
the DEFINE directive for more information.

Note: A label is not allowed with this directive.

Note: See also DEFINE.

C.3.58 WARN Programmer Generated Warning

WARN [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The WARN directive will cause a warning message to be output by the assembler.
The total warning count will be incremented as with any other warning. The WARN
directive is normally used in conjunction with conditional assembly directives for
exceptional condition checking. The assembly proceeds normally after the warning
has been printed. An arbitrary number of strings and expressions, in any order but
separated by commas with no intervening white space, can be specified optionally to
describe the nature of the generated warning.

Note: A label is not allowed with this directive.

Note: See also FAIL, MSG.

Example B-77 TITLE Directive

TITLE 'FIR FILTER'

Example B-78 UNDEF Directive

UNDEF DEBUG ; UNDEFINES THE DEBUG SUBSTITUTION STRING

Example B-79 WARN Directive

WARN 'parameter too large'

C-62 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives
C.3.59 XDEF External Section Symbol Definition

XDEF <symbol>[,<symbol>,...,<symbol>]

The XDEF directive is used to specify that the list of symbols is defined within the
current section, and that those definitions should be accessible by sections with a
corresponding XREF directive. This directive is only valid if used within a program
section bounded by the SECTION and ENDSEC directives. The XDEF directive
must appear before <symbol> is defined in the section. If the symbols that appear in
the operand field are not defined in the section, an error will be generated.

Note: A label is not allowed with this directive.

Note: See also SECTION, XREF.

C.3.60 XREF External Section Symbol Reference

XREF <symbol>[,<symbol>,...,<symbol>]

The XREF directive is used to specify that the list of symbols is referenced in the
current section, but is not defined within the current section. These symbols must
either have been defined outside of any section or declared as globally accessible
within another section using the XDEF directive. If the XREF directive is not used to
specify that a symbol is defined globally and the symbol is not defined within the
current section, an error will be generated, and all references within the current
section to such a symbol will be flagged as undefined. The XREF directive must
appear before any reference to <symbol> in the section.

Note: A label is not allowed with this directive.

Example B-80 XDEF Directive

SECTION IO
XDEF LOOPA ; LOOPA will be accessible by sections with XREF
.
.
.
ENDSEC

MOTOROLA DSP56303EVMUM/AD, Preliminary C-63

Motorola Assembler Notes

Structured Control Statements
Note: See also SECTION, XDEF.

C.4 STRUCTURED CONTROL STATEMENTS

An assembly language provides an instruction set for performing certain
rudimentary operations. These operations in turn may be combined into control
structures such as loops (FOR, REPEAT, WHILE) or conditional branches (IF-THEN,
IF-THEN-ELSE). The assembler, however, accepts formal, high-level directives that
specify these control structures, generating the appropriate assembly language
instructions for their efficient implementation. This use of structured control
statement directives improves the readability of assembly language programs,
without compromising the desirable aspects of programming in an assembly
language.

C.4.1 Structured Control Directives

The following directives are used for structured control. Note the leading period,
which distinguishes these keywords from other directives and mnemonics.
Structured control directives may be specified in either upper or lower case, but they
must appear in the opcode field of the instruction line (e.g. they must be preceded
either by a label, a space, or a tab).

.BREAK .ENDI .LOOP

.CONTINUE .ENDL .REPEAT

.ELSE .ENDW .UNTIL

.ENDF .FOR .WHILE

.IF

In addition, the following keywords are used in structured control statements:

Example B-81 XREF Directive

SECTION FILTER
XREF AA,CC,DD ; XDEFed symbols within section
.
.
.
ENDSEC

C-64 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Structured Control Statements
AND DOWNTO TO
BY OR
DO THEN

Note: AND, DO, and OR are reserved assembler instruction mnemonics.

C.4.2 Syntax

The formats for the .BREAK, .CONTINUE, .FOR, .IF, .LOOP, .REPEAT, and
.WHILE statements are given in sections C.4.2.1 through C.4.2.7. Syntactic variables
used in the formats are defined as follows:

• <expression>—A simple or compound expression (section C.4.3).

• <stmtlist>—Zero or more assembler directives, structured control statements,
or executable instructions.

Note: An assembler directive occurring within a structured control statement is
examined exactly once—at assembly time. Thus the presence of a directive
within a .FOR, .LOOP, .REPEAT, or .WHILE statement does not imply
repeated occurrence of an assembler directive; nor does the presence of a
directive within an .IF-THEN-.ELSE structured control statement imply
conditional assembly.

• <op1>—A user-defined operand whose register/memory location holds the
.FOR loop counter. The effective address must use a memory alterable
addressing mode (e.g., it cannot be an immediate value).

• <op2>—The initial value of the .FOR loop counter. The effective address may
be any mode, and may represent an arbitrary assembler expression.

• <op3>—The terminating value of the .FOR loop counter. The effective
address may be any mode, and may represent an arbitrary assembler
expression.

• <op4>—The step (increment/decrement) of the .FOR loop counter each time
through the loop. If not specified, it defaults to a value of #1. The effective
address may be any mode, and may represent an arbitrary assembler
expression.

• <cnt>—The terminating value in a .LOOP statement. This can be any arbitrary
assembler expression.

All structured control statements may be followed by normal assembler comments
on the same logical line.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-65

Motorola Assembler Notes

Structured Control Statements
C.4.2.1 .BREAK Statement

.BREAK

The .BREAK statement causes an immediate exit from the innermost enclosing loop
construct (.WHILE, .REPEAT, .FOR, .LOOP). A .BREAK statement does not exit an
.IF-THEN-.ELSE construct. If a .BREAK is encountered with no loop statement
active, a warning is issued.

Note: .BREAK should be used with care near .ENDL directives or near the end
of DO loops. It generates a jump instruction which is illegal in those
contexts.

C.4.2.2 .CONTINUE Statement

.CONTINUE

The .CONTINUE statement causes the next iteration of a looping construct (.WHILE,
.REPEAT, .FOR, .LOOP) to begin. This means that the loop expression or operand
comparison is performed immediately, bypassing any subsequent instructions. If a
.CONTINUE is encountered with no loop statement active, a warning is issued.

Note: .CONTINUE should be used with care near .ENDL directives or near the
end of DO loops. It generates a jump instruction which is illegal in those
contexts.

Example B-82 .BREAK Statement

.WHILE x:(r1)+ <GT> #0;loop until zero is found

.

.

.

.IF <cs>

.BREAK ;causes exit from WHILE loop

.ENDI

.

. ;any instructions here are skipped

.

.ENDW
;execution resumes here after .BREAK

C-66 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Structured Control Statements
Note: One or more .CONTINUE directives inside a .LOOP construct will
generate a NOP instruction just before the loop address.

C.4.2.3 .FOR Statement

.FOR <op1> = <op2> {TO | DOWNTO} <op3> [BY <op4>] [DO]
<stmtlist>
.ENDF

Initialize <op1> to <op2> and perform <stmtlist> until <op1> is greater (TO) or less
than (DOWNTO) <op3>. Makes use of a user-defined operand, <op1>, to serve as a
loop counter. .FOR-TO allows counting upward, while .FOR-DOWNTO allows
counting downward. The programmer may specify an increment/decrement step
size in <op4>, or elect the default step size of #1 by omitting the BY clause. A
.FOR-TO loop is not executed if <op2> is greater than <op3> upon entry to the loop.
Similarly, a .FOR-DOWNTO loop is not executed if <op2> is less than <op3>.

<op1> must be a writable register or memory location. It is initialized at the
beginning of the loop, and updated at each pass through the loop. Any immediate
operands must be preceded by a pound sign (#). Memory references must be
preceded by a memory space qualifier (X:, Y:, or P:). L memory references are not
allowed. Operands must be or refer to single-word values.

The logic generated by the .FOR directive makes use of several DSP data registers. In
fact, two data registers are used to hold the step and target values, respectively,
throughout the loop; they are never reloaded by the generated code. It is
recommended that these registers not be used within the body of the loop, or that
they be saved and restored prior to loop evaluation.

Example B-83 .CONTINUE Statement

.REPEAT

.

.

.

.IF <cs>

.CONTINUE ;causes immediate jump to .UNTIL

.ENDI

.

. ;any instructions here are skipped

.

.UNTIL x:(r1)+ <EQ> #0;evaluation here after .CONTINUE

MOTOROLA DSP56303EVMUM/AD, Preliminary C-67

Motorola Assembler Notes

Structured Control Statements
Note: The DO keyword is optional.

C.4.2.4 .IF Statement

.IF <expression>[THEN]
<stmtlist>
[.ELSE
<stmtlist>]
.ENDI

If <expression> is true, execute <stmtlist> following THEN (the keyword THEN is
optional); if <expression> is false, execute <stmtlist> following .ELSE, if present;
otherwise, advance to the instruction following .ENDI.

Note: In the case of nested .IF-THEN-.ELSE statements, each .ELSE refers to the
most recent .IF-THEN sequence.

C.4.2.5 .LOOP Statement

.LOOP <cnt>
<stmtlist>
.ENDL

Execute <stmtlist> <cnt> times. This is similar to the .FOR loop construct, except that
the initial counter and step value are implied to be #1. It is actually a shorthand
method for setting up a hardware DO loop on the DSP, without having to worry
about addressing modes or label placement.

Since the .LOOP statement generates instructions for a hardware DO loop, the same
restrictions apply as to the use of certain instructions near the end of the loop, nesting

Example B-84 .FOR Statement

.FOR X:CNT = #0 TO Y:(targ*2)+114; loop on X:CNT

.

.

.

.ENDF

Example B-85 .IF Statement

.IF <EQ> ; zero bit set?

.

.

.

.ENDI

C-68 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Structured Control Statements
restrictions, etc. One or more .CONTINUE directives inside a .LOOP construct will
generate a NOP instruction just before the loop address.

C.4.2.6 .REPEAT Statement

.REPEAT
<stmtlist>
.UNTIL <expression>

<stmtlist> is executed repeatedly until <expression> is true. When expression
becomes true, advance to the next instruction following .UNTIL. The <stmtlist> is
executed at least once, even if <expression> is true upon entry to the .REPEAT loop.

C.4.2.7 .WHILE Statement

.WHILE <expression>[DO]
<stmtlist>
.ENDW

The <expression> is tested before execution of <stmtlist>. While <expression>
remains true, <stmtlist> is executed repeatedly. When <expression> evaluates false,
advance to the instruction following the .ENDW statement. If <expression> is false
upon entry to the .WHILE loop, <stmtlist> is not executed; execution continues after
the .ENDW directive.

Example B-86 .LOOP Statement

.LOOP LPCNT ; hardware loop LPCNT times

.

.

.

.ENDL

Example B-87 .REPEAT Statement

.REPEAT

.

.

.

.UNTIL x:(r1)+ <EQ> #0; loop until zero is found

MOTOROLA DSP56303EVMUM/AD, Preliminary C-69

Motorola Assembler Notes

Structured Control Statements
Note: The DO keyword is optional.

C.4.3 Simple and Compound Expressions

Expressions are an integral part of .IF, .REPEAT, and .WHILE statements. Structured
control statement expressions should not be confused with the assembler
expressions. The latter are evaluated at assembly time and will be referred to here as
"assembler expressions"; they can serve as operands in structured control statement
expressions. The structured control statement expressions described below are
evaluated at run time and will be referred to in the following discussion simply as
“expressions”.

A structured control statement expression may be simple or compound. A
compound expression consists of two or more simple expressions joined by either
AND or OR (but not both in a single compound expression).

C.4.3.1 Simple Expressions
Simple expressions are concerned with the bits of the Condition Code Register
(CCR). These expressions are of two types. The first type merely tests conditions
currently specified by the contents of the CCR (section C.4.3.2). The second type sets
up a comparison of two operands to set the condition codes, and afterwards tests the
codes.

C.4.3.2 Condition Code Expressions
A variety of tests (identical to those in the Jcc instruction) may be performed, based
on the CCR condition codes. The condition codes, in this case, are preset by either a
user-generated instruction or a structured operand-comparison expression. Each test
is expressed in the structured control statement by a mnemonic enclosed in angle
brackets.

Example B-88 .WHILE Statement

.WHILE x:(r1)+ <GT> #0; loop until zero is found

.

.

.

.ENDW

C-70 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Structured Control Statements
When processed by the assembler, the expression generates an inverse conditional
jump to beyond the matching .ENDx/.UNTIL directive.

C.4.3.3 Operand Comparison Expressions
Two operands may be compared in a simple expression, with subsequent transfer of
control based on that comparison. Such a comparison takes the form:

<op1> <cc> <op2>

where <cc> is a condition mnemonic enclosed in angle brackets (as described in
section C.4.3.2), and <op1> and <op2> are register or memory references, symbols, or
assembler expressions. When processed by the assembler, the operands are arranged
such that a compare/jump sequence of the following form always results:

CMP <reg1>,<reg2>
(J|B)cc <label>

where the jump conditional is the inverse of <cc>. Ordinarily <op1> is moved to the
<reg1> data register and <op2> is moved to the <reg2> data register prior to the
compare. This is not always the case, however: if <op1> happens to be <reg2> and
<op2> is <reg1>, an intermediate register is used as a scratch register. In any event,
worst case code generation for a given operand comparison expression is generally
two moves, a compare, and a conditional jump.

Jumps or branches generated by structured control statements are forced long
because the number and address of intervening instructions between a control
statement and its termination are not known by the assembler. The programmer may
circumvent this behavior by use of the SCSJMP directive.

Any immediate operands must be preceded by a pound sign (#). Memory references
must be preceded by a memory space qualifier (X:, Y:, or P:). L memory references
are not allowed. Operands must be or refer to single-word values.

Example B-89 Condition Code Expression

.IF <EQ> ;zero bit set?
+ bne Z_L00002 ;code generated by assembler

CLR D1 ;user code
.ENDI

+ Z_L00002 ;assembler-generated label
.REPEAT ;subtract until D0 < D7

+ Z_L00034 ;assembler-generated label
SUB D7,D0 ;user code
.UNTIL <LT>

+ bge Z_L00034 ;code generated by assembler

MOTOROLA DSP56303EVMUM/AD, Preliminary C-71

Motorola Assembler Notes

Structured Control Statements
Note that values in the <reg1> and <reg2> data registers are not saved before
expression evaluation. This means that any user data in those registers will be
overwritten each time the expression is evaluated at runtime. The programmer
should take care either to save needed contents of the registers, reassign data
registers using the SCSREG directive, or not use them at all in the body of the
particular structured construct being executed.

C.4.3.4 Compound Expressions
A compound expression consists of two or more simple expressions (section C.4.3.1)
joined by a logical operator (AND or OR). The boolean value of the compound
expression is determined by the boolean values of the simple expressions and the
nature of the logical operator. Note that the result of mixing logical operators in a
compound expression is undefined:

.IF X1 <GT> B AND <LS> AND R1 <NE> R2;this is OK

.IF X1 <LE> B AND <LC> OR R5 <GT> R6;undefined

The simple expressions are evaluated left to right. Note that this means the result of
one simple expression could have an impact on the result of subsequent simple
expressions, because of the condition code settings stemming from the
assembler-generated compare.

If the compound expression is an AND expression and one of the simple expressions
is found to be false, any further simple expressions are not evaluated. Likewise, if the
compound expression is an OR expression and one of the simple expressions is
found to be true, any further simple expressions are not evaluated. In these cases, the
compound expression is either false or true, respectively, and the condition codes
reflect the result of the last simple expression evaluated.

C.4.3.5 Statement Formatting
The format of structured control statements differs somewhat from normal assembler
usage. Whereas a standard assembler line is split into fields separated by blanks or
tabs, with no white space inside the fields, structured control statement formats vary
depending on the statement being analyzed. In general, all structured control
directives are placed in the opcode field (with an optional label in the label field) and
white space separates all distinct fields in the statement. Any structured control
statement may be followed by a comment on the same logical line.

C.4.3.6 Expression Formatting
Given an expression of the form:

<op1> <LT> <op2> OR <op3> <GE> <op4>

C-72 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Structured Control Statements
there must be white space (blank, tab) between all operands and their associated
operators, including boolean operators in compound expressions. Moreover, there
must be white space between the structured control directive and the expression, and
between the expression and any optional directive modifier (THEN, DO). An
assembler expression used as an operand in a structured control statement
expression must not have white space in it, since it is parsed by the standard
assembler evaluation routines:

.IF #@CVI(@SQT(4.0)) <GT> #2; no white space in first operand

C.4.3.7 .FOR/.LOOP Formatting
The .FOR and .LOOP directives represent special cases. The .FOR structured control
statement consists of several fields:

.FOR <op1> = <op2> TO <op3> BY <op4> DO

There must be white space between all operands and other syntactic entities such as
=, TO, BY, and DO. As with expression formatting, an assembler expression used as
an operand must not have white space in it:

.FOR X:CNT = #0 TO Y:(targ*2)+1 BY #@CVI(@POW(2.0,@CVF(R)))

In the example above, the .FOR loop operands represented as assembler expressions
(symbol, function) do not have embedded white space, whereas the loop operands
are always separated from structured control statement keywords by white space.

The count field of a .LOOP statement must be separated from the .LOOP directive by
white space. The count itself may be any arbitrary assembler expression, and
therefore must not contain embedded blanks.

C.4.4 Assembly Listing Format

Structured control statements begin with the directive in the opcode field; any
optional label is output in the label field. The rest of the statement is left as is in the
operand field, except for any trailing comment; the X and Y data movement fields are
ignored. Comments following the statement are output in the comment field (unless
the unreported comment delimiter is used).

Statements are expanded using the macro facilities of the assembler. Thus the
generated code can be sent to the listing by specifying the MEX assembler option,
either via the OPT directive or the -O command line option.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-73

Motorola Assembler Notes

Structured Control Statements
C.4.5 Effects on the Programmer’s Environment

During assembly, global labels beginning with “Z_L” are generated. They are stored
in the symbol table and should not be duplicated in user-defined labels. Because
these non-local labels ordinarily are not visible to the programmer there can be
problems when local (underscore) labels are interspersed among structured control
statements. The SCL option (see the OPT directive) causes the assembler to maintain
the current local label scope when a structured control statement label is
encountered.

In the.FOR loop, <op1> is a user-defined symbol. When exiting the loop, the
memory/register assigned to this symbol contains the value which caused the exit
from the loop.

A compare instruction is produced by the assembler whenever two operands are
tested in a structured statement. At runtime, these assembler-generated instructions
set the condition codes of the CCR (in the case of a loop, the condition codes are set
repeatedly). Any user-written code either within or following a structured statement
that references CCR directly (move) or indirectly (conditional jump/transfer) should
be attentive to the effect of these instructions.

Jumps or branches generated by structured control statements are forced long
because the number and address of intervening instructions between a control
statement and its termination are not known by the assembler. The programmer may
circumvent this behavior by use of the SCSJMP directive. In all structured control
statements except those using only a single condition code expression, registers are
used to set up the required counters and comparands. In some cases, these registers
are effectively reserved; the.FOR loop uses two data registers to hold the step and
target values, respectively, and performs no save/restore operations on these
registers. The assembler, in fact, does no save/restore processing in any structured
control operation; it simply moves the operands into appropriate registers to execute
the compare. The SCSREG directive may be used to reassign structured control
statement registers. The MEX assembler option (see the OPT directive may be used to
send the assembler-generated code to the listing file for examination of possible
register use conflicts.

C-74 DSP56303EVMUM/AD, Preliminary MOTOROLA

APPENDIX D

CODEC PROGRAMMING TUTORIAL

MOTOROLA DSP56303EVMUM/AD, Preliminary D-1

Codec Programming Tutorial

D.1 INTRODUCTION . D-3
D.2 PROGRAMMING THE CODEC. D-3
D.3 ECHO.ASM PROGRAM DESCRIPTION D-3

D-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

Codec Programming Tutorial

Introduction

D.1 INTRODUCTION

OK, you’ve got a new toy and you can’t wait to start developing application. But first
you’ve got the task of reading and understanding all the seemingly endless pages of
specifications, manuals, and related documentation. How are you going to get that
killer application ready quickly and sold in time to make this month’s mortgage?
Well, we can’t promise help with your banker, but we can save you some time by
easing that initial foray into the codec documentation.

D.2 PROGRAMMING THE CODEC

The good news is that the Crystal Semiconductor CS4215 codec (“COder-DECoder”)
used on the DSP56303EVM offers a myriad of options that are all user-programmable
via software. The bad news is that you have to learn how to program it.

A first scan of the CS4215 codec literature might lead you to conclude that the
greatest obstacle between you and your goals is in learning to program the myriad of
user-programmable features. To help you begin, there is an example program named
ECHO.ASM that is included in the software shipped with the DSP56303EVM kit.
This program is our effort to isolate the user from the details of programming the
various CS4215 codec options. This appendix is provided to lead a new user through
ECHO.ASM and help to explain how to use the tools developed to let you
communicate most expediently with the analog world. So, let’s get started.

D.3 ECHO.ASM PROGRAM DESCRIPTION

The ECHO.ASM program actually creates one of two versions from the same source
code file. One version is the stand-alone program that is examined in this appendix.
The other a version is loaded into the FLASH EPROM as a part of the code shipped
with the self-test program.

A batch file MAKEECHO.BAT included with the software allows the user to create
the stand-alone demonstration. A command line entry uses parameters that invoke
the DSP56300 assembler program, selects the stand-alone version of the routine, and
generates an executable module. The command line, which can either be typed in or
executed from a batch file, is:

 asm56300 -d STANDALONE 1 -a -b -l -g echo.asm

MOTOROLA DSP56303EVMUM/AD, Preliminary D-3

Codec Programming Tutorial

ECHO.ASM Program Description

The command line entry generates the ECHO.ASM file. The following sections
described the contents and format of this file. Begin by viewing the contents of the
ECHO.ASM file. Set up the listing format as 132 columns and 60 line per page and
display the file, or print it out on a printer.

D.3.1 Source Code Description

The ECHO.ASM file starts with a banner followed by a general description of the
program and copyright notice:

This is followed by the following sections of code:

• Included files

• Constant definitions

• Interrupt buffers

• Sample program listing

Example B-90 Program Description

page 132,60
;**
; ECHO.ASM Ver.2.0
; Example program to move audio through CS4215
; This program uses 2k samples of delay
; to add a noticeable echo to the audio.
;
; Copyright (c) MOTOROLA 1995, 1996
; Semiconductor Products Sector
; Digital Signal Processing Division
;
;**

D-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

Codec Programming Tutorial

ECHO.ASM Program Description

D.3.1.1 Included Files
The file includes references to four included files:

These files perform the following functions:

• IOEQU.ASM defines a standard set of symbolic names for the addresses of the
on-chip peripheral registers.

• INTEQU.ASM sets up the interrupt definitions.

• ADA_EQU.ASM defines the registers, parameters and bit mapping of the
CS4215. This is the key to facilitating the selection of the codec’s functions.

• VECTORS.ASM defines the interrupt vectors required by the interrupt
handlers.

Example B-91 Included Files

;---
 IF (STANDALONE==1)

nolist
include ‘ioequ.asm’
include ‘intequ.asm’
include ‘ada_equ.asm’
include ‘vectors.asm’
list

;**
; the following EQUates will define the operational parameters
; of the codec. Please refer to the ADA_EQU.ASM source file
; for a description of the parameters selections available. The
; variables defined by the EQUates are sent to the codec via
; the transmit buffer, TX_BUFF.
;
; Since the parameters are defined in ADA_EQU.ASM, these lines must
; follow the include statement.
;**

MOTOROLA DSP56303EVMUM/AD, Preliminary D-5

Codec Programming Tutorial

ECHO.ASM Program Description

D.3.1.2 Constant Definitions
The next 4 lines of the program construct the constants that define the feature
selections which are made during initialization of the codec.

Among the features initialized at this time are sample rate, data format, clock
selection and interface mechanism. These are features which generally require
re-initialization when altered. By referring to the ADA_EQU.ASM file, the user can
view the constants available for specifying the different feature options. The two
lines that follow construct ‘tone_output’ and ‘tone_input’ are the constants that
define those feature selections available when the analog subsystem is running. This
includes such features as gain, mixer and attenuator settings.

D.3.1.3 Interrupt Buffers
The CS4215 interrupt routines used by this software are based on 2 four word
buffers, one each for transmit data and receive data. The lines shown in allocate eight
words of data memory, starting at address x:000000. These are the buffers used by
the interrupt handler.

Example B-92 Constant Definitions

CTRL_WD_12 equ NO_PREAMP+HI_PASS_FILT+SAMP_RATE_48+STEREO+DATA_16;CLB=0
CTRL_WD_34 equ IMMED_3STATE+XTAL1_SELECT+BITS_64+CODEC_MASTER
CTRL_WD_56 equ $000000
CTRL_WD_78 equ $000000

TONE_OUTPUT EQU HEADPHONE_EN+LINEOUT_EN+(0*LEFT_ATTN)+(0*RIGHT_ATTN)
TONE_INPUT EQU MIC_IN_SELECT+(15*MONITOR_ATTN)+(8*LEFT_GAIN)+(8*RIGHT_GAIN)

Example B-93 Interrupt Buffers

 ;---Buffer for talking to the CS4215

 org x:0
RX_BUFF_BASE equ *
RX_data_1_2 ds 1 ;data time slot 1/2 for RX ISR
RX_data_3_4 ds 1 ;data time slot 3/4 for RX ISR
RX_data_5_6 ds 1 ;data time slot 5/6 for RX ISR
RX_data_7_8 ds 1 ;data time slot 7/8 for RX ISR

TX_BUFF_BASE equ *
TX_data_1_2 ds 1 ;data time slot 1/2 for TX ISR
TX_data_3_4 ds 1 ;data time slot 3/4 for TX ISR
TX_data_5_6 ds 1 ;data time slot 5/6 for TX ISR
TX_data_7_8 ds 1 ;data time slot 7/8 for TX ISR

RX_PTR ds 1 ;Pointer for rx buffer
TX_PTR ds 1 ;Pointer for tx buffer

D-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

Codec Programming Tutorial

ECHO.ASM Program Description

D.3.1.4 Sample Program
This portion of the code starts at P:000000. This code initializes the DSP and codec
and performs the example operations. It begins by setting the on-chip PLL multiplier
to run the DSP at a higher frequency. The number of external bus wait states is set up
(1 one Wait State in all external spaces is selected here). The program runs initializes
all the internal registers and buffers. Then a separate program initializes the codec.
Finally, the last part of the program processes the analog data as specified. This last
part ends the conditional assembly code (ENDIF).

Example B-94 Sample Program Listing

 org P:$100
START
main

movep #$040005,x:M_PCTL ;PLL = 6 x 16.9344Mhz = 101.6Mhz
movep #012421,x:M_BCR
ENDIF

;------------------------------

org p:
echo

movec #0,SP ; clear stack pointer
move #0,SC ; clear stack counter
ori #3,mr ; disable interrupts
movep #$040005,x:M_PCTL ; PLL = 16.9344 x 6 = 101.6Mhz
movep #$11,x:M_TCSR0 ; turn LED off
move #$40,r6 ; initialize stack pointer
move #-1,m6 ; linear addressing
move #RX_BUFF_BASE,x0
move x0,x:RX_PTR ; Initialize the rx pointer
move #TX_BUFF_BASE,x0
move x0,x:TX_PTR ; Initialize the tx pointer

; --- INIT THE CODEC ---
jsr ada_init ; Jump to initialize the codec
move #$0400,r4 ; echo buffer starts at $400
move #$03FF,m4 ;...and is 1024 deep

MOTOROLA DSP56303EVMUM/AD, Preliminary D-7

Codec Programming Tutorial

ECHO.ASM Program Description

;==
; this is where the work gets done...
;
loop_1

jset #2,x:M_SSISR0,* ; Wait for frame sync to pass.
jclr #2,x:M_SSISR0,* ; Wait for frame sync.

move x:RX_BUFF_BASE,a ; get new samples
move x:RX_BUFF_BASE+1,b
asr a x:(r4),x0 ; divide them by 2 and get oldest
asr b y:(r4),y0 ; samples from buffer
add x0,a ; add the new samples and the old
add y0,b
asr a ; reduce magnitude of new data
asr b
move a,x:(r4) ; save the altered samples
move b,y:(r4)+ ; and bump the pointer

move a,x:TX_BUFF_BASE ; Put value in left channel tx.
move b,x:TX_BUFF_BASE+1 ; Put value in right channel tx.
move #TONE_OUTPUT,y0 ; headphones, line out, mute spkr, no attn.
move y0,x:TX_BUFF_BASE+2
move #TONE_INPUT,y0 ; no input gain, monitor mute
move y0,x:TX_BUFF_BASE+3
jmp loop_1 ; Loop back.

IF (STANDALONE==1)
nolist
include ‘ada_init.asm’ ; load the code init routines
list
ENDIF

Example B-94 Sample Program Listing (Continued)

D-8 DSP56303EVMUM/AD, Preliminary MOTOROLA

INDEX

warning C-49
Symbols

" C-7
C-11
#< C-11
#> C-12
% C-6
* C-8
++ C-9
; C-3
;; C-4
< C-10
<< C-9
> C-10
? C-5
@ C-8
\ C-4
^ C-6

A

A/D converter 4-10
AAR0 4-8

programming 4-7
Address Attribute Pin Polarity Bit, BAAP 4-7
Address Attribute Pin, AA0 4-6
Address Attribute Pin, AA1 4-9
Address Attribute Pin, AA3 4-6
Address Attribute Register (AAR0) 4-8
Address Attribute Register, AAR0 4-7
Address Muxing Bit, BAM 4-7
Address Pins, A(0:17) 4-6, 4-9
Address to Compare Bits, BAC(11:0) 4-8
Addressing

I/O short C-9
immediate C-11
long C-10
long immediate C-12
short C-10
short immediate C-11

Analog Circuitry Test 1-9
Analog Input/Output 4-11
Assembler 3-16

mode C-40
option C-42
MOTOROLA DSP56303EVMUM
assembler 3-3
control 3-12
data definition/storage allocation 3-12, 3-13
directives 3-11
listing control and options 3-14
macros and conditional assembly 3-15
object file control 3-14
options 3-8
significant characters 3-11
structured programming 3-15
symbol definition 3-12, 3-13

assembler control 3-12
assembler directives 3-11
assembler options 3-8
assembling the example program 3-16
assembling the program 3-7
assembly programming 3-3
Audio Codec 4-3
audio codec 4-10
Audio Codec Clock 4-13
Audio Codec Common Headphone Return Pin,

HEADC 4-11
Audio Codec Crystals 4-13
Audio Codec Data/Control Select Pin, D/C 4-12
Audio Codec Digital Interface 4-12
Audio Codec Frame Sync Pin, FSYNC 4-12
Audio Codec Left Headphone Output Pin,

HEADL 4-11
Audio Codec Left Line Output Pin, LOUTL 4-11
Audio Codec Left Microphone Input Pin,

MINL 4-11
Audio Codec Reset Pin, RESET 4-12
Audio Codec Right Headphone Output Pin,

HEADR 4-11
Audio Codec Right Line Output Pin,

LOUTR 4-11
Audio Codec Right Microphone Input Pin,

MINR 4-11
Audio Codec Serial Data Input Pin, SDIN 4-12
Audio Codec Serial Data Output Pin,

SDOUT 4-12
Audio Codec Serial Port Clock Pin, SCLK 4-12
audio interface cable 1-4, 1-9
audio source 1-4

/AD, Preliminary Index-1

B

bootstrap 4-10
Bootstrap, DSP56303 4-10
Buffer

address C-13
end C-27

C

Checksum C-44, C-45
code example 3-6
codec 4-10

digital interface 4-12
digital interface connections 4-12

codec programming D-1
Command Converter 4-3
command converter 4-14
command format

assembler 3-7
Comment C-17

delimiter C-3
object file C-17
unreported C-4

comment field 3-4
Conditional assembly C-34, C-45
Constant

define C-17, C-19
storage C-14

Crystal Semiconductor CS4215 4-10
CS4215 4-10
Cycle count C-44, C-45

D

D/A converter 4-10
Data Pins, D(0:23) 4-6, 4-9
data transfer fields 3-5
DC Offset 1-11
Debugger 3-3, 3-24

running the 3-26
Debugger software 3-24
Debugger window display 3-25
demonstration

running the 2-4
demonstration file 2-1
development process flow 3-3
Directive C-13

.BREAK C-66

.CONTINUE C-66

.FOR C-67
Index-2 DSP56303EVMUM
.IF C-68

.LOOP C-68

.REPEAT C-69

.WHILE C-69
BADDR C-13
BSB C-13
BSC C-14
BSM C-15
BUFFER C-16
COBJ C-17
COMMENT C-17
DC C-17
DCB C-19
DEFINE C-7, C-19, C-45
DS C-20
DSM C-21
DSR C-22
DUP C-22
DUPA C-23
DUPC C-25
DUPF C-26
END C-27
ENDBUF C-27
ENDIF C-28
ENDM C-28
ENDSEC C-29
EQU C-29
EXITM C-30
FAIL C-31
FORCE C-31
GLOBAL C-32
GSET C-32
HIMEM C-33
IDENT C-33
IF C-34
in loop C-45
INCLUDE C-35
LIST C-35
LOCAL C-36
LOMEM C-37
LSTCOL C-37
MACLIB C-38
MACRO C-39
MODE C-40
MSG C-40
NOLIST C-41
OPT C-42
ORG C-49
PAGE C-52
PMACRO C-53
PRCTL C-54

/AD, Preliminary MOTOROLA

RADIX C-54
RDIRECT C-55
SCSJMP C-56
SCSREG C-56
SECTION C-57
SET C-60
STITLE C-60
SYMOBJ C-61
TABS C-61
TITLE C-61
UNDEF C-62
WARN C-62
XDEF C-63
XREF C-63

Diskette 3-5, 4-9, 4-10
document description ii
Domain Technologies Debugger 1-3, 1-8, 2-4,

2-5, 3-24
DSP development tools 3-3
DSP Help Line 1-13
DSP Helpline ii
DSP linker 3-16
DSP56002 4-14
DSP56002 Receive Data Pin, RXD 4-14
DSP56002 Transmit Data Pin, TXD 4-14
DSP56300 Family Manual 4-3
DSP56303 3-3

Chip Errata 4-3
Product Specification 1-3
Product Specification, Revision 1.02 4-3
Technical Data 1-3, 4-3
User’s Manual 4-3

DSP56303 code example 3-6
DSP56303 Features 4-3
DSP56303EVM

additional requirements 1-4
Component Layout 4-4
component layout 1-6, 2-4
connecting to the PC 1-7
contents 1-3
description 4-3
features 4-3
Flash PEROM 4-4
functional block diagram 4-5
installation procedure 1-4
interconnection diagram 1-7
jumper settings 1-6
memory 4-4
power connection 1-7
preparation for installation 1-5
Product Information 1-3
MOTOROLA DSP56303, P
software installation 1-8
SRAM 4-4
testing the installation 1-9
User’s Manual 1-3

E

ECHO.ASM file D-3
ESD warning 1-5
ESSI0 4-10
example

assembling the 3-16
example program 3-5
Expression

address C-44
compound C-72
condition code C-70
formatting C-72
operand comparison C-71
radix C-54
simple C-70

External Access Type Bits, BAT(1:0) 4-7
External Memory Test 1-9

F

field
comment 3-5
data transfer 3-5
label 3-4
operand 3-5
operation 3-4
X data transfer 3-4
Y data transfer 3-4

File
include C-35
listing C-46

filtering
16-bit coefficients 2-5
24-bit coefficients 2-5

Flash PEROM 4-4, 4-9
bootstrap 4-10
connections 4-9
standalone operation 4-9

Flash PEROM Address Pins, A(0:15) 4-9
Flash PEROM Chip Enable Pin, CE 4-9
Flash PEROM Data Pins, I/O(0:7) 4-9
Flash PEROM Output Enable Pin, OE 4-9
Flash PEROM Write Enable Pin, WE 4-9
Flash.asm 4-9
format

reliminary Index-3

assembler command 3-7
source statement 3-4

Function C-8

H

headphones 1-4, 1-9
Host Address Pin, HA2 4-14
host PC 4-14
Host PC Data Terminal Ready Pin, DTR 4-14
Host PC Receive Data Pin, RD 4-14
host PC requirements 1-4
Host PC Transmit Data Pin, TD 4-14

I

Include file C-35
installing software 1-8
internet address ii
IRQA 2-4
IRQD 2-5

J

J4 4-14
J5 4-14
J7 4-10
J9 4-6
JTAG 4-14
jumper settings 1-6

K

kit contents 1-3

L

Label
local C-46, C-49

label field 3-4
LED, red 4-14
Line continuation C-4
linker 3-3, 3-16

options 3-17
linker directives 3-23
Listing file C-46

format C-37, C-45, C-48, C-52, C-61
sub-title C-60
title C-61

llinker
directives 3-23

Location counter C-8, C-49
Index-4 DSP56303EVMUM
Long Memory Data Moves 4-6

M

Macro
call C-46
comment C-45
definition C-39, C-46
directive C-39
end C-28
exit C-30
expansion C-46
library C-38, C-46
purge C-53

Macro argument
concatenation operator C-4
local label override operator C-6
return hex value operator C-6
return value operator C-5

MC145407 4-14
MC33078 4-11
MC74HCT241A 4-10
Memory

limit C-33, C-37
utilization C-46

Memory space C-46, C-49
Motorola

DSP linker 3-16
Motorola software 1-8

N

Noise Level 1-11
Number of Bits to Compare Bits, BCN(3:0) 4-8

O

Object file
comment C-17
identification C-33
symbol C-48, C-49, C-61

object files 3-3
OnCE commands 4-14
OnCE/JTAG conversion 4-14
operand field 3-5
operand fields 3-5
Operating Mode, DSP56303 4-9
operation field 3-4
Option

AE C-43, C-44
assembler operation C-43

/AD, Preliminary MOTOROLA

CC C-44
CEX C-42, C-44
CK C-44
CL C-42, C-45
CM C-44, C-45
CONST C-44, C-45
CONTC C-45
CONTCK C-44, C-45
CRE C-42, C-45
DEX C-43, C-45
DLD C-44, C-45
DXL C-42, C-45
FC C-42, C-45
FF C-42, C-45
FM C-42, C-45
GL C-44, C-45
GS C-44, C-45
HDR C-43, C-45
IC C-43, C-46
IL C-43, C-46
INTR C-44, C-46
LB C-44, C-46
LDB C-44, C-46
listing format C-42
LOC C-43, C-46
MC C-43, C-46
MD C-43, C-46
message C-43
MEX C-43, C-46
MI C-44, C-46
MSW C-43, C-46
MU C-43, C-46
NL C-43, C-46
NOAE C-46
NOCC C-46
NOCEX C-46
NOCK C-47
NOCL C-47
NOCM C-47
NODEX C-47
NODLD C-47
NODXL C-47
NOFC C-47
NOFF C-47
NOFM C-47
NOGS C-47
NOHDR C-47
NOINTR C-47
NOMC C-47
NOMD C-47
NOMEX C-47
MOTOROLA DSP56303, P
NOMI C-47
NOMSW C-47
NONL C-47
NONS C-47
NOPP C-47
NOPS C-47
NORC C-47
NORP C-48
NOSCL C-48
NOU C-48
NOUR C-48
NOW C-48
NS C-43, C-48
PP C-42, C-48
PS C-44, C-48
PSM C-44
RC C-42, C-48
reporting C-42
RP C-44, C-48
RSV C-44
S C-43, C-48
SCL C-43, C-48
SCO C-43, C-48
SI C-44
SO C-43, C-48, C-49
SVO C-44
symbol C-43
U C-43, C-49
UR C-43, C-49
W C-43, C-49
WEX C-49
XLL C-43, C-49
XR C-43, C-49

P

P Space Enable Bit, BPEN 4-8
Packing Enable Bit, BPAC 4-7
PC 4-14
PC requirements 1-4
PEROM 4-9

bootstrap 4-10
standalone operation 4-9

power supply, external 1-4, 1-7
program

assembling the 3-7
example 3-5
writing the 3-4

Program counter C-8, C-49
programming

AAR0 4-7

reliminary Index-5

assembly 3-3
development 3-3
example 3-3

Q

Quick Start Guide ii, 1-1

R

Read Enable Pin, RD 4-6, 4-9
Reset, DSP56002 4-14
Reset, DSP56303 4-9
RS-232 cable connection 1-7
RS-232 interface 4-14
RS-232 interface cable 1-4
RS-232 serial interface 4-14
running the Debugger program 3-26
running the demonstration 2-1, 2-4

S

SCI, DSP56002 4-14
Section C-57

end C-29
global C-32, C-45, C-58
local C-36, C-58
nested C-48
static C-45, C-58

self-test 1-9
Serial Clock Pin, SCK0 4-12
Serial Control Pin 0, SC00 4-12
Serial Control Pin 1, SC01 4-12
Serial Control Pin 2, SC02 4-12
serial interface 4-14
Serial Receive Data Pin, SRD0 4-12
Serial Transmit Data Pin, STD0 4-12
software

Domain Technologies 1-8
Motorola 1-8

software installation 1-8
Source file

end C-27
source statement format 3-4
SRAM 4-4, 4-5

connections 4-6
SRAM Address Pins, A(0:14) 4-6
SRAM Chip Enable Pin, E 4-6
SRAM Data Pins, DQ(0:7) 4-6
SRAM memory map 4-7
SRAM Output Enable Pin, G 4-6
Index-6 DSP56303EVMUM
SRAM Write Enable Pin, W 4-6
Stand-Alone Operation 4-9
standalone operation 4-9
Stereo Headphones 4-11
Stereo Input 4-11
Stereo Output 4-11
String

concatenation C-9
delimiter C-7
packed C-48

SW2 2-4
SW3 2-5
Symbol

case C-46
cross-reference C-45
equate C-29, C-45
global C-45
listing C-48
set C-32, C-60
undefined C-49

T

test
analysis 1-9, 1-10
self 1-9

test results
fail 1-11
pass 1-12

trademark notices ii
tutorial, codec programming D-1

U

Unified Memory Map 4-6

W

Warning C-49
Windows 1-8
world-wide web address ii
Write Enable Pin, WR 4-6, 4-9

X

X data transfer field 3-4
X Space Enable Bit, BXEN 4-8

Y

Y data transfer field 3-4
Y Space Enable Bit, BYEN 4-8

/AD, Preliminary MOTOROLA

	COVER
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	QUICK START GUIDE
	RUNNING THE DEMONSTRATION FILE
	EXAMPLE TEST PROGRAM
	DSP56303EVM TECHNICAL SUMMARY
	DSP56303EVM SCHEMATICS
	DSP56303EVM PARTS LIST
	MOTOROLA ASSEMBLER NOTES
	CODEC PROGRAMMING TUTORIAL
	INDEX

