DSP56303EVM

User’'s Manual

Motorola, Incorporated
Semiconductor Products Sector
DSP Division

6501 William Cannon Drive West
Austin, TX 78735-8598

Order this document by:
DSP56303EVMUM/AD

Introduction

This document supports the DSP56303 Evaluation Module (DSP56303EVM)
including a description of its basic structure and operation, the equipment required
to use it, the specifications of the key components, the provided software (such as the
demonstration code, the self-test code, and the software required to develop and
debug sophisticated applications), schematic diagrams, and a parts list. Section 1 is a
Quick Start Guide. Section 2 provides instructions for running the demonstration
software. Section 3 provides a simple programming example. Section 4 provides
detailed information about key components in the evaluation module. Appendix A
has detailed schematics. Appendix B is the parts list. Appendix C includes additional
notes for using the Assembler. Appendix D is a tutorial for programming the codec.
This document has been designed for users experienced with DSP development
tools. For users with little or no DSP experience, detailed information is provided in
the additional documents supplied with this Kit.

Mfax and OnCE are trademarks of Motorola, Inc. Eﬂ:s:]

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Motorola assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “typical”
parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. Motorola does not convey any license
under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use
as components in systems intended for surgical implant into the body, or other applications intended to support
life, or for any other application in which the failure of the Motorola product could create a situation where personal
injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or
unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of
the part. Motorola and @ are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.

How to reach us:

USA/Europe/Locations Not Asia/Pacific: Japan:
Listed: Motorola Semiconductors H.K. Ltd. Nippon Motorola Ltd.
Motorola Literature Distribution 8B Tai Ping Industrial Park Tatsumi-SPD-JLDC
P.O. Box 20912 51 Ting Kok Road 6F Seibu-Butsuryu-Center
Phoenix, Arizona 85036 Tai Po, N.T., Hong Kong 3-14-2 Tatsumi Koto-Ku
1 (800) 441-2447 or 852-2662928 Tokyo 135, Japan
1 (602) 303-5454 03-3521-8315
Technical Resource Center:
Mfax ™ 1 (800) 521-6274
RMFAXO@email.sps.mot.com Internet:
TOUCHTONE (602) 244-6609 DSP Helpline http://www.motorola-dsp.com

dsphelp@dsp.sps.mot.com

@ MOTOROLA

CONTENTS

SECTION 1 QUICKSTARTGUIDE....................... 1-1
1.1 OVERVIEW e i 1-3
1.2 EQUIPMENT e e 1-3
1.2.1 What You Get with the DSP56303EVM. 1-3
1.2.2 What YouNeedtoSupply L. 1-4
1.3 INSTALLATION PROCEDURE 1-4
1.3.1 Preparing the DSP56303EVM. 1-5
1.3.2 Connecting the DSP56303EVM to the PC and Power . ..1-7
1.3.3 Installing the Software 1-8
1.3.4 Testing the DSP56303EVM. 1-9
1.34.1 DSP56303EVM Self-test. 1-9
1.3.4.2 DSP56303EVM Analysis Program 1-10
SECTION 2 RUNNING THE DEMONSTRATIONFILE. 2-1
2.1 OVERVIEW e 2-3
2.2 SETTING UP THE DEMONSTRATION. 2-3
2.3 RUNNING THE DEMONSTRATION 2-4
SECTION 3 EXAMPLE TEST PROGRAM 3-1
3.1 OVERVIEW e 3-3
3.2 WRITING THE PROGRAM 3-4
3.2.1 Source StatementFormat oL 3-4
3.2.1.1 LabelField. L 3-4
3.2.1.2 OperationField 3-4
3.2.1.3 Operand Field 3-5
3.2.1.4 Data TransferFields 3-5
3.2.15 CommentField 3-5
3.2.2 Example Program 3-5
3.3 ASSEMBLING THE PROGRAM 3-7
3.3.1 Assembler Command Format 3-7
3.3.2 Assembler Options i 3-8
3.3.3 Assembler Directives. L. 3-11

MOTOROLA DSP56303EVMUM/AD, Preliminary i

3.3.3.1 Assembler Significant Characters 3-11

3.3.3.2 Assembly Control 3-12
3.3.3.3 Symbol Definition 3-13
3.3.34 Data Definition/Storage Allocation 3-13
3.3.35 Listing Control and Options 3-14
3.3.3.6 ObjectFileControl 3-14
3.3.3.7 Macros and Conditional Assembly............... 3-15
3.3.3.8 Structured Programming 3-15
3.3.4 Assembling the Example Program 3-16
3.4 MOTOROLADSPLINKER 3-16
3.4.1 Linker Options. 3-17
3.4.2 Linker Directives i 3-23
3.5 INTRODUCTION TO THE DEBUGGER SOFTWARE 3-24
3.6 RUNNING THE PROGRAM 3-26
SECTION 4 DSP56303EVM TECHNICAL SUMMARY 4-1
4.1 DSP56303EVM DESCRIPTION AND FEATURES. 4-3
4.2 DSP56303 DESCRIPTION i 4-3
4.3 MEMORY. 4-4
4.3.1 SRAM . . 4-5
43.1.1 SRAM Connections 4-6
4.3.1.2 Example: Programming AARO 4-7
4.3.2 FlashPEROM. 4-9
4321 Flash PEROM Connections 4-9
4.3.2.2 Programming for Stand-Alone Operation........... 4-9
4.4 AUDIOCODEC. e e 4-10
4.4.1 Codec Analog Input/Output. 4-11
4.4.2 Codec Digital Interface 4-12
4.4.3 CodecCloCK 4-13
4.5 COMMAND CONVERTER 4-14

\Y DSP56303EVMUM/AD, Preliminary MOTOROLA

APPENDIX B DSP56303EVM PARTS LIST B-1
APPENDIX C MOTOROLA ASSEMBLER NOTES C-1
APPENDIX D CODEC PROGRAMMING TUTORIAL. D-1
INDEX INDEX -1

(M) moToroLa DSP56303EVMUM/AD, Preliminary v

LIST OF FIGURES

Figure 1-1 DSP56303EVM ComponentLayout 1-6
Figure 1-2 Connecting the DSP56303EVM Cables 1-7
Figure 1-3 DSP56303EVM Test Sample Output—Fail. 1-11
Figure 1-4 DSP56303EVM Test Sample Output—Pass. 1-12
Figure 2-1 DSP56303EVM ComponentLayout 2-4
Figure 3-1 Development Process Flow. 3-3
Figure 3-2 Example Debugger Window Display 3-25
Figure 4-1 DSP56303EVM ComponentLayout 4-4
Figure 4-2 DSP56303EVM Functional Block Diagram 4-5
Figure 4-3 SRAM Connections to the DSP56303. 4-6
Figure 4-4 Alternate ConfigurationsforJ9 4-6
Figure 4-5 Example Memory Map with the Unified External Memory. 4-7
Figure 4-6 Address Attribute Register AARO 4-8
Figure 4-7 Flash PEROM Connections.t 4-9
Figure 4-8 Codec Analog Input/Output Diagram. 4-11
Figure 4-9 Codec Digital Interface Connections. 4-12
Figure 4-10 Codec Clock Generation Diagram. 4-13
Figure 4-11 RS-232 Serial Interface. 4-14
MOTOROLA DSP56303EVMUM/AD, Preliminary Vi

LIST OF TABLES

Table B-1

DSP56303EVM Parts List.

MOTOROLA

DSP56303EVMUM/AD, Preliminary

Vii

viii DSP56303EVMUM/AD, Preliminary MOTOROLA

SECTION 1
QUICK START GUIDE

MOTOROLA

DSP56303EVMUM/AD, Preliminary

1-1

Quick Start Guide

1.1 OVERVIEW e 1-3
1.2 EQUIPMENT s 1-3
1.2.1 What You Get with the DSP56303EVM 1-3
1.2.2 What You Need to Supply.ot 1-4
1.3 INSTALLATION PROCEDURE 1-4
131 Preparing the DSP56303EVM 1-5
1.3.2 Connecting the DSP56303EVM to the PC and Power . .. 1-7
1.3.3 Installing the Software. 1-8
1.3.4 Testing the DSP56303EVM 1-9
1-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Overview

1.1 OVERVIEW

This section provides a summary description of the evaluation module contents,
additional requirements, and quick installation and test information. Detailed
information about the DSP56303EVM design and operation is provided in the
remaining sections of this manual.

1.2 EQUIPMENT

The following section gives a brief summary of the equipment required to use the
DSP56303 Evaluation Module (DSP56303EVM), some of which will be supplied with
the module, and some of which must be supplied by the user.

1.2.1 What You Get with the DSP56303EVM

The following material is provided with the DSP56303EVM:

= DSP56303 Evaluation Module board

= DSP56303EVM Product Information

e DSP56303 Technical Data (preliminary)

= DSP56303 Chip Errata

e DSP56300 Family Manual

= DSP56303 Product Specifications Revision 1.02

e DSP56303EVM User’s Manual (this document)

= Crystal Semiconductor CS4215 16-Bit Multimedia Audio Codec Data Sheet

< Domain Technologies Debug-56K Debugger manual for Motorola 16- and
24-bit DSPs

= Set of diskettes (3-1/2 inch) containing required software:
— GUI Debugger from Domain Technologies (1 diskette)

— Assembler/linker/example software from Motorola (1 diskette)

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-3

Quick Start Guide

Installation Procedure

1.2.2

1.3

What You Need to Supply

PC (386 class or higher) with:

Windows 3.1 or higher (including Windows 95)
4 Mbytes of memory minimum

3-1/2-inch, high density, diskette drive

Hard drive with 4 Mbytes of free disk space
Mouse

RS-232 serial port supporting 9,600-57,600 bit-per-second transfer rates

RS-232 interface cable (DB9 male to DB9 female)

Power supply, 7-9 V ac or dc input into a 2.1 mm power connector

Audio source (tape player, radio, CD player, etc.)

Headphones

Audio interface cable with 1/8-inch stereo plugs

INSTALLATION PROCEDURE

Installation requires four basic steps:

1. Preparing the DSP56303EVM board
2. Connecting the board to the PC and power
3. Installing the software
4. Testing the installation
1-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

13.1

Installation Procedure

Preparing the DSP56303EVM

CAUTION

Because all electronic components are
sensitive to the effects of electrostatic
discharge (ESD) damage, correct
procedures should be used when
handling all components in this kit and
inside the supporting personal computer.
Use the following procedures to minimize
the likelihood of damage due to ESD:

— Always handle all static-sensitive

components only in a protected area,

preferably a lab with conductive
(anti-static) flooring and bench
surfaces.

— Always use grounded wrist straps

when handling sensitive components.

— Never remove components from

anti-static packaging until required for

installation.

— Always transport sensitive

components in anti-static packaging.

Locate jumper blocks J4, J7, and J9, as shown in Figure 1-1. Make sure that, for blocks
J4 and J7, all six positions on each block are jumpered, and for J9, there is a jumper
connecting pins 2 and 3. These jumpers perform the following functions:

J9 defines the external memory map.

J4 controls the interface between the DSP56302 JTAG/ONCE port and
DSP56002 Synchronous Serial Interface (SSI).

J7 controls the interface between the audio codec and the DSP56302 Enhanced
Synchronous Serial Interface (ESSI0).

MOTOROLA

DSP56303EVMUM/AD, Preliminary

1-5

Quick Start Guide

Installation Procedure

J9
ON |
1
MC145407 J3 19/ j8 ISA CONNECTOR
JTAG/ L] | D
OnCE ° %
© S] ESSI1/SCI
o ™ 0
S < = sSwi
s 3 o
Q s = DSP56303
DSP56002 AT29LV512 n MC34164
J2 SW2
Debug J4 a7 =250 J5 JTAG OPL?T
] [
O COMMANL/ CONVERTER SELEC P4
HDPHNE
LT1085 MC74HCT241
P3
MC74HCTO04 Cs4215 N
Power I:I
LT1085 LED MC33078
Q Serial # L]

y

34 37)
12
1 1

Figure 1-1 DSP56303EVM Component Layout

1-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Installation Procedure

1.3.2 Connecting the DSP56303EVM to the PC and Power

Figure 1-2 shows the interconnection diagram for connecting the PC and the external
power supply to the DSP56303EVM board. Use the following steps to complete cable
connections:

DB9 Interface

Cable
PC-compatible
Computer
—] ,
Connect cable P2

to RS-232 port

External
7-9V

Power DSP56303EVM

Figure 1-2 Connecting the DSP56303EVM Cables

1. Connect the DBIP end of the RS-232 interface cable to the RS-232 port
connection on the PC.

2. Connect the DB9S end of the cable to P1, shown in Figure 1-1, on the
DSP56303EVM board. This provides the connection to allow the PC to control
the board function.

3. Make sure that the external 7-9 V power supply does not have power
supplied to it.

4. Connect the 2.1 mm output power plug into P2, shown in Figure 1-1, on the
DSP56303EVM board.

5. Apply power to the power supply. The green Power LED will light when
power is correctly applied.

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-7

Quick Start Guide

Installation Procedure

1.3.3

Installing the Software

The DSP56303EVM software includes the following:

Motorola diskette containing:

Assembler
Linker

Test code

Demonstration code

Domain Technologies diskette containing the windowed user interface debug
software

Use the following steps to install the software:

=

Insert the Motorola software diskette into the PC diskette drive.
If the system is not already running in Windows, start Windows.

From Windows, select a DOS window and run the install program. The
general format for the command line of the install program is

install <source>. For example, if your diskette drive is a, type in a:install a..
The program installs the software in the default destination c:\evm30xw.

Close the DOS window and remove the Motorola software diskette from the
diskette drive. Insert the Domain Technologies diskette labeled Debug-56K
into the drive.

From Windows, run the Debugger installation program install.exe on the
diskette. This can be done from the Microsoft Windows Program Manager by
pulling down the File menu, choosing Run, entering a:install on the
command line, and clicking OK.

Read the README.TXT if you are installing the Debugger program for the
first time. This provides information in addition to that provided by the
Domain Technologies manual included with this kit.

The install program creates a program group called “evm5630x” and a
program icon called “evm30xw” within Windows. This step completes the
software installation.

1-8

DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Installation Procedure

134 Testing the DSP56303EVM

The following sections describe the DSP56303EVM self-test and analysis programs.
The self-test allows the user to determine if the DSP56303EVM is properly connected
and ready for operation. The analysis program allows the user to examine the
DSP56303EVM operation in more detail to diagnose problems that may occur.

1.34.1 DSP56303EVM Self-test

This section describes how to run the DSP56303EVM self-test. The self-test comes
pre-loaded into the Flash PEROM of the DSP56303EVM, and is therefore very easy to
use. There are two parts to the self-test, as follows:

= The first part of the self-test examines the external memory of the
DSP56303EVM by writing to, and reading from, the external SRAM. It also
examines the analog circuitry of the DSP56303EVM by analyzing the response
of the analog circuitry to a sequence of tones. This part of the self-test begins
running immediately when the DSP56303 boots from the Flash PEROM and,
after startup, by invoking external Interrupt Request A (IRQA). IRQA can be
activated by pressing the switch labelled SW2.

= The second part of the self-test analyzes the audio circuitry of the
DSP56303EVM by moving an audio signal through the codec. The second part
of the self-test begins following a receipt of external Interrupt Request D
(IRQD). IRQD is activated by pressing the switch labelled SW3.

The following steps describe how to run the self-test code for the DSP56303EVM.

1. Install the cable with the 1/8-inch stereo plugs between the line input jack
labelled P3/IN on the DSP56303EVM and the line output jack labelled
P5/0UT on the DSP56303EVM. Refer to Figure 1-1 on page 1-6 for the
location of the line input and output jacks.

2. Press the switch labelled SW1 on the DSP56303EVM. Refer to Figure 1-1
on page 1-6 for the location of SW1. This switch resets the DSP56303 and
allows the DSP56303 to boot from the Flash PEROM, which is preloaded with
the self-test code, and begins the first part of the self-test. The red LED at D12
lights when the test begins running. When this test is complete, the LED turns
off if the DSP56303EVM passed the test. If the DSP56303EVM fails the test, the
LED flashes. To repeat the test, press SW2 to invoke IRQA.

3. Now run the second part of the self-test code to test the analog circuitry of the
DSP56303EVM. Using the cable with the 1/8-inch stereo plugs, connect the
phone output of the audio source to the line input jack labelled P3/IN on the
DSP56303EVM. Also connect a pair of headphones to the headphone jack
labelled P4/7HDPHNE on the DSP56303EVM. Refer to Figure 1-1 on page 1-6

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-9

Quick Start Guide

Installation Procedure

for the locations of the line input and headphone jacks. Start the audio source
and put on the headphones.

4. Press the switch labelled SW3 on the DSP56303EVM. Refer to Figure 1-1
on page 1-6 for the location of SW3. You should hear the audio through the
headphones with a slight echo added.

To rerun the first part of the self-test, perform steps 1 and 2 above. To repeat the
second part of the test, perform steps 3 and 4 above. You can switch between the
parts at any time.

If both parts of the self-test complete correctly, the DSP56303EVM is correctly
installed, operational, and ready for use. If either part of the self-test fails,
double-check the jumper settings and cable connections (power, RS-232, and audio)
and repeat the test. If the DSP56303EVM continues to fail either test, run the
DSP56303EVM analysis program described in Section 1.3.4.2 to try to determine the
cause of the problem.

1.3.4.2 DSP56303EVM Analysis Program

This section describes how to run the DSP56303EVM analysis program. The analysis
program functions in the same way as the first part of the self-test, but provides a list
of output results. This allows the user to determine exactly how the DSP56303EVM is
failing the tests.

The following steps describe how to run the analysis program for the DSP56303EVM.

1. Run the program evmtst2.exe. This can be done from the Microsoft Windows
Program Manager by pulling down the File menu, choosing Run, entering
c:\evm30xw\evmtst2.exe on the command line, and clicking OK.

2. When prompted, install the cable with the 1/8” stereo plugs between the line
input jack labelled P3/1N on the DSP56303EVM and the line output jack
labelled P5/0UT on the DSP56303EVM. Refer to Figure 1-1 on page 1-6 for
the location of the line input and output jacks. Press any key to continue the
test.

3. Wait for the test to run.

Note: When the test is complete, the test program window will go to the
background. Click on the test window to bring it to the foreground.

4. After the test is complete, the test asks for the DSP56303EVM serial number.
The serial number can be found at the bottom of the DSP56303EVM board as
shown in Figure 1-1 on page 1-6. Type in the serial number from the board
and press the return key.

1-10 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Installation Procedure

The test program will output a set of diagnostics to the screen, similar to those shown
in Figures 1-3 and 1-4, showing the results of the analog circuitry and memory tests.
The analog circuitry results show the DC offset, the noise level, and the response of
the analog circuitry to the sequence of tones listed in the first column. The second
two columns contain the raw data received by the DSP56303 from the left and right
channels of the analog circuitry. The raw data is evaluated in decibels relative to the

maximum value and placed in the next two columns, labelled dB below MAX.

-- DSP56303EVM Performance Analysis Ver.2.00--
EVM Serial No.: 1234
DSP56303 Chip Revision No. 000303

Tue Jun 04 17:45:47 1996

MEMORY ERRORS FOUND! (check J9isin correct position)
AUDIO FAIL
*rxk EAIL *** FAIL *** FAIL *** FAIL ***

LEFT RIGHT dB below MAX
DC Offset: 65535 65535 6.02 6.02 10.00
NOISE: 0 0 0.00 0.00 10.00
24 kHz: 3086 2773 -20.52 -21.45 -20.00
6 kHz 20 24014 -64.29 -2.70 -6.00
1.5kHz: 24422 22 -2.55 -63.46 -6.00
375 Hz: 20 19 -64.29 -64.73 -6.00
94 Hz: 22772 22553 -3.16 -3.24 -6.00
23 Hz: 15563 15218 -6.47 -6.66 0.00
12 Hz: 8627 8401 -11.59 -11.82 0.00
6 Hz: 2701 2567 -21.68 -22.12 -20.00
Pass. 6 Address. X:8200 Y:8200
Expected: 000000 000000
Received: 000000 FF0000

Figure 1-3 DSP56303EVM Test Sample Output—~Fail

MOTOROLA

DSP56303EVMUM/AD, Preliminary

1-11

Quick Start Guide

Installation Procedure

-- DSP56303EVM Performance Analysis Ver.2.00--
EVM Seria No.: 1234 Tue Jun 04 17:45:47 1996
DSP56303 Chip Revision No. 000303
LEFT RIGHT ———dB below MAX
DC Offsat: 65535 65535 6.02 6.02 10.00
NOISE: 0 0 0.00 0.00 10.00
24 kHz: 3086 2773 -20.52 -21.45 -20.00
6 kHz 24481 24014 -2.53 -2.70 -6.00
1.5kHz: 24422 24140 -2.55 -2.65 -6.00
375 Hz: 24040 23868 -2.69 -2.75 -6.00
94 Hz: 22772 22553 -3.16 -3.24 -6.00
23 Hz: 15563 15218 -6.47 -6.66 0.00
12 Hz: 8627 8401 -11.59 -11.82 0.00
6 Hz: 2701 2567 -21.68 -22.12 -20.00
Pass: 6 Address: X:0000 Y:0000
Expected: 000000 000000
Received: 000000 000000
-------- PASS --------

Figure 1-4 DSP56303EVM Test Sample Output—Pass

The last column shows the acceptable responses, in dB, of the analog circuitry for the
various tones. The dB levels for each channel are compared to the acceptable
responses to determine if the DSP56303EVM passed the analog circuitry test. The dB
levels must be below the acceptable responses for DC offset, noise, 24 kHz, 23 Hz, 12
Hz, and 6 Hz and above the acceptable responses for 6 kHz, 1.5 kHz, 375 Hz, and

94 Hz for the DSP56303EVM to pass the analog circuitry test. If either channel’s dB
levels do not satisfy the acceptable responses, an asterisk will be located at the end of
the row that did not pass the analog circuitry test. For example, in Figure 1-3, the left
channel did not satisfy the acceptable response for 6 kHz, the right channel did not
satisfy the acceptable response for 1.5 kHz, and both channels did not satisfy the
acceptable response for 375 Hz. If the DSP56303EVM passed the analog circuitry
test, no asterisks will be seen at the end of the rows, as in Figure 1-4.

1-12 DSP56303EVMUM/AD, Preliminary MOTOROLA

Quick Start Guide

Installation Procedure

The results of the memory test are shown below the results of the analog circuitry
test. These results tell how many passes of the external memory test were run and if
the DSP56303EVM passed the test. If all the values in the Address, Expected, and
Received fields are zero, as in Figure 1-4, the DSP56303EVM passed the external
memory test. If the DSP56303EVM failed the external memory test, these fields will
tell which memory location caused the failure, the value that was expected to be
read, and the value that was actually read from that memory location, as in

Figure 1-3.

The last line of the diagnostics tells if the DSP56303EVM passed or failed the test. If
the last line says PASS, as in Figure 1-4, then the DSP56303EVM passed the test and
is ready for use. If the last line says FAIL, as in Figure 1-3, double check the jumpers
and the power, RS-232, and stereo connections and repeat the test. If the
DSP56303EVM continues to fail the test, email the DSP help line at
dsphelp@dsp.sps.mot.com.

Now the test is complete and the DSP56303EVM is ready for operation.

MOTOROLA DSP56303EVMUM/AD, Preliminary 1-13

Quick Start Guide

Installation Procedure

1-14 DSP56303EVMUM/AD, Preliminary MOTOROLA

SECTION 2
RUNNING THE DEMONSTRATION FILE

MOTOROLA DSP56303EVMUM/AD, Preliminary 2-1

Running the Demonstration File

2.1 OVERVIEW 2-3
2.2 SETTING UP THE DEMONSTRATION 2-3
2.3 RUNNING THE DEMONSTRATION. 2-4

2-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

Running the Demonstration File

Overview

21 OVERVIEW

This section describes the demonstration that is included with the DSP56303EVM.
The demonstration is designed to show the advantage of 24-bit DSPs over 16-bit
DSPs. Even if the system input data is limited by a 16-bit data converter, the system
can still benefit greatly from using the 24-bit DSP architecture.

This demonstration takes an input signal, digitizes it, and adds a 60 Hz tone to
simulate the noise that can be generated by a 60 Hz AC power line. The signal is then
filtered using one of three sets of coefficients.

The first set of coefficients performs no filtering, simply allowing the corrupted
signal to pass through. The second set of coefficients use 24-bit coefficients to
correspond to a 60 Hz notch filter that removes the 60 Hz portion of the corrupted
signal. The final set of coefficients are the same as those used for the 24-bit filtering,
only rounded to 16 bits.

The following sections give step-by-step instructions on how to run this demo.

2.2 SETTING UP THE DEMONSTRATION

Perform the following steps to set up the demonstration:

1. Set up the audio source, preferably a music source with a headphone output,
such as a portable radio, tape player, or CD player.

2. Make sure the DSP56303EVM has been installed and tested, as described in
Section 1.

3. Using the cable with the 1/8-inch stereo plugs, connect the output of the audio
source to the stereo input jack labelled P3/IN on the DSP56303EVM.

4. Connect a pair of headphones to the stereo headphone jack labelled
P4/HDPHNE on the DSP56303EVM. Refer to Figure 2-1 for the locations of
the line input and headphone jacks.

Start the audio source and put on the headphones.

MOTOROLA DSP56303EVMUM/AD, Preliminary 2-3

Running the Demonstration File

Running the Demonstration

MC145407 J3 J9 Jg ISACONNECTOR L.
JTAG/ L LED
E
OonC) B 1
© S =] ESSI1/SCI
o ™ 0
@ <o = Swi1
= 3 O
Q s = DSP56303 Reset
SRAM]
DSP56002 AT29LV512 1 MC34164
Command |:|
IRQA
Converter PEROM 0
J2 Sw2
J7 ESSIO ITAG P5
Debug 34 J5 ouT
LED |:| I:I |:| sw3
IRQD

COMMAND CONVERTER SELECT P4
MC74HCT241 HDPHNE
LT1085
CSs4215 P3
MC&CTO“ Codec IN
Power
LT1085 LED MC33078
Q Serial #]

2.3

Figure 2-1 DSP56303EVM Component Layout

RUNNING THE DEMONSTRATION

To run the demonstration:

1.
2.

Start Windowvs.

Invoke the Debugger by double-clicking on the icon labelled evm30xw in the
evm5630x program group.

Click on the command window and type force r to reset the DSP56303 and
enter the debug mode.

Type in load 60hzdemo to load the demonstration file into the DSP56303.

Finally, type go to begin the demonstration. The first set of coefficients (no
filtering) is used when the demonstration begins. The first set of coefficients
performs no filtering, simply allowing the corrupted signal to pass. Thus, the
output contains the input signal with the added 60 Hz tone when the demo
begins.

DSP56303EVMUM/AD, Preliminary MOTOROLA

Running the Demonstration File

Running the Demonstration

6. Briefly press SW2 to invoke external internal request A (IRQA). Invoking
IRQA causes the DSP to use the 24-bit filter coefficients. Refer to Figure 2-1 for

the location of SW2.

7. To hear the results of using the 16-bit coefficients, briefly press the switch
labeled SWa3. This invokes the external interrupt request D (IRQD), which
causes the DSP to use the 16-bit filter coefficients. Refer to Figure 2-1 for the
location of SW3.

Note: You will hear a significant difference between filtering with the 24-bit and
16-bit coefficients. The reason for this contrast is that it is impossible to
place the notch of the filter exactly on 60 Hz with 16-bit coefficients. The
16-bit filter notch is slightly offset and, therefore, misses the frequency of
the noise. With the 24-bit coefficients, it is possible to place the filter notch
exactly on 60 Hz.

8. To stop the execution of the demo, type force r in the command window in the
bottom left corner of the screen.

9. To exit the Debugger, type quit.

MOTOROLA DSP56303EVMUM/AD, Preliminary 2-5

Running the Demonstration File

Running the Demonstration

2-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

SECTION 3
EXAMPLE TEST PROGRAM

MOTOROLA DSP56303EVMUM/AD, Preliminary

3-1

Example Test Program

3.1 OVERVIEW . . . e 3-3
3.2 WRITING THE PROGRAM 3-4
3.2.1 Source Statement Format. 3-4
3.2.2 Example Program, 3-5
3.3 ASSEMBLING THEPROGRAM i 3-7
3.3.1 Assembler Command Format. 3-7
3.3.2 Assembler Options 3-8
3.3.3 Assembler Directives 3-11
3.3.4 Assembling the Example Program 3-16
3.4 MOTOROLADSPLINKER 3-16
3.4.1 Linker Options. 3-17
3.4.2 Linker Directives 3-23
3.5 INTRODUCTION TO THE DEBUGGER SOFTWARE 3-24
3.6 RUNNING THE PROGRAM 3-26

3-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Overview

3.1 OVERVIEW

This section contains an example that illustrates how to develop a very simple
program for the DSP56303. This example has been designed for users who have little
or no experience with the DSP development tools. The example demonstrates the
form of assembly programs, gives instructions on how to assemble programs, and
shows how the Debugger can be used to verify the operation of programs.

Figure 3-1 shows the development process flow for assembly programs. The
rounded blocks represent the assembly and object files. The white blocks represent
software programs to assemble and link the assemble programs. The gray blocks
represent hardware products. The following sections give basic information
regarding the assembly program, the Assembler, the Linker and the object files.
Detailed information about these subjects can be found in the Assembler and Linker
manuals provided with the Motorola DSP CLAS software package available through
your Motorola sales office or distributor. The documentation is also available
through the Motorola DSP internet URL http://www.motorola-dsp.com.

Assembly Program
*.asm

Assembler

Y

Relocatable
Object File
*.cln

Linker

v

Executable
Object File
*.cld

Y Y

ADS Command DSP56002
Converter Card *
| P> DSP56303
DSP56303EVM

Figure 3-1 Development Process Flow

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-3

Example Test Program

Writing the Program

3.2 WRITING THE PROGRAM

The following sections describe the format of assembly language source statements
and give an example assembly program.

3.2.1 Source Statement Format

Programs written in assembly language consist of a sequence of source statements.
Each source statement may include up to six fields separated by one or more spaces
or tabs: a label field, an operation field, an operand field, up to two data transfer
fields, and a comment field. For example, the following source statement shows all
six possible fields:

trm nmac x0, y0, a x: (r0)+, x0 y:(r4)+,y0 ; Text
Label Operation Operand X Data Transfer Y Data Transfer = Comment
3.21.1 Label Field

The label field is the first field of a source statement and can take one of the following
forms:

= A space or tab as the first character on a line ordinarily indicates that the label
files is empty and that the line has no label.

= An alphabetic character as the first character indicates that the line contains a
symbol called a label.

= An underscore as the first character indicated that the label is a local label.

With the exception of some directives, a label is assigned the value of the location
counter of the first word of the instruction or data being assembled. A line consisting
of a label only is a valid line and has the effect of assigning the value of the location
counter to the label.

3.2.1.2 Operation Field
The operation field appears after the label field and must be preceded by at least one
space or tab. Entries in the operation field may be one of three types:

e Opcode—mnemonics that correspond directly to DSP machine instructions

= Directive—special operation codes known to the Assembler which control the
assembly process

3-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Writing the Program

= Macro call—invocation of a previously defined macro which is to be inserted
in place of the macro call

3.2.1.3 Operand Field

The interpretation of the operand field is dependent on the contents of the operation
field. The operand field, if present, must follow the operation field and must be
preceded by at least one space or tab.

3.214 Data Transfer Fields

Most opcodes can specify one or more data transfers to occur during the execution of
the instruction. These data transfers are indicated by two addressing mode operands
separated by a comma, with no embedded blanks. If two data transfers are specified,
they must be separated by one or more blanks or tabs. Refer to the DSP56300 Family
Manual for a complete discussion of addressing modes that are applicable to data
transfer specifications.

3.2.15 Comment Field

Comments are not considered significant to the Assembler, but can be included in the
source file for documentation purposes. A comment field is composed of any
characters that are preceded by a semicolon.

3.2.2 Example Program

This program takes two lists of data, one in X memory, and one in Y memory, and
calculates the sum of the products of the two lists. Calculating the sum of products is
the basis for many DSP functions. Therefore, the DSP56303 has a special instruction
(MAC) which multiplies two values and adds the result to the contents of an
accumulator. This program is provided as example.asm on the DSP56303EVM
diskette and is placed in the evm30xw directory by the installation procedure.

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-5

Example Test Program

Writing the Program

Example 3-1 Simple DSP56303 Code Example

rkkkkkkhkkhkhkhhkkhkhhkkhhkkhhkhhkkhhkhkhhkhhkkhhkhhkhhhkdhhhkhhhkdxhhrhrkdx

; A SCMPLE PROERAM CALAULATI NG THE SUM F PRODUCTS

rkkkkkkhkkk kA hkhkhkkhkhkhkkhhkkhkhhkkhhkhkhhkhhkhhkhhhhhkdrhhkhhkdxhhkhrkdx
’

PBASE EQJ $100 yinstruct the assenbl er to repl ace
;every occurrence of PBASE with $200

XBASE EQJ $0 ;used to define the position of the
;data in X nenory

YBASE EQJ $0 ;used to define the position of the

;data in Y nenory
RS S LSS S S ES S ST LSS TS S EE LS L LSS EEEEEEEEEEEEEEEEEEEEE LSS
: X MEMORY
RS S S S S S S E S E S EESESTSTSTSSTE S S S LSS LSS S S S ST E L L L EEEEEEE S SRR RS S
org X: XBASE rinstructs the assenbl er that we
;are referring to X nenory starting
;at | ocati on XBASE

listl dc $475638, $738301, $92673a, $898978, $091271, $f 25067
dc $987153, $3A8761, $987237, $34b852, $734623, $233763
dc $f 76756, $423423, $324732, $f 40029

skkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhhkhkdkhkhkhkhkhkhkhkhhhkhkhkhkhhkhhhkhhkhkhdkhkhdhhdhhkhhksk

;Y MEMRY

RS SRS S S E LS EEEE LSS EEE SRS S LSS SRS EEEEEEEEEEEEEEEEEEEEE RS
org y: YBASE ;instructs the assenbl er that we

;are referring to Y nenory starting
;at |ocation YBASE

list2 dc $f 98734, $800000, $f edcba, $487327, $957572, $369856
dc $247978, $8a3407, $734546, $344787, $938482, $304f 82
dc $123456, $657784, $567123, $675634
; PROZRAM
org p:0 ;put follow ng programin program
;nenory starting at location O
jnp begi n ;pP:0 is the reset vector i.e. where

;the D8P 1 ooks for instructions
;after a reset

org p: PBASE ;start the nmain programat p: PBASE
begi n

nove #listl, rO ;set up pointer to start of listl

nove #list2,r4 ;set up pointer to start of list2

clr a :clear accumul ator a

nove x: (r0)+ x0 y: (rd)+y0

;1 oad the val ue of X nenory poi nted
;to by the contents of rO into x0 and
;post-increnent r0

;1 oad the val ue of Y nenory pointed
;to by the contents of r4 into yO and
; post -i ncrenent r4

3-6 DSP56303EVMUM/AD, Preliminary

MOTOROLA

Example Test Program

Assembling the Program

Example 3-1 Simple DSP56303 Code Example (Continued)

do #15, endl oop; do 15 tines

nac X0, y0, a x: (r0)+, x0 y:(rd)+y0
;mul tiply and accumul ate, and | oad
; next val ues

endl oop jnp * ;this is equivalent to

;1 abel jnp | abel
;and is therefore a never-endi ng,
;enpty | oop

AR R A KRR A AR R AR A AR I AR A Ak h Ak hhhhhhhhdhhdhhhdhhdhdhhdhdddxhddxdxx
’

; END GF THE S MPLE PROGRAM

rkkkkkkhkkkhkkhhkkhkhhkkhhkhkhhkhhkkhhkhhkhkhhkkhhkhhkhhhhkdrhhhhhkdxhhkhhrhkdx
’

3.3 ASSEMBLING THE PROGRAM

The following sections describe the format of the Assembler command, give a list of
Assembler special characters and directives, and give instructions to assemble the
example program.

3.31 Assembler Command Format

The Motorola DSP Assembler is included with the DSP56303EVM on the Motorola
3-1/2 inch diskette and can be installed by following the instructions in

Section 1.3.3. The Motorola DSP Assembler is a program that translates assembly
language source statements into object programs compatible with the DSP56303. The
general format of the command line to invoke the Assembler is:

asm56300 [options] <filenames>

where asm56300 is the name of the Motorola DSP Assembler program, and
<filenames> is a list of the assembly language programs to be assembled. The
following section describes the Assembler options. To avoid ambiguity, the option
arguments should immediately follow the option letter with no blanks between
them.

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-7

Example Test Program

Assembling the Program

3.3.2 Assembler Options
-A

This option indicates that the Assembler should run in absolute mode, generating an
absolute object file when the -B command line option is given. By default, the
Assembler produces a relocatable object file that is subsequently processed by the
Motorola DSP Linker.

-B<obijfil>

This option specifies that an object file is to be created for Assembler output. <objfil>
can be any legal operating system filename, including an optional pathname. The
type of object file produced depends on the Assembler operation mode. If the -A
option is supplied on the command line, the Assembler operates in absolute mode
and generates an absolute object (.cld) file. If there is no -A option on the command
line, the Assembler operates in relative mode and creates a relocatable object (.cIn)
file. If the -B option is not specified, the Assembler will not generate an object file. If
no <objfil> is specified, the Assembler will use the basename (filename without
extension) of the first filename encountered in the source input file list and append
the appropriate file type (.cIn or.cld) to the basename. The -B option should be
specified only once.

Example: asm56300 -Bfilter main.asm fft.asm fio.asm

This example assembles the files main.asm, fft.asm, and fio.asm together to produce
the relocatable object file filter.cin.

-D <symbol> <string>

This option replaces all occurrences of <symbol> with <string> in the source files to
be assembled.

Example: asm56300 -DPOINTS 16 prog.asm

This example replaces all occurrences of the symbol POINTS in the program
prog.asm by the string ‘16’.

-EA<errfil> or -EW<errfil>
These options allow the standard error output file to be reassigned on hosts that do

not support error output redirection from the command line. <errfil> must be
present as an argument, but can be any legal operating system filename, including an

3-8 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Assembling the Program

optional pathname. The -EA option causes the standard error stream to be written to
<errfil>; if <errfil> exists, the output stream is appended to the end of the file. The
-EW option also writes the standard error stream to <errfil>; if <errfil> exists, it will
be overwritten.

Example: asm56300 -EWerrors prog.asm

This example redirects the standard output to the file errors. If the file already exists,
it will be overwritten.

-F<argfil>

This option indicates that the Assembler should read command line input from
<argfil>. <argfil> can be any legal operation system filename, including an optional
pathname. <argfil> is a text file containing further options, arguments, and filenames
to be passed to the Assembler. The arguments in the file need to be separated only by
some form of white space. A semicolon on a line following white space makes the
rest of the line a comment.

Example: asm56300 -Fopts.cmd

This example invokes the Assembler and takes the command line options and source
filenames from the command file opts.cmd.

-G

This option sends the source file line number information to the object file. This
option is valid only in conjunction with the -B command line option. The generated
line number information can be used by debuggers to provide source-level
debugging.

Example: asm56300 -B -Gmyprog.asm

This example assembles the file myprog.asm and sends the source file line number
information to the resulting object file myprog.cin.

-I<pathname>
This option causes the Assembler to look in the directory defined by <pathname> for
any include file not found in the current directory. <pathname> can be any legal

operating system pathname.

Example: asm56300 -1\project\ testprog

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-9

Example Test Program

Assembling the Program

This example uses IBM PC pathname conventions, and would cause the Assembler
to prefix any include files not found in the current directory with the \project\
pathname.

-L<lIstfil>

This option specifies that a listing file is to be created for Assembler output. <Istfil>
can be any legal operating system filename, including an optional pathname. If no
<Istfil> is specified, the Assembler will use the basename (filename without

extension) of the first filename encountered in the source input file list and append
st to the basename. The -L option should be specified only once.

Example: asm56300 -L filter.asm gauss.asm

This example assembles the files filter.asm and gauss.ams together to produce a
listing file. Because no filename was given, the output file will be named using the
basename of the first source file, in this case filter, and the listing file will be called
filter.lst.

-M<pathname>

This option causes the Assembler to look in the directory defined by <pathname> for
any macro file not found in the current directory. <pathname> can be any legal
operating system pathname.

Example: asm56300 -Mfftlib\ trans.asm

This example uses IBM PC pathname conventions, and would cause the Assembler
to look in the fftlib subdirectory of the current directory for a file with the name of the
currently invoked marco found in the source file, trans.asm.

-V

This option causes the Assembler to report assembly progress to the standard error
output stream.

-Z

This option causes the Assembler to strip symbol information from the absolute load
file. Normally symbol information is retained in the object file for symbolic
references purposes. This option is only valid with the -A and -B options.

Note: Multiple options can be used. A typical string might be:

Example: asm56300 -A -B -L -G filename.asm

3-10 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Assembling the Program

3.3.3 Assembler Directives

In addition to the DSP56303 instruction set, the assembly programs can contain
mnemonic directives which specify auxiliary actions to be performed by the
Assembler. These are the Assembler directives. These directives are not always
translated into machine language. The following sections briefly describe the various
types of Assembler directives.

3.3.3.1 Assembler Significant Characters

There are several one and two character sequences that are significant to the
Assembler. The Assembler significant characters are:

; - Comment delimiter

" - Unreported comment delimiter

\ - Line continuation character or macro dummy argument
concatenation operator

? - Macro value substitution operator

% - Macro hex value substitution operator

n - Macro local label override operator

“ - Macro string delimiter or quoted string DEFINE expansion character

@ - Function delimiter

* - Location counter substitution

++ - String concatenation operator

1 - Substring delimiter

<< - 170 short addressing mode force operator

< - Short addressing mode force operator

> - Long addressing mode force operator

- Immediate addressing mode operator

#< - Immediate short addressing mode force operator
#> - Immediate long addressing mode force operator

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-11

Example Test Program

Assembling the Program

3.3.3.2

Assembly Control

The directives used for assembly control are:

COMMENT - Start comment lines

DEFINE - Define substitution string

END - End of source program

FAIL - Programmer generated error message

FORCE - Set operand forcing mode

HIMEM - Set high memory bounds

INCLUDE - Include secondary file

LOMEM - Set low memory bounds

MODE - Change relocation mode

MSG - Programmer generated message

ORG - Initialize memory space and location counters
RADIX - Change input radix for constants

RDIRECT - Remove directive or mnemonic from table
SCSIMP - Set structured control branching mode
SCSREG - Reassign structured control statement registers
UNDEF - Undefine DEFINE symbol

WARN - Programmer generated warning

3-12 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Assembling the Program

3.3.33 Symbol Definition

The directives used to control symbol definition are:
ENDSEC - End section

EQU - Equate symbol to a value
GLOBAL - Global section symbol declaration
GSET - Set global symbol to a value
LOCAL - Local section symbol declaration
SECTION - Start section

SET - Set symbol to a value

XDEF - External section symbol definition
XREF - External section symbol reference
3.3.34 Data Definition/Storage Allocation

The directives used to control constant data definition and storage allocation are:

BADDR - Set buffer address

BSB - Block storage bit-reverse
BSC - Block storage of constant
BSM - Block storage modulo
BUFFER - Start buffer

DC - Define constant

DCB - Define constant byte

DS - Define storage

DSM - Define modulo storage
DSR - Define reverse carry storage
ENDBUF - End buffer

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-13

Example Test Program

Assembling the Program

3.3.35 Listing Control and Options

The directives used to control the output listing are:
LIST - List the assembly

LSTCOL - Set listing field widths

NOLIST - Stop assembly listing

OPT - Assembler options

PAGE - Top of page/size page

PRCTL - Send control string to printer
STITLE - Initialize program subtitle

TABS - Set listing tab stops

TITLE - Initialize program title

3.3.3.6 Object File Control

The directives used for control of the object file are:
COBJ - Comment object code

IDENT - Object code identification record
SYMOBJ - Write symbol information to object file

3-14 DSP56303EVMUM/AD, Preliminary

MOTOROLA

Example Test Program

Assembling the Program

3.3.3.7 Macros and Conditional Assembly
The directives used for macros and conditional assembly are:
DUP - Duplicate sequence of source lines
DUPA - Duplicate sequence with arguments
DUPC - Duplicate sequence with characters
DUPF - Duplicate sequence in loop

ENDIF - End of conditional assembly
ENDM - End of macro definition

EXITM - Exit macro

IF - Conditional assembly directive
MACLIB - Macro library

MACRO - Macro definition

PMACRO - Purge macro definition

3.3.3.8 Structured Programming
The directives used for structured programming are:

.BREAK - Exit from structured loop construct

.CONTINUE - Continue next iteration of structured loop

.ELSE - Perform following statements when .IF false
.ENDF - End of .FOR loop
.ENDI - End of .IF condition
.ENDL - End of hardware loop
.ENDW - End of WHILE loop
.FOR - Begin .FOR loop

AF - Begin .IF condition
.LOOP - Begin hardware loop
.REPEAT - Begin .REPEAT loop
.UNTIL - End of .REPEAT loop
WHILE - Begin .WHILE loop

MOTOROLA DSP56303EVMUM/AD, Preliminary

3-15

Example Test Program
Motorola DSP Linker

3.34 Assembling the Example Program

The Assembler is a MS-DOS based program, thus to use the Assembler you will need
to exit Windows or open a MS-DOS Prompt Window. To assemble the example
program, type asm56300 -a -b -1 -g example.asm in the evm303w directory created by
the installation process from Section 1.3.3. This will create two additional files:
example.cld and example.Ist. The example.cld file is the absolute object file of the
program, and this is what will be downloaded into the DSP56303. The example.lst
file is the listing file and gives full details of where the program and data will be
placed in the DSP56303 memory.

3.4 MOTOROLA DSP LINKER

Though not needed for our simple example, the Motorola DSP Linker is also
included with the DSP56303EVM. The Motorola DSP Linker is a program that
processes relocatable object files produced by the Motorola DSP Assembler,
generating an absolute executable file which can be downloaded to the DSP56303.
The Motorola DSP Linker is included on the Motorola 3-1/2 inch diskette and can be
installed by following the instructions in Section 1.3.3. The general format of the
command line to invoke the Linker is:

dsplnk [options] <filenames>

where dsplnk is the name of the Motorola DSP Linker program, and <filenames> is a
list of the relocatable object files to be linked. The following section describes the
Linker options. To avoid ambiguity, the option arguments should immediately
follow the option letter with no blanks between them.

3-16 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program
Motorola DSP Linker

3.4.1 Linker Options

-A

This option auto-aligns circular buffers. Any modulo or reverse-carry buffers defined
in the object file input sections are relocated independently in order to optimize
placement in memory. Code and data surrounding the buffer are packed to fill the
space formerly occupied by the buffer and any corresponding alignment gaps.

Example: dsplnk -A myprog.cin

This example links the file myprog.cln and optimally aligns any buffers encountered
in the input.

-B<objfil>

This option specifies that an object file is to be created for Linker output. <objfil> can
be any legal operating system filename, including an optional pathname. If no
filename is specified, or if the -B option is not present, the Linker will use the
basename (filename without extension) of the first filename encountered in the input
file list and append .cld to the basename. If the -1 option is present (see below), an
explicit filename must be given. This is because if the Linker followed the default
action, it possibly could overwrite one of the existing input files. The -B option
should be specified only once. If the file named in the -B option already exists, it will
be overwritten.

Example: dsplnk -Bfilter.cld main.cln fft.cin fio.cln

In this example, the files main.cln, fft.cIn, and fio.cln are linked together to produce
the absolute executable file filter.cld.

-EA<errfil> or -EW<errfil>

These options allow the standard error output file to be reassigned on hosts that do
not support error output redirection from the command line. <errfil> must be
present as an argument, but can be any legal operating system filename, including an
optional pathname. The -EA option causes the standard error stream to be written to
<errfil>; if <errfil> exists, the output stream is appended to the end of the file. The
-EW option also writes the standard error stream to <errfil>; if <errfil> exists it will
be overwritten.

Example: dsplnk -EWerrors myprog.cin

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-17

Example Test Program
Motorola DSP Linker

This example redirects the standard error output to the file errors. If the file already
exists, it will be overwritten.

-F<argfil>

This option indicates that the Linker should read command line input from <argfil>.
<argfil> can be any legal operating system filename, including an optional
pathname. <argfil> is a text file containing further options, arguments, and filenames
to be passed to the Linker. The arguments in the file need be separated only by some
form of white space. A semicolon on a line following white space makes the rest of
the line a comment.

Example: dsplnk -Fopts.cmd

This example invokes the Linker and takes command line options and input
filenames from the command file opts.cmd.

-G

This option sends source file line number information to the object file. The generated
line number information can be used by debuggers to provide source-level
debugging.

Example: dsplnk -B -Gmyprog.cin

This example links the file myprog.cln and sends source file line number information
to the resulting object file myprog.cld.

The Linker ordinarily produces an absolute executable file as output. When the -1
option is given, the Linker combines the input files into a single relocatable object file
suitable for reprocessing by the Linker. No absolute addresses are assigned and no
errors are issued for unresolved external references. Note that the -B option must be
used when performing incremental linking in order to give an explicit name to the
output file. If the filename were allowed to default, it could overwrite an existing
input file.

Example: dspink -1 -Bfilter.cin main.cIn fft.cln fio.cln

In this example, the files main.cln, fft.cin, and fio.cln are combined to produce the
relocatable object file filter.cIn.

3-18 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program
Motorola DSP Linker

-L<library>

The Linker ordinarily processes a list of input files which each contain a single
relocatable code module. If the -L option is encountered, the Linker treats the
following argument as a library file and searches the file for any outstanding
unresolved references. If a module is found in the library that resolves an
outstanding external reference, the module is read from the library and included in
the object file output. The Linker continues to search a library until all external
references are resolved or no more references can be satisfied within the current
library. The Linker searches a library only once, when it is encountered on the
command line. Therefore, the position of the -L option on the command line is
significant.

Example: dspink -B filter main fir -Lio

This example illustrates linking with a library. The files main.cln and fir.cln are
combined with any needed modules in the library io.lib to create the file filter.cld.

-M<mapfil>

This option indicates that a map file is to be created. <mapfil> can be any legal
operating system filename, including an optional pathname. If no filename is
specified, the Linker will use the basename (filename without extension) of the first
filename encountered in the input file list and append .map to the basename. If the
-M option is not specified, then the Linker will not generate a map file. The -M option
should be specified only once. If the file named in the -M option already exists, it will
be overwritten.

Example: dsplnk -M filter.cln gauss.cln

In this example, the files filter.cln and gauss.cln are linked together to produce a map
file. Because no filename was given with the -M option, the output file will be named
using the basename of the first input file, in this case filter. The map file will be called
filter.map.

-N

The Linker considers case significant in symbol names. When the -N option is given
the Linker ignores case in symbol names; all symbols are mapped to lower case.

Example: dsplnk -N filter.cIn fft.cln fio.cln

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-19

Example Test Program
Motorola DSP Linker

In this example, the files filter.cln, fft.cln, and fio.cln are linked to produce the
absolute executable file filetr.cld. All symbol references are mapped to lower case.

-O<mem>[<ctr>][<map>]:<origin>

By default the Linker generates instructions and data for the output file beginning at
absolute location zero for all DSP memory spaces. This option allows the
programmer to redefine the start address for any memory space and associated
location counter. <mem> is one of the single-character memory space identifiers (X,
Y, L, P). The letter may be upper or lower case. The optional <ctr> is a letter
indicating the High (H) or Low (L) location counters. If no counter is specified the
default counter is used. <map> is also optional and signifies the desired physical
mapping for all relocatable code in the given memory space. It may be | for Internal
memory, E for External memory, R for ROM, A for Port A, and B for Port B. If <map>
is not supplied, then no explicit mapping is presumed. The <origin> is a hexadecimal
number signifying the new relocation address for the given memory space. The -O
option may be specified as many times as needed on the command line. This option
has no effect if incremental linking is being done (see the -1 option).

Example: dsplnk -Ope:200 myprog -Lmylib

This example initializes the default P memory counter to hex 200 and maps the
program space to external memory.

-P<pathname>

When the Linker encounters input files, the current directory (or the directory given
in the library specification) is first searched for the file. If it is not found and the -P
option is specified, the Linker prefixes the filename (and optional pathname) of the
file specification with <pathname> and searches the newly formed directory
pathname for the file.The pathname must be a legal operating system pathname. The
-P option may be repeated as many times as desired.

Example: dsplnk -P\project\ testprog

This example uses IBM PC pathname conventions, and would cause the Linker to
prefix any library files not found in the current directory with the \project\
pathname.

-R<ctlfil>

This option indicates that a memory control file is to be read to determine the
placement of sections in DSP memory and other Linker control functions. <ctlfil> can

3-20 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program
Motorola DSP Linker

be any legal operating system filename, including an optional pathname. If a
pathname is not specified, an attempt will be made to open the file in the current
directory. If no filename is specified, the Linker will use the basename (filename
without extension) of the first filename encountered in the link input file list and
append .ctl to the basename. If the -R option is not specified, then the Linker will not
use a memory control file. The -R option should be specified only once.

Example: dsplnk -Rproj filter.cln gauss.cln

In this example, the files filter.cin and gauss.cln are linked together using the
memory file proj.ctl.

-U<symbol>

This option allows the declaration of an unresolved reference from the command
line. <symbol> must be specified. This option is useful for creating an undefined
external reference in order to force linking entirely from a library.

Example: dsplnk -Ustart -Lproj.lib

This example declares the symbol start undefined so that it will be resolved by code
within the library proj.lib.

-V

This option causes the Linker to report linking progress (beginning of passes,
opening and closing of input files) to the standard error output stream. This is useful
to insure that link editing is proceeding normally.

Example: dspink -V myprog.cln

This example links the file myprog.cln and sends progress lines to the standard error
output.

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-21

Example Test Program
Motorola DSP Linker

-X<opt>[,<opt>,...,<opt>]

The -X option provides for link time options that alter the standard operation of the
Linker. The options are described below (* means default). All options may be
preceded by NO to reverse their meaning. The -X<opt> sequence can be repeated for
as many options as desired.

Option Meaning

ABC* Perform address bounds checking

AEC* Check form of address expressions

ASC Enable absolute section bounds checking
CSL Cumulate section length data

ESO Do not allocate memory below ordered sections
OVLP Warn on section overlap

RO Allow region overlap

RSC* Enable relative section bounds checking
SVO Preserve object file on errors

WEX Add warning count to exit status

Example: dsplnk -XWEX filter.cln fft.cIn fio.cln

This example allows the Linker to add the warning count to the exit status so that a
project build will abort on warnings as well as errors.

-Z

This option allows the Linker to strip source file line number and symbol information
from the output file. Symbol information normally is retained for debugging
purposes. This option has no effect if incremental linking is being done (see the -I
option).

Example: dsplnk -Zfilter.cln fft.cln fio.cln
In this example, the files filter.cIn, fft.cIn, and fio.cln are linked to produce the

absolute object file filter.cln. The output file will contain no symbol or line number
information.

3-22 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program
Motorola DSP Linker

3.4.2 Linker Directives

Similar to the Assembler directives, the Linker includes mnemonic directives which
specify auxiliary actions to be performed by the Linker. The following sections
briefly describe the Linker directives.

BALIGN -Auto-align circular buffers
BASE - Set region base address
IDENT - Object module identification
INCLUDE - Include directive file

MAP - Map file format control

MEMORY - Set region high memory address
REGION - Establish memory region
RESERVE - Reserve memory block
SBALIGN - Auto-align section buffers
SECSIZE - Pad section length

SECTION - Set section base address

SET - Set symbol value
SIZSYM - Set size symbol
START - Establish start address
SYMBOL - Set symbol value

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-23

Example Test Program

Introduction to the Debugger Software

3.5 INTRODUCTION TO THE DEBUGGER SOFTWARE

This section will give a brief introduction of the Domain Technologies Debugger,
detailing only that which is required to work through this example. Full details of the
Debugger and an informative tutorial can be found in the Debug-56K Manual. The
Domain Technologies Debugger is a software development system for the DSP56303.
The Domain Technologies Debugger is included with the DSP56303EVM on the
Domain Technologies 3-1/2 inch diskette and can be installed by following the
instructions in Section 1.3.3. To invoke the Debugger, double-click on the icon
labelled EVM303W in the EVM56303 program group that was created when the
Debugger was installed.

The Debugger display will be similar to Figure 3-2 with the screen divided into four
windows: the command window, the data window, the unassembly window, and
the registers window. The command window is the window selected, which means
that key strokes will be placed in the command window. As shown in the
demonstration from Section 2, the command window is where commands are
entered. The data window is used to display DSP56303 data. The unassembly
window is used to display the DSP56303 programs. The next instruction to be
executed will be highlighted. The registers window shows the contents of the
DSP56303 internal registers.

3-24 DSP56303EVMUM/AD, Preliminary MOTOROLA

Example Test Program

Introduction to the Debugger Software

= EVM-303 - COM2
File View Run Symbol Breakpoint Config Window Help

O < #

Unassembly{example.asm)
;memory starting a |3
jmp begin ip:0 is the reset
;the DSP looks for

Data [HEX] (list2)
: 000000 F98734 800000
: 000002 FEDCBA 487327
: 000004 957572 369856
: 000006 247978 8A3HOT
: 000008 734546 344T8T

;after a reset
org p:PBASE ;start the main pr

:00000A 938482 304F82

:00000C 123456 657784
:00D00E 567123 675634
¥:000010 2FE9FS 17TE4D
¥Y:000012 B3B1CT F36CCD

= - CC<C-<-<-<

#list1,r0 ;set up po
#list2,

Registers [HEX]

Command [HEX] : 404020 Y0 :240100
EUM>LOAD example :00000200000000
EUM>DISPLAY x:0 :FF7112E3000000

EUM>DISPLAY y:0 :00 A1:000200 AO:000000
EUM>STEP :FF B1:7112E3 BO:000000
EUM>STEP : 000000 NO:000810 MO:FFFFFF
EUH> : 000001 N1:000000 M1:FFFFFF
: 000001 N2:000080 M2:FFFFFF

clelckdchMexample.cld

Figure 3-2 Example Debugger Window Display

When the command window is selected as in Figure 3-2, the tool-bar at the top of the
screen contains buttons for the most often used commands. From right to left the
commands are: go, stop, step, jump, automatic update, reset and radix. The go button
runs the DSP56303 from the program counter. The stop button stops the DSP56303.
The step button executes a single instruction. The jump button is similar to the step
button, except that subroutines are treated as one instruction. The automatic update
button turns the automatic screen update mode on, so that the DSP56303 is
interrupted periodically to update the data and registers windows. The reset button
resets the DSP56303. The radix button can be used to change the radix of the selected
window. Other buttons will appear when other windows are selected, and the
function of these buttons can be found in the Debug-56K Manual.

MOTOROLA DSP56303EVMUM/AD, Preliminary 3-25

Example Test Program

Running the Program

3.6 RUNNING THE PROGRAM

To load the example program developed above into the Debugger, click in the
command window and type load example. The instruction at line 33 will be
highlighted in the unassembly window as this will be the first instruction to be
executed. However, before we start to execute the program, we should check that the
values we expect to be in data memory are there. To do this, type display x:0 and
display y:0. The data will be displayed in the data window.

To step through the program, type step at the command window prompt. As a
shortcut, you can click on the step button or you can type the start of the command
and press the space bar, and the debugger will complete the remainder of the
command. To repeat the last command, simply press return. As you step through the
code, you will see the registers in the registers window being changed by the
instructions. After each cycle, any register that has been changed will be brightened.
Once you have stepped through the program, ensure that the program has executed
correctly by checking that the result in accumulator a is: $FE 9F2051 6DFCC2.

Stepping through the program like this is good for short programs, but it is
impractical for large complex programs. The way to debug large programs is to set
breakpoints. These are user-defined points at which execution of the code will stop,
allowing the user to step through the section of interest. To set a breakpoint in the
example to check that the values in r0 and r4 are correct before the do loop, type
break p:$106 in the command window. You will see the line before the loop brighten
in the unassembly window, indicating the breakpoint has been set. To point the
DSP56303 back to the start point of the program, type change pc 0. This changes the
program counter such that it is pointing to the reset vector. To start the program
running type go or click on the go button. The DSP56303 will stop when it reaches the
breakpoint, and you will be able to step through the remainder of the code.

To exit the Debugger, type quit at the command prompt.

3-26 DSP56303EVMUM/AD, Preliminary MOTOROLA

SECTION 4
DSP56303EVM TECHNICAL SUMMARY

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-1

DSP56303EVM Technical Summary

4.1 DSP56303EVM DESCRIPTION AND FEATURES

4.2 DSP56303 DESCRIPTION
4.3 MEMORY.
4.3.1 SRAM
4.3.2 FlashPEROM.
4.4 AUDIOCODEC........... . i
4.4.1 Codec Analog Input/Qutput.
4.4.2 Codec Digital Interface
4.4.3 CodecClock
4.5 COMMAND CONVERTER

4-2 DSP56303EVMUM/AD, Preliminary

MOTOROLA

DSP56303EVM Technical Summary

4.1

DSP56303EVM Description and Features

DSP56303EVM DESCRIPTION AND FEATURES

An overview description of the DSP56303EVM is provided in the DSP56303EVM
Product Information document (order number DSP56303EVMP/D) included with
this kit. The main features of the DSP56303EVM include the following:

4.2

DSP56303 24-Bit Digital Signal Processor
Memory
16-bit CD-quality audio codec

Command Converter

DSP56303 DESCRIPTION

A full description of the DSP56303, including functionality and user information is
provided in the following documents included as a part of this kit:

Note:

DSP56303 Technical Data (order number DSP56303/D): Provides features list
and specifications including signal descriptions, DC power requirements, AC
timing requirements, and available packaging

DSP56303 User’s Manual (order number DSP56303UM/AD): Provides an
overview description of the DSP and detailed information about the on-chip
components including the memory and 1/0 maps, peripheral functionality,
and control and status register descriptions for each subsystem

The DSP56303 User’s Manual is currently not available. The DSP56303
Product Specification, Revision 1.02 is being supplied with this kit as a
replacement document.

DSP56300 Family Manual (order number DSP56300FM/AD): Provides a
detailed description of the core processor including internal status and control
registers and a detailed description of the family instruction set.

Refer to these documents for detailed information about chip functionality and
operation.

Note:

A detailed list of known chip errata is also provided with this Kkit. Refer to
the DSP56303 Chip Errata document for information that has changed since
the publication of the reference documentation listed above. The latest
version can be obtained on the Motorola DSP worldwide web site at
http://www.motorola-dsp.com.

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-3

DSP56303EVM Technical Summary

Memory

4.3 MEMORY

The DSP56303EVM uses the following memory:

e 32 K x 24-bit Fast Static RAM (SRAM) for expansion memory

= 64 K x 8-bit Flash Programmable Erasable Read-Only Memory (PEROM) for
stand-alone operation

Refer to Figure 4-1 for the location of the SRAM and PEROM on the DSP56303EVM.
Figure 4-2 shows a functional block diagram of the DSP56303EVM including the
memory devices.

18 ISA CONNECTOR

MC145407 J3 J9 I
JTAG/ |—| L LED
OnCE ; © i 6
© Q = SSI1/SCI
2 3 Q
g < 2 Swi
9 g = DSP56303
DSP56002 AT20LV512 J1 '\&3"1164
J2 SW2
J7 ESSIO IJTAG P5
D [[1] sws
COMMAND CONVERTER SELECT pa
HDPHNE
171085 MC74HCT241
P3
MC74HCTO4 csaals | 0
Power I:I
LT1085 LED MC33078
O Serial # L]

Figure 4-1 DSP56303EVM Component Layout

4-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary

Memory
r= = = = = T —_— — ‘_ ____________ A
' SRAM |¢ |
| |
l |
| Three32Kx8 - | spam [T Flash |,
| «—* > PEROM |
| sram LS * 64Kx8 |
| ‘—I Lo
| ||l S
I Data Bus Address Bus | A
RS-232
! lsc SSH L] 34 le| JTAG/ HI08 |
L M " "] OnCE™ Port «—> & n
I I t
g | DSP56002 DSP56303 1l e
S | N
| EXTAL SCLK f
T : : .
I EXTAL ESSIO I .
P | A
°] 0 =
| Oscillator J7 (optional)
16.9344 MHz x I
| 19.6608 MHz 153.6 KHz v I
| In — — 24.576 MHZ
| Headphone —| €s4125 |] |
T
I Out — I
L e e e e e e e e e L L T e o A

Figure 4-2 DSP56303EVM Functional Block Diagram

4.3.1 SRAM

The DSP56303EVM uses three banks of 32 K x 8-bit fast Static RAM (Motorola
MCMG6306, labelled U4, U5, and U6) for memory expansion.The MCMG6306 uses a

single 3.3 volt power supply and has an access time of 15 ns. The following sections
give more details on the operation of the SRAM.

MOTOROLA

DSP56303EVMUM/AD, Preliminary

DSP56303EVM Technical Summary

Memory

43.1.1 SRAM Connections
The basic connection for the SRAM is shown in Figure 4-3.

DSP56303 SRAM

AQ0-Al3 i AO-A13
Al4—— L» Al4

AA3
DO-D7 |~e———»| DQO-DQ7
AOL— »lE
RD——»
WR+——»

sloim

Figure 4-3 SRAM Connections to the DSP56303

The data input/output pins DQO-DQ?7 for the first bank of SRAM are connected to
the DSP56303 D0-D7 pins. Similarly, pins D8-D15 and D16-D23 of the DSP56303 are
connected to the second and third bank of SRAM. The SRAM Write (W) and output
(G) enable lines are connected to the DSP56303 Write (WR) and Read (RD) lines,
respectively. The SRAM chip Enable (E) is generated by the DSP56303 Address
Attribute 0 (AAO0). The SRAM activity is controlled by AAO and the corresponding
Address Attribute Register 0 (AARO0). The SRAM Address input pins A0O-A13 are
connected to the respective Port A address pins of the DSP. The SRAM address line
Al4 may be connected to the DSP56303 Address Attribute 3 (AA3) or to the
DSP56303 address pin Al4. If the jumper on J9 connects pin 1 and 2 as in Figure 4-4a,
then the SRAM address line Al14 is connected to AA3 on the DSP56303. If the jumper
on J9 connects pin 2 and 3 as in Figure 4-4b, then the SRAM address line Al4 is
connected to A14 on the DSP56303.

J9 J9
I O] O
1 2 3 1 2 3
DSP SRAM DSP SRAM
AA3 Al4 Al4 Al4
a b

Figure 4-4 Alternate Configurations for J9

Currently, the jJumper on J9 MUST connect pins 2 and 3 so that the SRAM address
line Al4 is connected to the DSP56303 address line Al4. This configuration selects a
unified memory map of 32 K words. The unified memory does not contain
partitioned X data, Y data, and program memory. Thus, access to P:$1000, X:$1000,

4-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary

Memory

and Y:$1000 are treated as accesses to the same memory cell and 48-bit long memory
data moves are not possible to or from the external SRAM.

43.1.2 Example: Programming AARO

As mentioned above, the SRAM activity is controlled by the DSP56303 pin AAO and
the corresponding AARO. AARO controls the external access type, the memory type,
and which external memory addresses access the SRAM. Figure 4-5 shows the
memory map that is attained with the AARO settings described in this example. (In
this example, the Memory Switch bit in the Operating Mode Register (OMR) is set
and the sixteen-bit compatibility bit in the status register is cleared.) In Figure 4-5, the
SRAM responds to the 32 K of X and Y data memory addresses between $010000 and
$017FFF. However, with the unified memory map, accesses to the same external
memory location are treated as accesses to the same memory cell.

Memory Map (MS =1, SC =0)

Program X Data Y Data
$FFFFFF | | =Internal
Memory
$FFO000
$018000
Unified SRAM
$010000
$001000
$000800
$000000

Figure 4-5 Example Memory Map with the Unified External Memory

The settings of AARO for this example are shown in Figure 4-6. The external Access
Type bits (BAT1 and BATO) are set to 0 and 1, respectively, to denote SRAM access.
The Address Attribute Polarity bit (BAAP) is cleared to define AAOQ as active low.
Address multiplexing is not supported in the DSP56303; therefore, the address
multiplexing bit BAM is cleared. Packing is not needed with the SRAM,; thus, the
packing enable bit BPAC is cleared to disable this option.

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-7

DSP56303EVM Technical Summary

Memory

11 0
BNC3| BNC2| BNC1| BNCO| BPAC| BAM | BYEN| BXEN| BPEN| BAAP| BAT1 | BATO .

1lolol1]olol1]|l1)o0o]| of of 1|XSFFFFFS
| | | [

| External Access Type
AA pin polarity
Program space Enable
X data space enable
Y data space Enable
Address Multiplexing
Packing Enable
Number of Address
bits to compare
23 12

BAC11{BAC10[BAC9| BAC8| BAC7| BAC6| BAC5| BAC4| BAC3| BAC2| BAC1| BACO
0 0 0 0 0 0 0 1 0 0 0 0

Address to Compare

Figure 4-6 Address Attribute Register AARO

The P, X data, and Y data space Enable bits (BPEN, BXEN, and BYEN) define
whether the SRAM is activated during external P, X data, or Y data space accesses
respectively. For this example, the BXEN and BYEN bits are set, and BPEN is cleared
to allow the SRAM to respond to X and Y data memory accesses only.

The number of address bits to compare BNC(3:0) and the address to compare bits
BAC(11:0) determine which external memory addresses access the SRAM. The BNC
bits define the number of upper address bits that are compared between the BAC bits
and the external address to determine if the SRAM is accessed. For this example, the
SRAM is assigned to respond to addresses between $010000 and $017FFF. Thus, the
BNC bits are set to $9 and the BAC bits are set to $010. If the nine Most Significant
Bits of the external address are 000000010, the SRAM is accessed.

4-8 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary

Memory

4.3.2 Flash PEROM

The DSP56303EVM uses an Atmel AT29LV512 chip (U7) to provide a 64 K x 8 bit
CMOS Flash PEROM for stand-alone operation (i.e., operation without accessing the
DSP56303 through the OnCE port). The AT29LV512 uses a 3.3 V power supply and
has a read access time of 200 ns.

43.2.1 Flash PEROM Connections
The basic connection for the Flash PEROM is shown in Figure 4-7.

DSP56303 FLASH

AQ—-A15 (| AO—A15
DO-D7 |~<——|/00-1/07
AAlL —®CE
RD ——»{OE
WR ——— | WE

Figure 4-7 Flash PEROM Connections

The Flash PEROM Address input pins (A0-A15) are connected to the respective Port
A address pins on the DSP. The Flash PEROM data Input/Output pins 1/00-1/07
are connected to the DSP56303 DO-D7 pins. The Flash Write Enable (WE) and Output
Enable (OE) lines are connected to the DSP56303 Write (WR) and Read (RD) enable
lines, respectively. Address Attribute 1 (AA1) generates the Flash chip enable CE.

4.3.2.2 Programming for Stand-Alone Operation

The Flash PEROM allows the DSP56303EVM to work in stand-alone operation. The
DSP56303 mode pins determine the chip operating mode and start-up procedure
when the DSP56303 exits the Reset state. The switch at SW1 resets the DSP56303 by
asserting and then clearing the RESET pin of the DSP56303. The mode pins MODA,
MODB, MODC, and MODD are sampled as the DSP56303 exits the Reset state.The
mode pins for the DSP56303EVM are set so that the DSP56303 will boot from the
Flash PEROM after reset (Mode 1: MODA is set, MODB and MODC are cleared, and
MODD is at either state).

The flash.asm file, included on the DSP56303EVM diskette, allows the user to
program the Flash PEROM with the code to be run by the DSP56303 in stand-alone
operation. To prepare to program, the Flash PEROM stand-alone code should be
written to program memory. After the stand-alone code is written into program
memory, the size of the stand-alone code in words should be loaded into the register
R1, and the address of the first word of stand-alone code should be loaded into the
register RO. When invoked, flash.asm reads the stand-alone code from program

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-9

DSP56303EVM Technical Summary
Audio Codec

memory starting at the address pointed to by RO and ending at the location defined
by the value in R1, and writes the stand-alone code into the Flash PEROM. When the
DSP56303 is reset, the internal bootstrap program will run. The bootstrap program
reads the stand-alone code from the Flash PEROM and writes it to program memory.
The bootstrap program then begins execution of the stand-alone code.

44 AUDIO CODEC

The DSP56303EVM analog section uses Crystal Semiconductor’s CS4215 for two
channels of 16 bit A/D conversion and two channels of 16-bit D/A conversion. Refer
to Figure 4-1 on page 4-4 for the location of the codec on the DSP56303EVM and to
Figure 4-2 on page 4-5 for a functional diagram of the codec within the evaluation
module. The codec is very flexible, offering software selectable sampling frequencies
of 8, 9.6, 16, 32, and 48 kHz. Other frequencies are achievable by changing the crystal
or by adding a second crystal to the codec XTAL2I and XTAL20 pins. The CS4215
uses a 5 volt power supply. Thus, Motorola’s MC74HCT241A is used to convert the
voltage levels to and from the 3.3 volt DSP56303. Refer to the CS4215 data sheet
included with this kit for more information.

The ada_init.asm and echo.asm files included on the Motorola diskette give examples
on how to program the codec. The ada_init.asm file contains the initialization code
for the codec and the basic interrupt service routines for the ESSI transmit and
receive interrupts. The echo.asm file is an example program that moves audio
through the codec and adds a noticeable echo to the audio. The echo.asm file uses the
ada_init.asm file. The ada_init.asm and echo.asm files have been set up such that the
parameters can be changed by the user easily by changing one of a few control
words.

The codec is connected to the DSP56303 ESSIO through the shorting jumpers on J7
shown in Figure 4-1 on page 4-4. By removing these jumpers, the user has full access
to the ESSIO pins of the DSP56303. The following sections describe the connections
for the analog and digital sections of the codec.

4-10 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary
Audio Codec

4.4.1 Codec Analog Input/Output

The DSP56303EVM contains 1/8-inch stereo jacks for stereo input, output, and
headphones. Figure 4-8 shows the analog circuitry of the codec.

CS4215

Stereo
Input MINR MouT:

Unused
(P3) ———MINL MouT2 —X

HEADL |—— —
HEADR) I(-|Pe4a;dphones

X—1LINR HEADC
X—LINL LOUTR

LOUTL [/——"—

Unused
I Stereo
|:| Output

(PS)

Figure 4-8 Codec Analog Input/Output Diagram

The stereo jack labelled P3/IN on the DSP56303EVM connects to the codec left and
right microphone inputs MINL and MINR through an attenuating buffer stage
provided by Motorola’s MC33078 dual op-amp at U10. Standard line level inputs are
2 Vp and the codec requires that input levels be limited to 1 Vp. Thus, the buffer stage
forms a 6 dB attenuator. Additional internal amplifiers with a programmable 20 dB
gain block are provided for the microphone inputs. The 20 dB gain block may be
disabled using the control mode of the codec.

The analog outputs of the codec are routed via an attenuator to a pair of line outputs,
to a pair of headphone outputs, and to a pair of mono monitor speaker outputs. The
Mono speaker Outputs (MOUT1 and MOUT?2) are not used. The Headphone outputs
(HEADL and HEADR) are connected to the stereo jack labelled P4/ZHDPHNE on the
DSP56303EVM, which permits direct connection of stereo headphones to the
DSP56303EVM. The Headphone Common return (HEADC) is the return path for
large currents when driving headphones from HEADL and HEADR.

The Line Outputs (LOUTR and LOUTL) provide the output analog signal through
the stereo jack labelled P5/0UT on the DSP56303EVM. This jack can be selected in
software to provide output swings of 2 Vp or 2-8 Vp. Refer to the CS4215 data sheet
for technical details of the programming steps required to choose the output voltage
swing.

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-11

DSP56303EVM Technical Summary
Audio Codec

4.4.2 Codec Digital Interface

Figure 4-9 shows the digital interface to the codec.

DSP56303 CS4215

STDO| | SDIN
SRDO || SDOUT

SCKO |g——p| SCLK
SC00 1 p»| RESET

scoll . IDIC
SCO2 lq¢— | FSYNC

Figure 4-9 Codec Digital Interface Connections

The serial interface of the codec transfers digital audio data and control data into and
out of the device. The codec communicates with the DSP56303 through the ESSIO,
which consists of independent transmitter and receiver sections.

On the DSP56303 side, the Serial Transmit Data (STDO) pin transmits data to the
codec. The Serial Receive Data 0 (SRDO) pin receives data from the codec. These two
pins are connected to the codec Serial Data Input (SDIN) and Serial Data Output
(SDOUT) pins, respectively. The DSP56303 bidirectional Serial Clock (SCKO0) pin
provides the serial bit rate clock for the ESSIO interface. It is connected to the codec
Serial Clock (SCLK) pin. Data is transmitted on the rising edge of SCLK and is
received on the falling edge of SCLK.

The DSP56303 Serial Control 0 (SC00) pin is programmed to control the codec Reset
signal RESET. Serial Control 1 (SC01) pin is programmed to control the codec
Data/Control (D/C) select input pin . When D/C is low, SDIN and SDOUT contain
control information. When D/C is high, SDIN and SDOUT contain data information.
The Serial Control 2 (SC02) pin is connected to the codec Frame Sync (FSYNC) signal.
A rising edge on FSYNC indicates that a new frame is about to start. FSYNC may be
an input to the codec, or it may be an output from the codec.

4-12 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Technical Summary
Audio Codec

4.4.3 Codec Clock

Figure 4-10 shows the clock generation diagram.

CS4215

27 pF

— F——{ XTL1IN

24.576 MHz | 0 NTLLOUT

V 27 pF
27 g,: cLkout —X

16.9344 MHz [o] | XTL2IN
I

(optional) XTL20UT

27 pF
X———— CLKIN

Figure 4-10 Codec Clock Generation Diagram

Two external crystals may be attached to the XTL1IN, XTL1OUT, XTL2IN, and
XTL20OUT pins. The XTALLIN oscillator is intended for use at 24.576 MHz and the
XTALZ2IN oscillator is intended for use at 16.9344 MHz, although other frequencies
may be used. Refer to the CS4215 data sheet for information regarding selection of
the correct clock source and divide ratios.

The codec on the DSP56303EVM is driven by a 24.576 MHz crystal between XTL1IN
and XTL1OUT. The 24.576 MHz oscillator provides the master clock to run the codec.
FSYNC and SCLK must be synchronous to this master clock. The external Clock
Input (CLKIN), which is provided for potential use with an external AES/EBU
receiver or an already existing system clock, is not used. The master Clock Output
(CLKOUT) is also not used.

MOTOROLA DSP56303EVMUM/AD, Preliminary 4-13

DSP56303EVM Technical Summary

Command Converter

45 COMMAND CONVERTER

The DSP56303EVM uses Motorola’s DSP56002 to perform OnCE/JTAG command
conversion. The DSP56002 Serial Communications Interface (SCI) communicates
with the host PC through an RS-232 connector. The DSP56002 SCI receives
commands from the host PC. The set of commands may include read data, write
data, reset OnCE, reset DSP56303 (the HA2 pin of the DSP56002 is then used to reset
the DSP56303), request OnCE, or release OnCE. The DSP56002 command converter
software interprets the commands received from the PC and sends a sequence of
instructions to the DSP56303 OnCE/JTAG port. The DSP56303 may then continue to
receive data or it may transmit data back to the DSP56002. The DSP56002 sends a
reply to the host PC to give status information. The set of replies may include
acknowledge good, acknowledge bad, in Debug mode, out of Debug mode, or data
read. When the DP56303 is in the Debug state, the red Debug LED (D6) is lluminated.

The DSP56002 is connected to the DSP56303 OnCE port through the shorting jumpers
on J4. By removing the jumpers, the user has full access to the OnCE/JTAG pins of
the DSP56303. Refer to Figure 4-1 on page 4-4 for the location of J4 on the
DSP56303EVM and to Figure 4-2 on page 4-5 for a functional diagram. Figure 4-11
shows the RS-232 serial interface diagram.

DSP56002 RS-232 TRANSCEIVER HOST PC
RXD |<¢——| D01 Rx1l <«——TD
TXD ——»|DI1 Tx1 ——»(RD
RESET |<——|p02 Rx2 |«——DTR

Figure 4-11 RS-232 Serial Interface

Motorola’s 5 Volt-Only Driver/Receiver MC145407 is used to transmit the signals
between the host PC and the DSP56002. Serial data is transmitted from the host PC
Transmitted Data (TD) signal and received on the DSP56002 Receive Data (RXD) pin.
Serial data is similarly transmitted from the DSP56002 Transmit Data (TXD) signal
and received on the host PC Received Data (RD) signal. The Data Terminal Ready
(DTR) pin asserts the RESET pin of the DSP56002. As an option, the DSP56303EVM
14-pin JTAG connector at J5 allows the user to connect an ADS command converter
card directly to the DSP56303EVM if the DSP56002 command converter software is
not used (J4 jumpers removed). Pin 8 has been removed from J5. The JTAG cable
from the ADS command converter is similarly keyed so that the cable cannot be
connected to the DSP56303EVM incorrectly.

£S5

4-14 DSP56303EVMUM/AD, Preliminary MOTOROLA

APPENDIX A
DSP56303EVM SCHEMATICS

MOTOROLA DSP56303EVMUM/AD, Preliminary

A-1

DSP56303EVM Schematics

A-2

DSP56303EVMUM/AD, Preliminary

MOTOROLA

ve 96-02-8 =%

£0g7IVLIX3
£0£TIVLX

[EXA]

1541
SNL
0'c ndd 9.
odL
ATy NA320£/£0£95dSA —_— aL
SNOILYDITddV dSA VI0HOLONW N9 e
4fooat T o ¥OLOINNOD 9VLr T
|‘ sey 7
€93 AoL
_ 33
030007154 | 3 or T <] 003s Ag+ —=4¢ oo
svin oL Aet o
arin arin ano i oo
il PSR)
r
9/0 (] = 5 < <] 1008 _1
HoL
o arin arin L B oo
- 53 7 [>coe™1no%10
H ano £0s”IVIX3
_ = €08 TIVIX
XLZ0ISS3 1] S (] oaLs Z0IL
SE 2
GErkE BLERRM' REBREr Pl & £0ET15Y Aot Aet ™o
or—— zo0 VUV AU EEEEE] _ 32 2 julad -
VI¥CLOHYL 532 282BR wmuos_m_ o5 2 =3
0Iss3 S23°3 4 3% 3 =7 ¥OLOINNOO ¥SI
_ 200S > - oavi o o
XL70Iss3 _ 102 £ g 1aVHEE mb o ¥
X¥70ISS3 7 CAVHHY ST OraT
an9 001S SavHiH fefo o e
= 002S Qi o oo
- {20 039S £ me}% 5310 ofg¢
-] 9QVH 8210 of3%
¥5201SS3 {ov ox %0s 0 avi Lo ol ¥t
5470ISS3 e 02s 0v/sVi tifo o 5%
0015 gy 2 5 =7 AN o of 55
THEY A <7 ZY/6VI 5O o157
01V /Sl o o
5/ T S
VIYZLOHYL 9L ouL /D3 il o F
aein 2 8/ DY/ MOvH-e7 e Ot
32| 6/ |mw\\m yaa o orer
ano g e “zouHg ° oo
= 3 T 2 T — o o
cg 20€/£0£96dSa s 0 o G v
AR\ (- i ==l ° ° AT+ TS ASH
] 68|
—————71aV0 <6 Oy 8r
— g
oL Aol ayI/aao0
oy 1y SIEVD 61 J0H1/900K £ aNg N9 aNg
13 BUE/adon-2E A =
YOul/vaON 35
918vQ —
£18va m VYo cvy
2 AN v
VL 2 VYIS vy
28 - 2 ovv-g2 ovv ol cMS [
OououtooooQol
u8 T 2 8oRERR3S88a2 0o aanRRs 35| e
] 1T TJ-T] [on]on
3oL =[N ooy G0~
1dzz 1dzg oy Ag+
[+ W0 aM
oy

A04 oL

MOTOROLA

iminary

DSP56303EVMUM/AD, Prel

A-3

¢ eeus] v 96-02-8 #ed nonlsox._oTBO
0'C AYOW3N ldL
G
- NA3Z0£/£0695dSA % O
: : ~<<Q|BO
sldl
G td
SNOILYOIddY dSA VI04OLON o Q)
G
yidL v SO
ﬁTEO £dl
[£z:00]ada o 0wy <) EO
omm_'zo vdl
10010
u%mm e sl 200T1IN0ND EO
B & ot
xsm_'hwo
v oul
<] o
aNe B_TGO
R -
] ow Ld1
NQ_FTGO
X
® 8dl
za
a3 S:TGO
N IN o N
NI I N OGLfﬂﬂN_l 6dl
LR LR REBR cERBRRRE NRBR RERsees NBR RERBEERE oy
ERFEERE : SHHGS : b sove G150
orm= JoaraN=S O] JeaRGN=S o m= JoarGN=S oldL
O9Td-USATBZLY Q90EIMON 9N Q90EIMON &N Q90SIMON ¥ o_méTGO
n
IERESBEY ZBEIREE IoREaBEy nBRIRE3 IERESBEY BBRIREE oo Hal
>35>
FranIsERABLILRRS FrsPhehehohaler 3 FRdkaetehsle 3 Fhshohhehohsles &
Niskasiatiniiing e e e
7!
*iava 21 L Soava
108va £08Ya
soava 108Ya
s08va o olava
Ziava clava
er
R EERERED EREER ERREE
EeEzEE FEEEEEEE EEEneit sEEEeiir meiceic sEeeace 2
6r
2800 o 22800
]
1zdad o 02840
61400 o . 81840
I~ 9lgad o 1180
i 2
¢laq
olaaa o 11840
80800 6080
E E : w
i
EOE)
0800 4080
7
z08aa 5080
10 am o g M% qa
evv 00800 : 1080

A-4

iminary

DSP56303EVMUM/AD, Prel

MOTOROLA

¢ jesus| va 96-02-8 w0300
0 93003 olany
AT NA3Z0£/£0£96dSA .
anav
SNOILVYOITddV dSA VI0¥O0LON A\
aNay
22 Nid lON9Y 0L | oan am L —— a0
I o ¥ 189
aNOY | 00
I 01
i goin
. nee”
| AA—— | T o AR
| | L AN | |
| o5t . g 1
ol oo | Sl 080 8LOCEON L 90
e nez
i —\\N—¢
1
I 91y
| anav 0dN 0L
“ n 9Ly —ANN——J Lnow
| W W 0zy
1
0dN
1
I _c. _u_m L oo §vo
1 | N =23 o
||||||||||||||||| [} O < X< o T 6€3
S 22 2 22 g voin
anav z 88 32 7 -, ange'o
5 S A | £
) | _ MV |
10Id ost angg o ¢ '
_Lh.un 00ld _ 1y 289 8LOCECIN L1y 99
. 2N
. nee
<y AC6g 43¥A
aNov o 0dN 0dN e M
1o anzz000_| AnZ200°0 aN9Y oy
L p— 15 0N
| _ 4dzy
v—O7ar I [F 0)\/_/,\x 75| not S - — ||
09 An0°0 50 I
N——o0roNm ANNN—¢¢1 81001
od) F e AN 12 850 .
E]
or— i AL NN
INHTH v—>0°7 T VY e 1av3H 1NOMI [v ¢ > inoma
° L1VM 2/1 8'GL 6Y YavH
N——o0r—oNw VVV—77)
d LIVM Z/L 86 8Y Yoz R—V
<z 21non o 2w . 3 051
wMen g8 g2 B SR ¢ N
S= 256 Sl o= S oL You You ol
i B B kKR _n ey €2y zzy 1z 52y
#9570ISS3
1 37a O® AGH
230007 15¥
S3_0iss3
X1-01S53
X¥701S53

MOTOROLA

iminary

DSP56303EVMUM/AD, Prel

A-5

sa

v 1eeus| ve 96-02-8 10300 ano N9 N
0 YILYIANOD ANVAWOI
AT NA3Z0£/£0£96dSA —— o
| A_v 250
SNOILVYIITddV dSA VI0¥O0LON
xoi._.__omw»N:smo%.m_ R 680
\4 \4
AGH AGH+ A
[>zoo™1non12
103735 ¥ILYIANOD ANVAWOD dIHO-NO/TYN¥ILX3
oaL ano an:
I} 2 N N
._.m_mw [1 |‘ — =
30 £ idoze
a1
SNL £ 9 Ao+
T zren oL
== i
ang 4 863
il vvin
anNo aNg e
il = N 23 b fs s |~ | | o ant
BN PP el EEP = oy
vV OLUVV N Qmx TOUVD nw‘n_ + n|
823328 258 355 2362 — ~ A
S5 AN >~ e L80 un
IVV TS M WMN = x
M 28a8+%Q q28 %ol
0L 0L 1353¥|o k42]
a3y 154 9y 3 ,
9a M/ F
0sq 08d/0Hi—— ant
" §01 0s0/150 18d/1H % 650
vy 1S0/%3s0 28d/ZHT
—————————— o ¥a £ad/SHE
¥8d/TH-BE A
o9 oL 68d/GH ¢
aiy R
iy o8d/biH
0] ey 68d/LVH
H0L Aol Ao oLl 7y 018d/2vH aNg
624 139 25y @ Iy 440120095 ziad/NIH =
oy ciad -
901 60v zn 18d/¥0VH ang
Sy 80v =
58y Lov
2590y
281 sov
EaRM LA — .
kM H0¥1/800Nog—— ., Mz
ki “TRN/900K (03— Ay Gy
AGH AGH ya | oY £63
oov [=
8] Ng ™ 70 T
= A/ 3 — H-
m Sd k| T = IS
e Y o8 35
2289988829290 000000908 I oty
O WWZE?QQLGBN”HH?GNU&MOEZE
= =| =l il o
[S S s R e e R e oy
"> cog™1sy
< [1su1

A-6

iminary

DSP56303EVMUM/AD, Prel

MOTOROLA

S 199y vea 96-0C-8 1930Q
02 SY0LIDVYdVD SSvdAg
- NA3ZOE/£0£96dSA
aNav ano
SNOILVOITddY dSA VI04OL1ON =
ImTT T T T T T L [L D
1 1 1 1
| Lo ! ! ! %
1 T
1 1 1 1
' Ao 1 ' 410 Ao ' anrot ' ot
I 80 “ I 0gd 880 “ I 8s0 “ I 50 “
1 1 1 1
! s X ! T s X ! T ! \H X
1 1 1 1
1 1 1 1
| i | i | ! | i
" gon | | yzen Jezen | I PR | ozgein |
:
' dWY-d0 NG | ! 93009 X U ILYIAN XM | | ¥344n@ 100 |
| BLOEEIW ILON | | 61259 310N ' ! VYOLOHYL 3LON | IVLYZLOHYL 3LON |
||||||||||| ! it VAGH —mmmmmmmme! it AG+
n@o
IIIIIIIIIIIIIII _III_
| ! | !
1 L T "
1
“ 4n'o anko ! “ 4nLo°0 4n°o 4nl0°0 4n°0 4nLo°0 4no | 4nlo'0 4n'o 4nio’o 4ank'o 4nLo'o 4n'o 4Nl0°0 40 4nio’o 4ni'o !
L8] 1€ “ GLI L ¥L2 [Yae] €L3 [17e] 692 123 823 922 GZ3 ¥20 €20 (A4l Y] 022 “
1 1
| -+ ' T F | F F F F F T T T T T T T T '
! , ! ,
1 1
1 1
8'en gen | L
1 T
| 13009 “ | oz'zn 6'zn 6zn oz'en gl'en - gzren igen gol'en 8gZn ovL'zn 992N 99'zn 0s'zn os'en a¥'zn L2°2n “
I i I 20095dSQ ‘310N i
| SIZ¥SJ:ILON e N 4
aNno
IIIIIIIIIII _IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_ _III_
! | ! | ! |
“ e e :
1 1 1
" 4no | " 4nLo ELTK) 4no 4nL0°0 aneo 4nLo°0 | " 4N10°0 N0 4nLoo aneo 4nio'o 4nLo 4nLo'o 4o 4nLoo 4nLo 4N10°0 4no 4nLoo ano |
I 623 “ I 890 590 90 810 L0 910 “ I 080 6L0 840 LLo 90 G0 610 V10 €1 U0 1] 010 60 82 “
1 1 1
! T e i e e - | e e o o o N |
1 1 1
1 1 1
1 1 1
! 1 ! 1 ! 1
! 1 ! 1 ! 1
1 T T
“ zeLn HSY4 “ “ 8z'9n 879N 8z'6n 8z'an 8T'vn 8T°¥N “ “ wn Bziin 181N Ge'in LN 95N G9'In corin 98N 8¢in 8¢in 8rin qTn 8'in “
' Z1G6ZLVIION | ! AVYS 90SINON :3LON | ! £0£96dSA ILON |

MOTOROLA

iminary

DSP56303EVMUM/AD, Prel

A-7

10074 -

\a
10074

€a

9 eeus| va 96-02-8 19300
0 A1ddNS ¥3Imod
‘AT NA3Z0£/£0£96dSA ——
SNOILVYOITddV dSA VI0¥O0LON
ano
zuuquw«
20
bl Jojojnbas AG
1y an
ETTER] ILNY34 580111
A AN 1 1N0Q NiAf—
2l €1 =
IS | ey A
—_ —_ ans
L3 193 9 LG
aN9Y 4nooot
19 L00¥A4
I'
EIONER] I
J Loorns
21 |
| |
Ange0 va
nzy ncy ngeo 2
™ .
ILINY34 2
A 71100 NiAI—
G80ILT
1
6N 100714
Joyonbas Ag g 60
v \
AG+ VAG+ S+ 100¥ N4
ol
1007 A4

ua

ATIHTVSI

|

NIV ¥3IMOd 00/9V
2d

—[ede|

A-8

DSP56303EVMUM/AD, Preliminary

MOTOROLA

APPENDIX B
DSP56303EVM PARTS LIST

MOTOROLA DSP56303EVMUM/AD, Preliminary

B-1

DSP56303EVM Parts List

B-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Parts List

B.1 PARTS LISTING

The following table contains information on the parts and devices on the
DSP56303EVM.

Table B-1 DSP56303EVM Parts List

Designator Manufacturer Part Number Description
Ul Motorola DSP56303 DSP
U2 Motorola DSP56002 DSP (OnCE)
U3 Crystal CS4215KL Audio Codec
Semiconductor
U4 U5 U6 Motorola MCM6306DJ15 SRAM
u7 Atmel AT29LV512-20JC Flash PEROM
us Linear LT1085CT-5 5V Regulator
Technologies
U9 Linear LT1085CT-3.3 3.3V Regulator
Technologies
u10 Motorola MC33078D Dual Op-Amp
ull Motorola MC145407DW RS-232
Transceiver
ul12 Motorola MC34164D-3 Undervolt Sensor
ul3 Motorola MC74HCT241ADW Octal
Noninverting
Buffer
ul4 Motorola MC74HCTO04AD Hex Inverter
D1 D2 D3 D4 D9 D10 | Rectron FM4001 Diode
D11
D5 Rectron FM5817 Schottky Diode
D6 D12 Quiality HLMP1700 Red LED
Technologies
D8 Quiality HLMP1790 Green LED
Technologies
MOTOROLA DSP56303EVMUM/AD, Preliminary B-3

DSP56303EVM Parts List

Table B-1 DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description
Y1 Ecliptek EC2-169-16.9344MHZ 16.9344 MHz
Crystal
Y2 ECS OECS-196.6-3-C3X1A 19.6608 MHz
Crystal
Y3 Ecliptek EC2-246-24.576MHZ 24576 MHz
Crystal
SW1 SW2 SW3 Panasonic EVQ-QS205K 6 mm Switch
P1 Mouser 152-3409 DB-9 Female
Connector
P2 Switchcraft RAPC-722 21 mm DC
Power Jack
P3 P4 P5 Switchcraft 35RAPC4BHN2 3.5 mm Miniature
Jack
J1 Robinson NSH-8DB-S2-TG Header 8 pin
Nugent double row
J2J3 Robinson NSH-16DB-S2-TG Header 16 pin
Nugent double row
1436 J7 Robinson NSH-12DB-S2-TG Header 12 pin
Nugent double row
J5 Robinson NSH-14DB-S2-TG Header 14 pin
Nugent double row
J8 Robinson P2DN-40A-S1-TR Header 40 pin
Nugent double row
J9 Robinson NSH-3SB-S2-TG Header 3 pin
Nugent single row
C51 Xicon MR16V10 10 pF Capacitor
C33C34 C47 C56 C57 | Murata GRM42-6Y5V105Z025BL 1.0 yF Capacitor
C58 C59 C82 C83
B-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

DSP56303EVM Parts List

Table B-1 DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description
C7C8Cl10C12C14 Murata GRM40-X7R104K025BL 0.1 pF Capacitor
C15C17C20C22C24
C26 C27 C29 C30 C31
C50 C52 C54 C55 C64
C68 C70C71C72C77
C79 C84 C87 C88
C9C11C13C16 C18 | Murata GRM40-X7R103K050BL 0.01 pF Capacitor
C19C21C23C25C28
C37 C39 C40 C65 C69
C73C74C75C76 C78
C80 C81
C53 Kemet T491B475K016AS 4.7 uF Capacitor
C41 C42 Murata GRM40-COG220J050BL 22 pF Capacitor
C48 C49 C66 C67 Murata GRM40-COG270J050BL 27 pF Capacitor
C2 C3C4 C44 C46 Murata GRM42-6Y5V334Z025BL 0.33 pF Capacitor
C85 C86
C38 Murata GRMA42-6Y5V474Z025BL 0.47 pF Capacitor
C43 C45 Murata GRM40-COG470J050BL 47 pF Capacitor
C35C36 Murata GRM40-COG222J050BL 2200 pF Capacitor
C62 Murata GRM40-X7R821K050BL 820 pF Capacitor
C63 Murata GRM40-X7R182K050BL 1800 pF Capacitor
C5 C6 C60 C61 Xicon MLRL10V47 47 uF Capacitor
C1 Xicon XAL16V1000 1000 pF Capacitor
L1L2L3L4 Murata BLO1RN1-A62 Ferrite Bead
R1 R43 NIC NRC12RF1001TR 1 K Resistor
R30 NIC NRC12RF5001TR 5 K Resistor

MOTOROLA DSP56303EVMUM/AD, Preliminary B-5

DSP56303EVM Parts List

Table B-1 DSP56303EVM Parts List (Continued)

Designator Manufacturer Part Number Description
R4 R5R6 R7 R20 R21 | NIC NRC12RF1002TR 10 K Resistor
R22 R23 R24 R25 R29
R31 R32 R34 R35 R36
R37 R38 R39 R40 R41
R42 R44
R8 R9 NIC NRC25RF15R8TR 15.8 KQ Resistor
R14 R15 NIC NRC12RF1500TR 150 Q Resistor
R16 R18 NIC NRC12RF2212TR 22.1 KQ Resistor
R12 R13 NIC NRC12RF3922TR 39.2 KQ Resistor
R17 R19 NIC NRC12RF4752TR 47.5 KQ Resistor
R45 NIC NRC12RF5600TR 2.7 KQ Resistor
R10 R11 R46 NIC NRC12RF6040TR 604 Q Resistor
R28 NIC NRC12RF6803TR 680 KQ Resistor
&S
B-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

APPENDIXC
MOTOROLA ASSEMBLER NOTES

MOTOROLA DSP56303EVMUM/AD, Preliminary

C-1

Motorola Assembler Notes

C.1l INTRODUCTION. e

C.2 ASSEMBLER SIGNIFICANT CHARACTERS

C.3 ASSEMBLER DIRECTIVES
C4 STRUCTURED CONTROL STATEMENTS

C-2 DSP56303EVMUM/AD, Preliminary

MOTOROLA

Motorola Assembler Notes

Introduction

C.1 INTRODUCTION

This appendix supplements information in Section 3 of this document and provides
a detailed description of the following components used with the Motorola
Assembler:

= Special characters significant to the assembler

« Assembler directives

= Structure control statements

C.2 ASSEMBLER SIGNIFICANT CHARACTERS

There are several one and two character sequences that are significant to the
assembler. The following subsections define these characters and their use.

C.21 : Comment Delimiter Character

Any number of characters preceded by a semicolon (), but not part of a literal string,
is considered a comment. Comments are not significant to the assembler, but they
can be used to document the source program. Comments will be reproduced in the
assembler output listing. Comments are normally preserved in macro definitions, but
this option can be turned off (see the OPT directive).

Comments can occupy an entire line, or can be placed after the last
assembler-significant field in a source statement. A comment starting in the first
column of the source file will be aligned with the label field in the listing file.
Otherwise, the comment will be shifted right and aligned with the comment field in
the listing file.

Example B-1 Example of Comment Delimiter

; THS GOMWENT BEA NS IN COLUWN 1 GF THE SOLRCE H LE
LGP IR QOWUTE; THS IS A TRA LI NG COMMENT
; THESE TWO COMMENTS ARE PRECEDED
; BY ATAB IN THE SOLRCE H LE

MOTOROLA DSP56303EVMUM/AD, Preliminary C-3

Motorola Assembler Notes

Assembler Significant Characters

C.22 ;7 Unreported Comment Delimiter Characters

Unreported comments are any number of characters preceded by two consecutive
semicolons (;;) that are not part of a literal string. Unreported comments are not
considered significant by the assembler, and can be included in the source statement,
following the same rules as normal comments. However, unreported comments are
never reproduced on the assembler output listing, and are never saved as part of
macro definitions.

Example B-2 Example of Unreported Comment Delimiter

;» THESE LINES WLL NOI BE REPRIDUCED
; N THE SOURCE LI STING

C.2.3 \ Line Continuation Character or Macro Argument
Concatenation Character Line Continuation

C.231 Line Continuation

The backslash character (\), if used as the last character on a line, indicates to the
assembler that the source statement is continued on the following line. The
continuation line will be concatenated to the previous line of the source statement,
and the result will be processed by the assembler as if it were a single line source
statement. The maximum source statement length (the first line and any continuation
lines) is 512 characters.

Example B-3 Example of Line Continuation Character

; TH'S GOMMENT \
EXTENDS O/ER \
THREE LI NES

C.2.3.2 Macro Argument Concatenation

The backslash (\) is also used to cause the concatenation of a macro dummy
argument with other adjacent alphanumeric characters. For the macro processor to
recognize dummy arguments, they must normally be separated from other
alphanumeric characters by a non-symbol character. However, sometimes it is
desirable to concatenate the argument characters with other characters. If an
argument is to be concatenated in front of or behind some other symbol characters,
then it must be followed by or preceded by the backslash, respectively.

C-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Significant Characters

Example B-4 Example of Macro Concatenation

Suppose the source input file contained the following macro definition:

SWP REG MACRO REGL, RE@ ;swap REGL, REGQ using D4.L as tenp
MDVE RREGL D4 L
MOVE R RE®, R REGL
MOVE DL RREX
ENDM

The concatenation operator (\) indicates to the macro processor that the substitution
characters for the dummy arguments are to be concatenated in both cases with the
character R. If this macro were called with the following statement,

SWAP_REG 0,1

the resulting expansion would be:

MOVE RO, 4. L
MOVE RL, RO
MOVE M LR

C.24 ? Return Value of Symbol Character

The ?<symbol> sequence, when used in macro definitions, will be replaced by an
ASCII string representing the value of <symbol>. This operator may be used in
association with the backslash (\) operator. The value of <symbol> must be an
integer (not floating point).

Example B-5 Example of Use of Return Value Character

Consider the following macro definition:

SWP_ SYMACRO REGL, RE@; swap REGL, RE@ using D4. L as tenp
MODE R?REGL, D4.L
MDE R?RE2, R?REG
MOE D4 L R?RER
BENDM

If the source file contained the following SET statements and macro call,
AREG SET 0
BREG SET 1

SWP SYM AREG BREG

the resulting expansion as it would appear on the source listing would be:

MOTOROLA DSP56303EVMUM/AD, Preliminary C-5

Motorola Assembler Notes

Assembler Significant Characters

Example B-5 Example of Use of Return Value Character

MDE R),DAL
MODE RLRO
MOE DLR

C.25 % Return Hex Value of Symbol Character

The %<symbol> sequence, when used in macro definitions, will be replaced by an
ASCII string representing the hexadecimal value of <symbol>. This operator may be
used in association with the backslash (\) operator. The value of <symbol> must be
an integer (not floating point).

Example B-6 Example of Return Hex Value Symbol Character

Consider the following macro definition:

&N LAB MACRO LAB, VAL, STMI
LABOWAL STMI
BENOM

If this macro were called as follows,

NUM SET 10
&N LAB HEX NV ' NP

The resulting expansion as it would appear in the listing file would be:

HEXA NP

C.2.6 N Macro Local Label Override

The circumflex (©), when used as a unary expression operator in a macro expansion,
will cause any local labels in its associated term to be evaluated at normal scope
rather than macro scope. This means that any underscore labels in the expression
term following the circumflex will not be searched for in the macro local label list.
The operator has no effect on normal labels or outside of a macro expansion. The
circumflex operator is useful for passing local labels as macro arguments to be used
as referents in the macro.

C-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Significant Characters

Note: The circumflex is also used as the binary exclusive OR operator.

Example B-7 Example of Local Label Override Character

Consider the following macro definition:

LGAD MACRO AR
MOVE P ~*ADCR RO
BENOM

If this macro were called as follows,

_LOCAL
LoD _LOCAL

the assembler would ordinarily issue an error since _LOCAL is not defined within
the body of the macro. With the override operator the assembler recognizes the
_LOCAL symbol outside the macro expansion and uses that value in the MOVE
instruction.

C.2.7 " Macro String Delimiter or Quoted String DEFINE
Expansion Character

C.27.1 Macro String

The double quote (), when used in macro definitions, is transformed by the macro
processor into the string delimiter, the single quote (*). The macro processor examines
the characters between the double quotes for any macro arguments. This mechanism
allows the use of macro arguments as literal strings.

Example B-8 Example of a Macro String Delimiter Character

Using the following macro definition,

CSTR MACRO STRNG
ENDM

and a macro call,
CSTR ABD
the resulting macro expansion would be:

DbC " ABCD

MOTOROLA DSP56303EVMUM/AD, Preliminary C-7

Motorola Assembler Notes

Assembler Significant Characters

C.2.7.2 Quoted String DEFINE Expansion

A sequence of characters which matches a symbol created with a DEFINE directive
will not be expanded if the character sequence is contained within a quoted string.
Assembler strings generally are enclosed in single quotes ('). If the string is enclosed
in double quotes () then DEFINE symbols will be expanded within the string. In all
other respects usage of double quotes is equivalent to that of single quotes.

Example B-9 Example of a Quoted String DEFINE Expression

Consider the source fragment below:

DEFl NE LONG "short'
STR MAC MACRO STR NG

MG '"This is a LONG STR NG

MSG "This is a LONG STR NG

ENOM

If this macro were invoked as follows,
STR_ MAC sent ence
then the resulting expansion would be:

MBG "This is a LONG STR NG
MBG '"This is a short sentence'

c.28 @ Function Delimiter

All assembler built-in functions start with the @ symbol.

Example B-10 Example of a Function Delimiter Character

SvAL EQ @QT(FVAL) ; CBTAIN SQUARE ROOT

C.29 * |Location Counter Substitution

When used as an operand in an expression, the asterisk represents the current integer
value of the runtime location counter.

Example B-11 Example of a Location Counter Substitution

G X $100
XBASE BEQJ *+$20 ; XBASE = $120

C-8 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Significant Characters

C.2.10 ++ String Concatenation Operator

Any two strings can be concatenated with the string concatenation operator (++). The
two strings must each be enclosed by single or double quotes, and there must be no
intervening blanks between the string concatenation operator and the two strings.

Example B-12 Example of a String Concatenation Operator

' ABC ++ DEF = ' ABCDEF

C.2.11 [] Substring Delimiter [<string>,<offset><length>]

Square brackets delimit a substring operation. The <string> argument is the source
string. <offset> is the substring starting position within <string>. <length> is the
length of the desired substring. <string> may be any legal string combination,
including another substring. An error is issued if either <offset> or <length> exceed
the length of <string>.

Example B-13 Example of a Substring Delimiter

DEFI NE ID [' DSPS6000 , 3, 5] . 1D = ' 56000'

C.2.12 << /O Short Addressing Mode Force Operator

Many DSP instructions allow an 1/0 short form of addressing. If the value of an
absolute address is known to the assembler on pass one, then the assembler will
always pick the shortest form of addressing consistent with the instruction format. If
the absolute address is not known to the assembler on pass one (that is, the address is
a forward or external reference), then the assembler will pick the long form of
addressing by default. If this is not desired, then the 1/0 short form of addressing
can be forced by preceding the absolute address by the 1/0 short addressing mode
force operator (<<).

Example B-14 Example of an I/0 Short Addressing Mode Force Operator

Since the symbol IOPORT is a forward reference in the following sequence of source
lines, the assembler would pick the long absolute form of addressing by default:

BTST #4, Y | CPCRT
| GPCRT EQU Y: $FFF3

MOTOROLA DSP56303EVMUM/AD, Preliminary C-9

Motorola Assembler Notes

Assembler Significant Characters

Example B-14 Example of an 1/0 Short Addressing Mode Force Operator

Because the long absolute addressing mode would cause the instruction to be two
words long instead of one word for the 1/0 short absolute addressing mode, it
would be desirable to force the 1/0 short absolute addressing mode as shown
below:

BTST #4, Y. <<| GPCRT
| GPCRT BEQU Y: $FFF3

C.2.13 < Short Addressing Mode Force Operator

Many DSP instructions allow a short form of addressing. If the value of an absolute
address is known to the assembler on pass one, or the FORCE SHORT directive is
active, then the assembler will always pick the shortest form of addressing consistent
with the instruction format. If the absolute address is not known to the assembler on
pass one (that is, the address is a forward or external reference), then the assembler
will pick the long form of addressing by default. If this is not desired, then the short
absolute form of addressing can be forced by preceding the absolute address by the
short addressing mode force operator (<).

Example B-15 Example of a Short Addressing Mode Force Operator

Since the symbol DATAST is a forward reference in the following sequence of
source lines, the assembler would pick the long absolute form of addressing by
default:

MOVE D0. L, Y: DATAST
DATAST BEQU Y: $23

Because the long absolute addressing mode would cause the instruction to be two
words long instead of one word for the short absolute addressing mode, it would be
desirable to force the short absolute addressing mode as shown below:

MOVE D0. L, Y: <DATAST
DATAST BEQU Y: $23

C.2.14 > Long Addressing Mode Force Operator

Many DSP instructions allow a long form of addressing. If the value of an absolute
address is known to the assembler on pass one, then the assembler will always pick
the shortest form of addressing consistent with the instruction format, unless the

C-10 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Significant Characters

FORCE LONG directive is active. If this is not desired, then the long absolute form of
addressing can be forced by preceding the absolute address by the long addressing
mode force operator (>).

Example B-16 Example of a Long Addressing Mode Force Operator

Since the symbol DATAST is a not a forward reference in the following sequence of
source lines, the assembler would pick the short absolute form of addressing:

DATAST EQ Y: $23
NOVE D0. L, Y: DATAST

If this is not desirable, then the long absolute addressing mode can be forced as
shown below:

DATAST BEQU Y: $23
MOVE D0. L, Y: >DATAST

C.2.15 # Immediate Addressing Mode

The pound sign (#) is used to indicate to the assembler to use the immediate
addressing mode.

Example B-17 Example of Immediate Addressing Mode

QST EQU $5
MOVE #ONST, D0, L

C.2.16 #< Immediate Short Addressing Mode Force Operator

Many DSP instructions allow a short immediate form of addressing. If the immediate
data is known to the assembler on pass one (not a forward or external reference), or
the FORCE SHORT directive is active, then the assembler will always pick the
shortest form of immediate addressing consistent with the instruction. If the
immediate data is a forward or external reference, then the assembler will pick the
long form of immediate addressing by default. If this is not desired, then the short

MOTOROLA DSP56303EVMUM/AD, Preliminary C-11

Motorola Assembler Notes

Assembler Significant Characters

form of addressing can be forced using the immediate short addressing mode force
operator (#<).

Example B-18 Example of Immediate Short Addressing Mode Force Operator

In the following sequence of source lines, the symbol CNST is not known to the
assembler on pass one, and therefore, the assembler would use the long immediate
addressing form for the MOVE instruction.

MOVE #QNST, 0. L
QST EQ $5

Because the long immediate addressing mode makes the instruction two words
long instead of one word for the immediate short addressing mode, it may be
desirable to force the immediate short addressing mode as shown below:

MOVE #<ONST, D0. L
QNST EQU $5

C.2.17 #> Immediate Long Addressing Mode Force Operator

Many DSP instructions allow a long immediate form of addressing. If the immediate
data is known to the assembler on pass one (not a forward or external reference),
then the assembler will always pick the shortest form of immediate addressing
consistent with the instruction, unless the FORCE LONG directive is active. If this is
not desired, then the long form of addressing can be forced using the immediate long
addressing mode force operator (#>).

Example B-19 Example of an Immediate Long Addressing Mode Operator

In the following sequence of source lines, the symbol CNST is known to the
assembler on pass one, and therefore, the assembler would use the short immediate
addressing form for the MOVE instruction.

QST EQU $5
MOVE #ONST, D0, L

If this is not desirable, then the long immediate form of addressing can be forced as
shown below:

QST EQU $5
MOVE #>ONST, 0. L

C-12 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

C.3 ASSEMBLER DIRECTIVES

C.3.1 BADDR Set Buffer Address

BADCR <M| R>, <expressi on>

The BADDR directive sets the runtime location counter to the address of a buffer of
the given type, the length of which in words is equal to the value of <expression>.
The buffer type may be either Modulo or Reverse-carry. If the runtime location
counter is not zero, this directive first advances the runtime location counter to a base
address that is a multiple of 2K where 2K >= <expression>. An error will be issued if
there is insufficient memory remaining to establish a valid base address. Unlike other
buffer allocation directives, the runtime location counter is not advanced by the
value of the integer expression in the operand field; the location counter remains at
the buffer base address. The block of memory intended for the buffer is not initialized
to any value.

The result of <expression> may have any memory space attribute but must be an
absolute integer greater than zero and cannot contain any forward references
(symbols that have not yet been defined). If a Modulo buffer is specified, the
expression must fall within the range 2 < <expression> < m, where m is the maximum
address of the target DSP. If a Reverse-carry buffer is designated and <expression> is
not a power of two a warning will be issued. A label is not allowed with this
directive.

Note: See also BSM, BSB, BUFFER, DSM, DSR

Example B-20 Example BADDR Directive

G X $100
M BUF BACDR M 24 ; 0 ROLAR BUFFER MID 24

C.3.2 BSB Block Storage Bit-Reverse

[<l abel >] BB <expr essi on>[, <expr essi on>]

The BSB directive causes the assembler to allocate and initialize a block of words for
a reverse-carry buffer. The number of words in the block is given by the first
expression, which must evaluate to an absolute integer. Each word is assigned the
initial value of the second expression. If there is no second expression, an initial value

MOTOROLA DSP56303EVMUM/AD, Preliminary C-13

Motorola Assembler Notes

Assembler Directives

of zero is assumed. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2K,
where 2K is greater than or equal to the value of the first expression. An error will
occur if the first expression contains symbols that are not yet defined (forward
references) or if the expression has a value of less than or equal to zero. Also, if the
first expression is not a power of two a warning will be generated. Both expressions
can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a
valid base address has been established.

Only one word of object code will be shown on the listing, regardless of how large
the first expression is. However, the runtime location counter will be advanced by
the number of words generated.

Note: See also BSC, BSM, DC.

Example B-21 Buffer Directive

BUFFER BUFS Z ; INTIALI ZE BUFFER TO ZERCB

I(;
o

C.3.3 BSC Block Storage of Constant

[<l abel >] BSC <expr essi on>[, <expr essi on>]

The BSC directive causes the assembler to allocate and initialize a block of words.
The number of words in the block is given by the first expression, which must
evaluate to an absolute integer. Each word is assigned the initial value of the second
expression. If there is no second expression, an initial value of zero is assumed. If the
first expression contains symbols that are not yet defined (forward references) or if
the expression has a value of less than or equal to zero, an error will be generated.
Both expressions can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the directive processing.

C-14 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

Only one word of object code will be shown on the listing, regardless of how large
the first expression is. However, the runtime location counter will be advanced by
the number of words generated.

Note: See also BSM, BSB, DC.

Example B-22 Block Storage of Constant Directive

UNUSED BSC $2FF~ @COU R, $FFFFFFFF, F LL UNUSED BPROM

C.34 BSM Block Storage Modulo

[<l abel >] BSM <expr essi on>[, <expr essi on>]

The BSM directive causes the assembler to allocate and initialize a block of words for
a modulo buffer. The number of words in the block is given by the first expression,
which must evaluate to an absolute integer. Each word is assigned the initial value of
the second expression. If there is no second expression, an initial value of zero is
assumed. If the runtime location counter is not zero, this directive first advances the
runtime location counter to a base address that is a multiple of 2X where 2K is greater
than or equal to the value of the first expression. An error will occur if the first
expression contains symbols that are not yet defined (forward references), has a
value of less than or equal to zero, or falls outside the range 2 < <expression><m,
where m is the maximum address of the target DSP. Both expressions can have any
memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a
valid base address has been established.

Only one word of object code will be shown on the listing, regardless of how large
the first expression is. However, the runtime location counter will be advanced by
the number of words generated.

Note: See also BSC, BSB, DC.

Example B-23 Block Storage Modulo Directive

BUFFER BSM BUFSl Z, $FFFFFFFF, | N TI AL ZE BUFFER TO ALL ON\ES

MOTOROLA DSP56303EVMUM/AD, Preliminary C-15

Motorola Assembler Notes

Assembler Directives

C.35 BUFFER Start Buffer

BUFFER <M| R>, <expressi on>

The BUFFER directive indicates the start of a buffer of the given type. Data is
allocated for the buffer until an ENDBUF directive is encountered. Instructions and
most data definition directives may appear between the BUFFER and ENDBUF pair,
although BUFFER directives may not be nested and certain types of directives such
as MODE, ORG, SECTION, and other buffer allocation directives may not be used.
The <expression> represents the buffer size. If less data is allocated than the size of
the buffer, the remaining buffer locations will be uninitialized. If more data is
allocated than the specified size of the buffer, an error is issued.

The BUFFER directive sets the runtime location counter to the address of a buffer of
the given type, the length of which in words is equal to the value of <expression>.
The buffer type may be either Modulo or Reverse-carry. If the runtime location
counter is not zero, this directive first advances the runtime location counter to a base
address that is a multiple of 2, where 2K >= <expression>. An error will be issued if
there is insufficient memory remaining to establish a valid base address. Unlike other
buffer allocation directives, the runtime location counter is not advanced by the
value of the integer expression in the operand field; the location counter remains at
the buffer base address.

The result of <expression> may have any memory space attribute but must be an
absolute integer greater than zero and cannot contain any forward references
(symbols that have not yet been defined). If a Modulo buffer is specified, the
expression must fall within the range 2 < <expression>< m, where m is the maximum
address of the target DSP. If a Reverse-carry buffer is designated and <expression> is
not a power of two a warning will be issued.

Note: A label is not allowed with this directive.

Note: See also BADDR, BSM, BSB, DSM, DSR, ENDBUF.

Example B-24 Buffer Directive

G X $100

BUFFER M 24 ; 0 ROULAR BUFFER MDD 24
M BUF DC 0.50.50.50.5

05 20 ; FEMA NDER UN N T1ALI ZED

ENDBUF

C-16 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

C.3.6 COBJ Comment Object File

aBj <stri ng>

The COBJ directive is used to place a comment in the object code file. The <string>
will be put in the object file as a comment.

Note: A label is not allowed with this directive.
Note: See also IDENT.

Example B-25 COBM Directive

GBIl "Sart of filter coefficients'

C.3.7 COMMENT Start Comment Lines

COMMENT <del i mter>

<del i mter>

The COMMENT directive is used to define one or more lines as comments. The first
non-blank character after the COMMENT directive is the comment delimiter. The
two delimiters are used to define the comment text. The line containing the second
comment delimiter will be considered the last line of the comment. The comment text
can include any printable characters and the comment text will be reproduced in the
source listing as it appears in the source file.

Note: A label is not allowed with this directive.

Example B-26 COMMENT Directive

COWENT + This is a one |ine cooment +
COMMENT * Thisis amltipleline
comment. Any nunber of |ines
can be pl aced between the two delimters.

C.3.8 DC Define Constant

<l abel >] B <arg>[,<arg>, ..., <ar g>]

MOTOROLA DSP56303EVMUM/AD, Preliminary C-17

Motorola Assembler Notes

Assembler Directives

The DC directive allocates and initializes a word of memory for each <arg>
argument. <arg> may be a numeric constant, a single or multiple character string
constant, a symbol, or an expression. The DC directive may have one or more
arguments separated by commas. Multiple arguments are stored in successive
address locations. If multiple arguments are present, one or more of them can be null
(two adjacent commas), in which case the corresponding address location will be
filled with zeros. If the DC directive is used in L memory, the arguments will be
evaluated and stored as long word quantities. Otherwise, an error will occur if the
evaluated argument value is too large to represent in a single DSP word.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the directive processing.

Integer arguments are stored as is; floating point numbers are converted to binary
values. Single and multiple character strings are handled in the following manner:

= Single character strings are stored in a word whose lower seven bits represent
the ASCII value of the character.

Example B-27 Single Character String Definition

'R = $000052

= Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the
string (unless the NOPS option is specified; see the OPT directive). If the
number of characters is not an even multiple of the number of bytes per DSP
word, then the last word will have the remaining characters left aligned and
the rest of the word will be zero-filled. If the NOPS option is given, each
character in the string is stored in a word whose lower seven bits represent the
ASCII value of the character.

Example B-28 Multiple Character String Definition

' ABCD = $414243
$440000

Note: See also BSC, DCB.

Example B-29 DC Directive

TABLE B @: 1426, 253, $2662, ' AB(D
aHARS DbC 'AV'B,'C,'D

C-18 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

C.3.9 DCB Define Constant Byte

[<l abel >] DCB <arg>[,<arg>, ..., <ar g>]

The DCB directive allocates and initializes a byte of memory for each <arg>
argument. <arg> may be a byte integer constant, a single or multiple character string
constant, a symbol, or a byte expression. The DCB directive may have one or more
arguments separated by commas. Multiple arguments are stored in successive byte
locations. If multiple arguments are present, one or more of them can be null (two
adjacent commas), in which case the corresponding byte location will be filled with
zZeros.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the directive processing.

Integer arguments are stored as is, but must be byte values (e.g. within the range
0-255); floating point numbers are not allowed. Single and multiple character strings
are handled in the following manner:

= Single character strings are stored in a word whose lower seven bits represent
the ASCII value of the character. (See Example B-27.)

= Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the
string (unless the NOPS option is specified; see the OPT directive). If the
number of characters is not an even multiple of the number of bytes per DSP
word, then the last word will have the remaining characters left aligned and
the rest of the word will be zero-filled. If the NOPS option is given, each
character in the string is stored in a word whose lower seven bits represent the
ASCII value of the character. (See Example B-28.)

Note: See also BSC, DC.

Example B-30 DCB Directive

TABLE DB "two',0,"strings',0
HARS DB '"A,'B,'C,'D

C.3.10 DEFINE Define Substitution String

CEFl NE <synbol > <string>

MOTOROLA DSP56303EVMUM/AD, Preliminary C-19

Motorola Assembler Notes

Assembler Directives

The DEFINE directive is used to define substitution strings that will be used on all
following source lines. All succeeding lines will be searched for an occurrence of
<symbol>, which will be replaced by <string>. This directive is useful for providing
better documentation in the source program. <symbol> must adhere to the
restrictions for non-local labels. That is, it cannot exceed 512 characters, the first of
which must be alphabetic, and the remainder of which must be either alphanumeric
or the underscore(_). A warning will result if a new definition of a previously defined
symbol is attempted. The assembler output listing will show lines after the DEFINE
directive has been applied and therefore redefined symbols will be replaced by their
substitution strings (unless the NODXL option in effect; see the OPT directive).

Macros represent a special case. DEFINE directive translations will be applied to the
macro definition as it is encountered. When the macro is expanded any active
DEFINE directive translations will again be applied.

DEFINE directive symbols that are defined within a section will only apply to that
section. See the SECTION directive.

Note: A label is not allowed with this directive.

Note: See also UNDEF.

Example B-31 DEFINE Directive

If the following DEFINE directive occurred in the first part of the source program:
DEFI NE ARRAYSIZ '10 * SAWRLSIZ

then the source line below:
0s ARRAYS Z

would be transformed by the assembler to the following:

05 10 * SAMPLS Z

C.3.11 DS Define Storage

[<l abel >] s <expr essi on>

The DS directive reserves a block of memory the length of which in words is equal to
the value of <expression>. This directive causes the runtime location counter to be
advanced by the value of the absolute integer expression in the operand field.
<expression> can have any memory space attribute. The block of memory reserved is

C-20 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

not initialized to any value. The expression must be an integer greater than zero and
cannot contain any forward references (symbols that have not yet been defined).

<label>, if present, will be assigned the value of the runtime location counter at the
start of the directive processing.

Note: See also DSM, DSR.

Example B-32 DS Directive

S BF s 12 ; SAMPLE BUFFER

C.3.12 DSM Define Modulo Storage

[« abel >] Cav <expr essi on>

The DSM directive reserves a block of memory the length of which in words is equal
to the value of <expression>. If the runtime location counter is not zero, this directive
first advances the runtime location counter to a base address that is a multiple of 2K
where 2X>= <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Next the runtime location counter is
advanced by the value of the integer expression in the operand field. <expression>
can have any memory space attribute. The block of memory reserved is not
initialized to any given value. The result of <expression> must be an absolute integer
greater than zero and cannot contain any forward references (symbols that have not
yet been defined). The expression also must fall within the range:

2 < <expression><m,
where m is the maximum address of the target DSP.

<label>, if present, will be assigned the value of the runtime location counter after a
valid base address has been established.

Note: See also DS, DSR.

Example B-33 DSM Directive

G X $100
M BUF (DS 24 ; 0 ROLAR BUFFER MID 24

MOTOROLA DSP56303EVMUM/AD, Preliminary C-21

Motorola Assembler Notes

Assembler Directives

C.3.13 DSR Define Reverse Carry Storage

[abel >] LR <expr essi on>

The DSR directive reserves a block of memory the length of which in words is equal
to the value of <expression>. If the runtime location counter is not zero, this directive
first advances the runtime location counter to a base address that is a multiple of 2K
where 2K > <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Next the runtime location counter is
advanced by the value of the integer expression in the operand field. <expression>
can have any memory space attribute. The block of memory reserved is not
initialized to any given value. The result of <expression> must be an absolute integer
greater than zero and cannot contain any forward references (symbols that have not
yet been defined). Since the DSR directive is useful mainly for generating FFT
buffers, if <expression> is not a power of two a warning will be generated.

<label>, if present, will be assigned the value of the runtime location counter after a
valid base address has been established.

Note: See also DS, DSM.

Example B-34 DSR Directive

G X $100
R BUF DR 8 ; REVERSE CARRY BUFFER FCR 16 PO NT FFT

C.3.14 DUP Duplicate Sequence of Source Lines

[<l abel >] owP <expr essi on>
BN
The sequence of source lines between the DUP and ENDM directives will be
duplicated by the number specified by the integer <expression>. <expression> can
have any memory space attribute. If the expression evaluates to a number less than
or equal to 0, the sequence of lines will not be included in the assembler output. The
expression result must be an absolute integer and cannot contain any forward

references (symbols that have not already been defined). The DUP directive may be
nested to any level.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the DUP directive processing.

C-22 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

Note: See also DUPA, DUPC, DUPF, ENDM, MACRO

Example B-35 DUP Directive

The sequence of source input statements,

QAT SET 3
owP QAT ; ASR BY GONT
ASR BY}
BENOM

would generate the following in the source listing:

QAT SET
; ASR BY GONT

5
nggw

Note that the lines

owP QANT ; ASR BY GONT
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

ASR By}
ASR BY}
ASR By}

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD
and MEX options.

C.3.15 DUPA Duplicate Sequence With Arguments
[<abel >] DUPA <dunmy>, <arg>[<, <arg>, .. ., <ar g>|
ENOM
The block of source statements defined by the DUPA and ENDM directives will be

repeated for each argument. For each repetition, every occurrence of the dummy
parameter within the block is replaced with each succeeding argument string. If the

MOTOROLA DSP56303EVMUM/AD, Preliminary C-23

Motorola Assembler Notes

Assembler Directives

argument string is a null, then the block is repeated with each occurrence of the
dummy parameter removed. If an argument includes an embedded blank or other
assembler-significant character, it must be enclosed with single quotes.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the DUPA directive processing.

Note: See also DUP, DUPC, DUPF, ENDM, MACRO.

Example B-36 DUPA Directive

If the input source file contained the following statements,

DUPA VALLE, 12, 32, 34
DC VALLE
B\DM

then the assembled source listing would show

DUPA VALLE 12, 32, 34
DbC 12

DbC 32

DC 34

ENDM

Note that the lines

DUPA VALLE 12, 32, 34
BENOM

will only be shown on the source listing if the MD option is enabled. The lines

DC 12
bC 32
bC 34

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD
and MEX options.

C-24 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

C.3.16 DUPC Duplicate Sequence With Characters

[abel >] DUPC <dummy>, <st ri ng>

ENDM
The block of source statements defined by the DUPC and ENDM directives will be
repeated for each character of <string>. For each repetition, every occurrence of the
dummy parameter within the block is replaced with each succeeding character in the
string. If the string is null, then the block is skipped.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the DUPC directive processing.

Note: See also DUP, DUPA, DUPF, ENDM, MACRO.

Example B-37 DUPC Directive

If input source file contained the following statements,

DUPC VALLE, ' 123
DbC VALLE
BENOM

then the assembled source listing would show:

DUPC VALLE, ' 123
bC 1

DC 2

DC 3

ENOM

Note that the lines

DUPC VALLE, ' 123'
B\DM

will only be shown on the source listing if the MD option is enabled. The lines

DC 1
DC 2
DC 3

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD
and MEX options.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-25

Motorola Assembler Notes

Assembler Directives

C.3.17 DUPF Duplicate Sequence In Loop

[abel >] DUPF <dummy>, [<st art >] , <end>[, <i ncr enent >
B\
The block of source statements defined by the DUPF and ENDM directives will be
repeated in general (<end> - <start>) + 1 times when <increment> is 1. <start> is the
starting value for the loop index; <end> represents the final value. <increment> is the
increment for the loop index; it defaults to 1 if omitted (as does the <start> value).

The <dummy> parameter holds the loop index value and may be used within the
body of instructions.

<label>, if present, will be assigned the value of the runtime location counter at the
start of the DUPF directive processing.

Note: See also DUP, DUPA, DUPC, ENDM, MACRO.

Example B-38 DUPF Directive

If input source file contained the following statements,

DUPF NLM O, 7
MOVE #0, R N.M
BENOM

then the assembled source listing would show:

DUPF NM O, 7
MOVE #0, R0
MOVE #0, RL
MOVE #0, R2
MOVE #0, R3
MOVE #0, ”4
MOVE #0, F5
MOVE #0, F6
MOVE #0, R7
BENOM

Note that the lines

DUPF NM O, 7
B\DM

will only be shown on the source listing if the MD option is enabled. The lines

C-26 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

Example B-38 DUPF Directive (Continued)

58388533
JZRRIVAR3

will only be shown on the source listing if the MEX option is enabled.

Note: See the OPT directive in this appendix for more information on the MD
and MEX options.

C.3.18 END End of Source Program

END [<expr essi on>]

The optional END directive indicates that the logical end of the source program has
been encountered. Any statements following the END directive are ignored. The
optional expression in the operand field can be used to specify the starting execution
address of the program. <expression> may be absolute or relocatable, but must have
a memory space attribute of Program or None. The END directive cannot be used in
a macro expansion.

Note: A label is not allowed with this directive.

Example B-39 END Directive

BE\D BEA N ; BEANis the starting executi on address

C.3.19 ENDBUF End Buffer

BENDBUF

The ENDBUF directive is used to signify the end of a buffer block. The runtime
location counter will remain just beyond the end of the buffer when the ENDBUF
directive is encountered.

Note: A label is not allowed with this directive.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-27

Motorola Assembler Notes

Assembler Directives

Note: See also BUFFER.

Example B-40 ENDBUF Directive

aG X $100
BUF BUFFER R 64 ; uninitialized reverse-carry buffer
ENCBUF

C.3.20 ENDIF End of Conditional Assembly

BND F

The ENDIF directive is used to signify the end of the current level of conditional
assembly. Conditional assembly directives can be nested to any level, but the ENDIF
directive always refers to the most previous IF directive.

Note: A label is not allowed with this directive.

Note: See also IF.

Example B-41 ENDIF Directive

IF @E()
SAVEPC ST *
ENDIF

; Save current program count er

C.3.21 ENDM End of Macro Definition

B\DM

Every MACRO, DUP, DUPA, and DUPC directive must be terminated by an ENDM
directive.

Note: A label is not allowed with this directive.

C-28 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

Note: See also DUP, DUPA, DUPC, MACRO.

Example B-42 ENDM Directive

SWMP_ SYM MACRO REGL, REG ;swap REGL, RE&Q using D4.L as tenp
MDVE R ?REGL, D4. L
MOVE R ?RE@, R ?REGL
MOVE M. L, R?RER
ENDM

C.3.22 ENDSEC End Section

BENDEEC
Every SECTION directive must be terminated by an ENDSEC directive.
Note: A label is not allowed with this directive.

Note: See also SECTION.

Example B-43 ENDSEC Directive

SECTIT AN QEF

G Y:
VALUES BSC $100 ; Initialize to zero
BENDSEC

C.3.23 EQU Equate Symbolto a Value

<l abel > BEU[{X | Y- | L | P | E}]<expression>

The EQU directive assigns the value and memory space attribute of <expression> to
the symbol <label>. If <expression> has a memory space attribute of None, then it
can optionally be preceded by any of the indicated memory space qualifiers to force a
memory space attribute. An error will occur if the expression has a memory space
attribute other than None and it is different than the forcing memory space attribute.
The optional forcing memory space attribute is useful to assign a memory space
attribute to an expression that consists only of constants but is intended to refer to a
fixed address in a memory space.

The EQU directive is one of the directives that assigns a value other than the program
counter to the label. The label cannot be redefined anywhere else in the program (or

MOTOROLA DSP56303EVMUM/AD, Preliminary C-29

Motorola Assembler Notes

Assembler Directives

section, if SECTION directives are being used). The <expression> may be relative or
absolute, but cannot include a symbol that is not yet defined (no forward references
are allowed).

Note: See also SET.

Example B-44 EQU Directive

ADP®RT EQU X: $4000

This would assign the value $4000 with a memory space attribute of X to the symbol
A_D PORT.

QMUTE EQW @o L)

@LCV(L) is used to refer to the value and memory space attribute of the load
location counter. This value and memory space attribute would be assigned to the
symbol COMPUTE.

C.3.24 EXITM Exit Macro

BEX ™
The EXITM directive will cause immediate termination of a macro expansion. It is

useful when used with the conditional assembly directive IF to terminate macro
expansion when error conditions are detected.

Note: A label is not allowed with this directive.
Note: See also DUP, DUPA, DUPC, MACRO.

Example B-45 EXITM Directive

CALC MACRO XVAL, YVAL
IF XVAL<O
FAI L " Macro paraneter val ue out of range'
BEXT™ ; Exit macro
BEND F
B\DM

C-30 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

C.3.25 FAIL Programmer Generated Error

FA L [{<str>| <exp>}[, {<str>| <exp>},..., {<str>| <exp>}1]

The FAIL directive will cause an error message to be output by the assembler. The
total error count will be incremented as with any other error. The FAIL directive is
normally used in conjunction with conditional assembly directives for exceptional
condition checking. The assembly proceeds normally after the error has been printed.
An arbitrary number of strings and expressions, in any order but separated by
commas with no intervening white space, can be specified optionally to describe the
nature of the generated error.

Note: A label is not allowed with this directive.

Note: See also MSG, WARN.

Example B-46 FAIL Directive

FA L ' Paraneter out of range'

C.3.26 FORCE Set Operand Forcing Mode

FORCE {SHRT | LONG| NONE}

The FORCE directive causes the assembler to force all immediate, memory, and
address operands to the specified mode as if an explicit forcing operator were used.
Note that if a relocatable operand value forced short is determined to be too large for
the instruction word, an error will occur at link time, not during assembly. Explicit
forcing operators override the effect of this directive.

Note: A label is not allowed with this directive.
Note: See also <, >, #<, #>.

Example B-47 FORCE Directive

FORCE SHORT ; force operands short

MOTOROLA DSP56303EVMUM/AD, Preliminary C-31

Motorola Assembler Notes

Assembler Directives

C.3.27 GLOBAL Global Section Symbol Declaration

ARAL <syniol >[, <synbol >, . . ., <synbol >]

The GLOBAL directive is used to specify that the list of symbols is defined within the
current section, and that those definitions should be accessible by all sections. This
directive is only valid if used within a program block bounded by the SECTION and
ENDSEC directives. If the symbols that appear in the operand field are not defined
in the section, an error will be generated.

Note: A label is not allowed with this directive.

Note: See also SECTION, XDEF, XREF.

Example B-48 GLOBAL Directive

SECTION 10
ARAL LGCPA ; LOOPA W Il be globally accessibl e by other sections
ENCSEC

C.3.28 GSET Set Global Symbol to a Value

< abel > GSET <expr essi on>
GSET < abel > <expr essi on>

The GSET directive is used to assign the value of the expression in the operand field
to the label. The GSET directive functions somewhat like the EQU directive.
However, labels defined via the GSET directive can have their values redefined in
another part of the program (but only through the use of another GSET or SET
directive). The GSET directive is useful for resetting a global SET symbol within a
section, where the SET symbol would otherwise be considered local. The expression
in the operand field of a GSET must be absolute and cannot include a symbol that is
not yet defined (no forward references are allowed).

Note: See also EQU, SET.

Example B-49 GSET Directive

QAT GSET 0 ; INTIALI ZE GONT

C-32 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

C.3.29 HIMEM Set High Memory Bounds

H MEM <mene| <rl >] : <expressi on>[, ...]

The HIMEM directive establishes an absolute high memory bound for code and data
generation. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl>
is one of the letters R for runtime counter or L for load counter. The <expression> is
an absolute integer value within the address range of the machine. If during
assembly the specified location counter exceeds the value given by <expression>, a
warning is issued.

Note: A label is not allowed with this directive.

Note: See also LOMEM.

Example B-50 HIMEM Directive

H MEM XR $7FFF, YR $7HHF ; SET X'Y RN H G4 MEM BOUNCS

C.3.30 IDENT Object Code ldentification Record

[abel >] |1DENT <expr essi onl>, <expr essi on2>

The IDENT directive is used to create an identification record for the object module.
If <label> is specified, it will be used as the module name. If <label> is not specified,
then the filename of the source input file is used as the module name. <expression1>
is the version number; <expression2> is the revision number. The two expressions
must each evaluate to an integer result. The comment field of the IDENT directive
will also be passed on to the object module.

Note: See also COBJ.

Example B-51 IDENT Directive

If the following line was included in the source file,
FALTER | DENT 1,2 ; AR A LTER MDUE

then the object module identification record would include the module name
(FFILTER), the version number (1), the revision number (2), and the comment field
(; FIR FILTER MODULE).

MOTOROLA DSP56303EVMUM/AD, Preliminary C-33

Motorola Assembler Notes

Assembler Directives

C.3.31 IF Conditional Assembly Directive

IF <expr essi on>
[BLsH (the BLSE directive is optional)
BEND F

Part of a program that is to be conditionally assembled must be bounded by an
IF-ENDIF directive pair. If the optional ELSE directive is not present, then the source
statements following the IF directive and up to the next ENDIF directive will be
included as part of the source file being assembled only if the <expression> has a
nonzero result. If the <expression> has a value of zero, the source file will be
assembled as if those statements between the IF and the ENDIF directives were
never encountered. If the ELSE directive is present and <expression> has a nonzero
result, then the statements between the IF and ELSE directives will be assembled,
and the statements between the ELSE and ENDIF directives will be skipped.
Alternatively, if <expression> has a value of zero, then the statements between the IF
and ELSE directives will be skipped, and the statements between the ELSE and
ENDIF directives will be assembled.

The <expression> must have an absolute integer result and is considered true if it has
a nonzero result. The <expression> is false only if it has a result of 0. Because of the
nature of the directive, <expression> must be known on pass one (no forward
references allowed). IF directives can be nested to any level. The ELSE directive will
always refer to the nearest previous IF directive as will the ENDIF directive.

Note: A label is not allowed with this directive.

Note: See also ENDIF.

Example B-52 IF Directive

IF @STr>0

DP @sr ; Uwind LIST directive stack
NLI ST

B\DM

B\D F

C-34 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

C.3.32 INCLUDE Include Secondary File

| NOLUEE <string> | <<string>>

This directive is inserted into the source program at any point where a secondary file
is to be included in the source input stream. The string specifies the filename of the
secondary file. The filename must be compatible with the operating system and can
include a directory specification. If no extension is given for the filename, a default
extension of .ASM is supplied.

The file is searched for first in the current directory, unless the <<string>> syntax is
used, or in the directory specified in <string>. If the file is not found, and the -I
option was used on the command line that invoked the assembler, then the string
specified with the -1 option is prefixed to <string> and that directory is searched. If
the <<string>> syntax is given, the file is searched for only in the directories specified
with the -1 option.

Note: A label is not allowed with this directive.

Note: See also MACLIB.

Example B-53 INCLUDE Directive

INOLLDE ' headers/io.asm; Uhix exanpl e
I NOLLDE ' storage\nemasm; M5 D35 exanpl e
INOLLDE <data.asm» ; Do not look in current directory

C.3.33 LIST Listthe Assembly

LI ST

Print the listing from this point on. The LIST directive will not be printed, but the
subsequent source lines will be output to the source listing. The default is to print the
source listing. If the IL option has been specified, the LIST directive has no effect
when encountered within the source program.

The LIST directive actually increments a counter that is checked for a positive value
and is symmetrical with respect to the NOLIST directive.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-35

Motorola Assembler Notes

Assembler Directives

Note the following sequence:

; Qounter value currently 1

LI ST : Qounter value = 2
LI ST : Qounter value = 3
NCLI ST : Qounter value = 2
NQLI ST ; Qounter value = 1

The listing still would not be disabled until another NOLIST directive was issued.
Note: A label is not allowed with this directive.

Note: See also NOLIST, OPT.

Example B-54 LIST Directive

IF LI STON
LI ST ; Turn the listing back on
BND F

C.3.34 LOCAL Local Section Symbol Declaration

LQCAL <synbol >[, <synbol >, .. ., <synbol >]

The LOCAL directive is used to specify that the list of symbols is defined within the
current section, and that those definitions are explicitly local to that section. Itis
useful in cases where a symbol is used as a forward reference in a nested section
where the enclosing section contains a like-named symbol. This directive is only
valid if used within a program block bounded by the SECTION and ENDSEC
directives. The LOCAL directive must appear before <symbol> is defined in the
section. If the symbols that appear in the operand field are not defined in the section,
an error will be generated.

Note: A label is not allowed with this directive.

Note: See also SECTION, XDEF, XREF.

C-36 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

Example B-55 LOCAL Directive

SECTI ON 10
LOCAL LQCPA ; LOOPA local to this section
BNDSEC

C.3.35 LOMEM SetLow Memory Bounds

LOMEM <men®[<rl >] : <expressi on>[,...]

The LOMEM directive establishes an absolute low memory bound for code and data
generation. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl>
is one of the letters R for runtime counter or L for load counter. The <expression> is
an absolute integer value within the address range of the machine. If during
assembly the specified location counter falls below the value given by <expression>,
awarning is issued.

Note: A label is not allowed with this directive.

Note: See also HIMEM.

Example B-56 LOMEM Directive

LOVEM XR $100, YR $100 ; SET X'Y RUN LONMEM BONCS

C.3.36 LSTCOL Set Listing Field Widths

LSTOL [<l abwe[, <opcws[, <oprwe[, <opc2we| , <opr 2ws| , <xwe[, <yws] 111111

Sets the width of the output fields in the source listing. Widths are specified in terms
of column positions. The starting position of any field is relative to its predecessor
except for the label field, which always starts at the same position relative to page left
margin, program counter value, and cycle count display. The widths may be
expressed as any positive absolute integer expression. However, if the width is not
adequate to accommodate the contents of a field, the text is separated from the next
field by at least one space.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-37

Motorola Assembler Notes

Assembler Directives

Any field for which the default is desired may be null. A null field can be indicated
by two adjacent commas with no intervening space or by omitting any trailing fields
altogether. If the LSTCOL directive is given with no arguments all field widths are
reset to their default values.

Note: A label is not allowed with this directive.

Note: See also PAGE.

Example B-57 LSTCOL Directive

LSTQOL 40,,,,, 20,20 ; Reset label, X and Y data field wdths

C.3.37 MACLIB Macro Library

MACLI B <pat hnane>

This directive is used to specify the <pathname> (as defined by the operating system)
of a directory that contains macro definitions. Each macro definition must be in a
separate file, and the file must be named the same as the macro with the extension
ASM added. For example, BLOCKMV.ASM would be a file that contained the
definition of the macro called BLOCKMV.

If the assembler encounters a directive in the operation field that is not contained in
the directive or mnemonic tables, the directory specified by <pathname> will be
searched for a file of the unknown name (with the .ASM extension added). If such a
file is found, the current source line will be saved, and the file will be opened for
input as an INCLUDE file. When the end of the file is encountered, the source line is
restored and processing is resumed. Because the source line is restored, the
processed file must have a macro definition of the unknown directive name, or else
an error will result when the source line is restored and processed. However, the
processed file is not limited to macro definitions, and can include any legal source
code statements.

Multiple MACLIB directives may be given, in which case the assembler will search
each directory in the order in which it is encountered.

Note: A label is not allowed with this directive.

C-38 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

Note: See also INCLUDE.

Example B-58 MACLIB Directive

MMLI B ' macr os\ nynacs\'; | BM PC exanpl e
MQIB "fftlib/! ; UN X exanpl e

C.3.38 MACRO Macro Definition

<l abel > MCRO [<durmy argunent |ist>]
<macro definition statenents>
BNDM
The dummy argument list has the form:

[<durar g>[, <dunarg>, . . ., <dunar g>] |

The required label is the symbol by which the macro will be called. If the macro is
named the same as an existing assembler directive or mnemonic, a warning will be
issued. This warning can be avoided with the RDIRECT directive.

The definition of a macro consists of three parts: the header, which assigns a name to
the macro and defines the dummy arguments; the body, which consists of prototype
or skeleton source statements; and the terminator. The header is the MACRO
directive, its label, and the dummy argument list. The body contains the pattern of
standard source statements. The terminator is the ENDM directive.

The dummy arguments are symbolic names that the macro processor will replace
with arguments when the macro is expanded (called). Each dummy argument must
obey the same rules as symbol names. Dummy argument names that are preceded
by an underscore are not allowed. Within each of the three dummy argument fields,
the dummy arguments are separated by commas. The dummy argument fields are
separated by one or more blanks.

Macro definitions may be nested but the nested macro will not be defined until the
primary macro is expanded.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-39

Motorola Assembler Notes

Assembler Directives

Note: See also DUP, DUPA, DUPC, DUPF, ENDM

Example B-59 MACRO Directive

SWMP_ SYM MACRO REGL, RE@ ;swap REGL, RE&R using X0 as tenp
MDVE R ?REGL, X0
MOVE R ?RE@, R ?REGL
MOVE X0, R ?RE@
ENDM

C.3.39 MODE Change Relocation Mode

MOIDE <ABS[QLUTE] | REL[ATIVE >

Causes the assembler to change to the designated operational mode. The MODE
directive may be given at any time in the assembly source to alter the set of location
counters used for section addressing. Code generated while in absolute mode will
be placed in memory at the location determined during assembly. Relocatable code
and data are based from the enclosing section start address. The MODE directive
has no effect when the command line -A option is issued.

Note: A label is not allowed with this directive.

Note: See also ORG.

Example B-60 MODE Directive

MIDE ABS ; Change to absol ute node

C.3.40 MSG Programmer Generated Message

MBG [{<str>| <exp>}[, {<str>| <exp>}, ..., {<str>| <exp>}]]

The MSG directive will cause a message to be output by the assembler. The error
and warning counts will not be affected. The MSG directive is normally used in
conjunction with conditional assembly directives for informational purposes. The
assembly proceeds normally after the message has been printed. An arbitrary
number of strings and expressions, in any order but separated by commas with no
intervening white space, can be specified optionally to describe the nature of the
message.

C-40 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

Note: A label is not allowed with this directive.

Note: See also FAIL, WARN.

Example B-61 MSG Directive

MBG " Generating sine tabl es'

C.3.41 NOLIST Stop Assembly Listing

NQLI ST

Do not print the listing from this point on (including the NOLIST directive).
Subsequent source lines will not be printed.

The NOLIST directive actually decrements a counter that is checked for a positive
value and is symmetrical with respect to the LIST directive. Note the following
sequence:

; Qounter value currently 1

LI ST ; Qounter value = 2
LI ST ; Qounter value = 3
NQLI ST ; Qounter value = 2
NQLI ST ; Qounter value = 1

The listing still would not be disabled until another NOLIST directive was issued.
Note: A label is not allowed with this directive.

Note: See also LIST, OPT.

Example B-62 NOLIST Directive

I F LI STGFF
NCLI ST ; Turn the listing off
BND F

MOTOROLA DSP56303EVMUM/AD, Preliminary C-41

Motorola Assembler Notes

Assembler Directives

C.3.42 OPT Assembler Options

aeT <option>[, <option>,..., <opt i on>][<comment >

The OPT directive is used to designate the assembler options. Assembler options are
given in the operand field of the source input file and are separated by commas.

Options also may be specified using the command line -O option. All options have a
default condition. Some options are reset to their default condition at the end of pass
one. Some are allowed to have the prefix NO attached to them, which then reverses
their meaning.

Note:

A label is not allowed with this directive.

Options can be grouped by function into five different types:

o M L D PP

Listing format control
Reporting options
Message control
Symbol options

Assembler operation

C.3421 Listing Format Control
These options control the format of the listing file:

FC—Fold trailing comments
FF— Form feeds for page ejects
FM—Format messages
PP—Pretty print listing

RC—Relative comment spacing

C.3.42.2 Reporting Options
These options control what is reported in the listing file:

CEX—Print DC expansions

CL—Print conditional assembly directives
CRE—Print symbol cross-reference
DXL—Expand DEFINE directive strings in listing

C-42

DSP56303EVMUM/AD, Preliminary

MOTOROLA

Motorola Assembler Notes

Assembler Directives

< HDR—Generate listing headers
= |L—Inhibit source listing
= LOC—Print local labels in cross-reference
e MC—Print macro calls
e MD—Print macro definitions
e MEX—Print macro expansions
e MU—Print memory utilization report
= NL—Print conditional assembly and section nesting levels
e S—Print symbol table
= U—Print skipped conditional assembly lines
C.3.42.3 Message Control
These options control the types of assembler messages that are generated:
e AE—Check address expressions
= MSW—Warn on memory space incompatibilities
e UR—Flag unresolved references
= W-—Display warning messages
C.3.42.4 Symbol Options
These options deal with the handling of symbols by the assembler:
e DEX—Expand DEFINE symbols within quoted strings
= |C—Ignore case in symbol names
e NS—Support symbol scoping in nested sections
= SCL—Scope structured control statement labels
e SCO—Structured control statement labels to listing/object file
= SO—Write symbols to object file
e XLL—Write local labels to object file
= XR—Recognize XDEFed symbols without XREF

C.3.42.5 Assembler Operation
Miscellaneous options having to do with internal assembler operation:

MOTOROLA DSP56303EVMUM/AD, Preliminary C-43

Motorola Assembler Notes

Assembler Directives

CC—Enable cycle counts

CK—Enable checksumming

CM—Preserve comment lines within macros
CONST—Make EQU symbols assembly time constants
CONTCK—Continue checksumming

DLD—Do not restrict directives in loops

GL—Make all section symbols global

GS—Make all sections global static

INTR—Perform interrupt location checks

LB—Byte increment load counter

LDB—Listing file debug

MI—Scan MACLIB directories for include files
PS—~Pack strings

PSM—Programmable short addressing mode
RP—Generate NOP to accommodate pipeline delay
RSV—Check reserve data memory locations
Sl—Interpret short immediate as long or sign extended

SVO—Preserve object file on errors

Following are descriptions of the individual options. The parenthetical inserts
specify default if the option is the default condition, and reset if the option is reset to
its default state at the end of pass one.

AE—(default, reset) Check address expressions for appropriate arithmetic
operations. For example, this will check that only valid add or subtract
operations are performed on address terms.

CC—Enable cycle counts and clear total cycle count. Cycle counts will be
shown on the output listing for each instruction. Cycle counts assume a full
instruction fetch pipeline and no wait states.

CEX—Print DC expansions.

CK—Enable checksumming of instruction and data values and clear
cumulative checksum. The checksum value can be obtained using the
@CHK() function.

C-44

DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

e CL—(default, reset) Print the conditional assembly directives.

e CM—(default, reset) Preserve comment lines of macros when they are
defined. Note that any comment line within a macro definition that starts with
two consecutive semicolons (;;) is never preserved in the macro definition.

e CONST—EQU symbols are maintained as assembly time constants and will
not be sent to the object file. This option, if used, must be specified before the
first symbol in the source program is defined.

e CONTC—Re-enable cycle counts. Does not clear total cycle counts. The cycle
count for each instruction will be shown on the output listing.

e CONTCK—Re-enable checksumming of instructions and data. Does not clear
cumulative checksum value.

= CRE—Print across reference table at the end of the source listing. This option,
if used, must be specified before the first symbol in the source program is
defined.

= DEX—Expand DEFINE symbols within quoted strings. Can also be done on a
case-by-case basis using double-quoted strings.

= DLD—Do not restrict directives in DO loops. The presence of some directives
in DO loops does not make sense, including some OPT directive variations.
This option suppresses errors on particular directives in loops.

= DXL—(default, reset) Expand DEFINE directive strings in listing.

e FC—Fold trailing comments. Any trailing comments that are included in a
source line will be folded underneath the source line and aligned with the
opcode field. Lines that start with the comment character will be aligned with
the label field in the source listing. The FC option is useful for displaying the
source listing on 80 column devices.

e FF—Use form feeds for page ejects in the listing file.

= FM—Format assembler messages so that the message text is aligned and
broken at word boundaries.

= GL—Make all section symbols global. This has the same effect as declaring
every section explicitly GLOBAL. This option must be given before any
sections are defined explicitly in the source file.

e GS—(default, reset in absolute mode) Make all sections global static. All
section counters and attributes will be associated with the GLOBAL section.
This option must be given before any sections are defined explicitly in the
source file.

< HDR—(default, reset) Generate listing header along with titles and subtitles.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-45

Motorola Assembler Notes

Assembler Directives

IC—Ignore case in symbol, section, and macro names. This directive must be
issued before any symbols, sections, or macros are defined.

IL—Inhibit source listing. This option will stop the assembler from producing
a source listing.

INTR—(default, reset in absolute mode) Perform interrupt location checks.
Certain DSP instructions may not appear in the interrupt vector locations in
program memory. This option enables the assembler to check for these
instructions when the program counter is within the interrupt vector bounds.

LB—Increment load counter (if different from runtime) by number of bytes in
DSP word to provide byte-wide support for overlays in bootstrap mode. This
option must appear before any code or data generation.

LDB—Use the listing file as the debug source file rather than the assembly
language file. The -L command line option to generate a listing file must be
specified for this option to take effect.

LOC—Include local labels in the symbol table and cross-reference listing.
Local labels are not normally included in these listings. If neither the S or CRE
options are specified, then this option has no effect. The LOC option must be
specified before the first symbol is encountered in the source file.

MC—(default, reset) Print macro calls.
MD—(default, reset) Print macro definitions.
MEX—Print macro expansions.

MI—Scan MACLIB directory paths for include files. The assembler
ordinarily looks for included files only in the directory specified in the
INCLUDE directory or in the paths given by the - command line option. If
the M1 option is used the assembler will also look for included files in any
designated MACLIB directories.

MSW—(default, reset) Issue warning on memory space incompatibilities.

MU—Include a memory utilization report in the source listing. This option
must appear before any code or data generation.

NL—Display conditional assembly (IF-ELSE-ENDIF) and section nesting
levels on listing.

NOAE—Do not check address expressions.
NOCC—(default, reset) Disable cycle counts. Does not clear total cycle count.

NOCEX—(default, reset) Do not print DC expansions.

C-46

DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

« NOCK—(default, reset) Disable checksumming of instruction and data
values.

= NOCL—Do not print the conditional assembly directives.
 NOCM—Do not preserve comment lines of macros when they are defined.

= NODEX—(default, reset) Do not expand DEFINE symbols within quoted
strings.

= NODLD—(default, reset) Restrict use of certain directives in DO loop.
e NODXL—Do not expand DEFINE directive strings in listing.
e NOFC—(default, reset) Inhibit folded comments.

< NOFF—(default, reset) Use multiple line feeds for page ejects in the listing
file.

* NOFM—(default, reset) Do not format assembler messages.

« NOGS—(default, reset in relative mode) Do not make all sections global
static.

< NOHDR—Do not generate listing header. This also turns off titles and
subtitles.

e NOINTR—(default, reset in relative mode) Do not perform interrupt location
checks.

e NOMC—Do not print macro calls.

e NOMD—Do not print macro definitions.

e NOMEX—(default, reset) Do not print macro expansions.

« NOMI—(default, reset) Do not scan MACLIB directory paths for include files.
= NOMSW—Do not issue warning on memory space incompatibilities.

= NONL—(default, reset) Do not display nesting levels on listing.

< NONS—Do not allow scoping of symbols within nested sections.

= NOPP—Do not pretty print listing file. Source lines are sent to the listing file
as they are encountered in the source, with the exception that tabs are
expanded to spaces and continuation lines are concatenated into a single
physical line for printing.

e NOPS—Do not pack strings in DC directive. Individual bytes in strings will
be stored one byte per word.

< NORC—(default, reset) Do not space comments relatively.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-47

Motorola Assembler Notes

Assembler Directives

NORP—(default, reset) Do not generate instructions to accommodate pipeline
delay.

NOSCL—Do not maintain the current local label scope when a structured
control statement label is encountered.

NOU—(default, reset) Do not print the lines excluded from the assembly due
to a conditional assembly directive.

NOUR—(default, reset) Do not flag unresolved external references.
NOW—Do not print warning messages.
NS—(default, reset) Allow scoping of symbols within nested sections.

PP—(default, reset) Pretty print listing file. The assembler attempts to align
fields at a consistent column position without regard to source file formatting.

PS—(default, reset) Pack strings in DC directive. Individual bytes in strings
will be packed into consecutive target words for the length of the string.

RC—Space comments relatively in listing fields. By default, the assembler
always places comments at a consistent column position in the listing file.
This option allows the comment field to float: on a line containing only a label
and opcode, the comment would begin in the operand field.

RP—Generate NOP instructions to accommodate pipeline delay. If an
address register is loaded in one instruction then the contents of the register is
not available for use as a pointer until after the next instruction. Ordinarily
when the assembler detects this condition it issues an error message. The RP
option will cause the assembler to output a NOP instruction into the output
stream instead of issuing an error.

S—Print symbol table at the end of the source listing. This option has no effect
if the CRE option is used.

SCL—(default, reset) Structured control statements generate non-local labels
that ordinarily are not visible to the programmer. This can create problems
when local labels are interspersed among structured control statements. This
option causes the assembler to maintain the current local label scope when a
structured control statement label is encountered.

SCO—Send structured control statement labels to object and listing files.
Normally the assembler does not externalize these labels. This option must
appear before any symbol definition.

SO—Write symbol information to object file. This option is recognized but
performs no operation in COFF assemblers.

C-48

DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

= SVO—Preserve object file on errors. Normally any object file produced by the
assembler is deleted if errors occur during assembly. This option must be
given before any code or data is generated.

e U—Print the unassembled lines skipped due to failure to satisfy the condition
of a conditional assembly directive.

< UR—Generate a warning at assembly time for each unresolved external
reference. This option works only in relocatable mode.

= W—(default, reset) Print all warning messages.

e WEX—Add warning count to exit status. Ordinarily the assembler exits with
a count of errors. This option causes the count of warnings to be added to the
error count.

e XLL—Write underscore local labels to object file. This is primarily used to aid
debugging. This option, if used, must be specified before the first symbol in
the source program is defined.

= XR—Causes XDEFed symbols to be recognized within other sections without
being XREFed. This option, if used, must be specified before the first symbol
in the source program is encountered.

Example B-63 OPT Directive

T X, MEX ; Turn on DC and nacro expansi ons
QT e W ; GQoss reference, nenory utilization

C.3.43 ORG Initialize Memory Space and Location Counters

G <rns>[<rl ¢ [<rnp>] : [<expl>] [, < ns>[<l | c>] [<l np>] : [<exp2>]]
G <rms>[<rmp>] [(<rce>)] : [<expl>] [, < ms>[< mp>] [(<l ce>)] : [<exp2>] |

The ORG directive is used to specify addresses and to indicate memory space and
mapping changes. It also can designate an implicit counter mode switch in the
assembler and serves as a mechanism for initiating overlays.

Note: A label is not allowed with this directive.
The parameters used with the ORG directive are:
= <rms>—Which memory space (X, Y, L, P, or E) will be used as the runtime
memory space. If the memory space is L, any allocated datum with a value

greater than the target word size will be extended to two words; otherwise, it
is truncated. If the memory space is E, then depending on the memory space

MOTOROLA DSP56303EVMUM/AD, Preliminary C-49

Motorola Assembler Notes

Assembler Directives

gualifier, any generated words will be split into bytes, one byte per word, or a
16/8-bit combination.

<rlc>—Which runtime counter H, L, or default (if neither H or L is specified),
that is associated with the <rms> will be used as the runtime location counter.

<rmp>—Indicates the runtime physical mapping to DSP memory: | - internal,
E - external, R - ROM, A - port A, B - port B. If not present, no explicit
mapping is done.

<rce>—Non-negative absolute integer expression representing the counter
number to be used as the runtime location counter. Must be enclosed in
parentheses. Should not exceed the value 65535.

<expl>—Initial value to assign to the runtime counter used as the <rlc>. If
<expl> is a relative expression the assembler uses the relative location
counter. If <expl> is an absolute expression the assembler uses the absolute
location counter. If <expl> is not specified, then the last value and mode that
the counter had will be used.

<Ims>—Which memory space (X, Y, L, P, or E) will be used as the load
memory space. If the memory space is L, any allocated datum with a value
greater than the target word size will be extended to two words; otherwise, it
is truncated. If the memory space is E, then depending on the memory space
gualifier, any generated words will be split into bytes, one byte per word, or a
16/8-bit combination.

<llc>—Which load counter, H, L, or default (if neither H or L is specified), that
is associated with the <Ims> will be used as the load location counter.

<Imp>—Indicates the load physical mapping to DSP memory: | - internal, E -
external, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

<lce>—Non-negative absolute integer expression representing the counter
number to be used as the load location counter. Must be enclosed in
parentheses. Should not exceed the value 65535.

<exp2>—Initial value to assign to the load counter used as the <llc>. If
<exp2> is a relative expression the assembler uses the relative location
counter. If <exp2> is an absolute expression the assembler uses the absolute
location counter. If <exp2> is not specified, then the last value and mode that
the counter had will be used.

If the last half of the operand field in an ORG directive dealing with the load
memory space and counter is not specified, then the assembler will assume that the
load memory space and load location counter are the same as the runtime memory
space and runtime location counter. In this case, object code is being assembled to be

C-50

DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

loaded into the address and memory space where it will be when the program is run,
and is not an overlay.

If the load memory space and counter are given in the operand field, then the
assembler always generates code for an overlay. Whether the overlay is absolute or
relocatable depends upon the current operating mode of the assembler and whether
the load counter value is an absolute or relative expression. If the assembler is
running in absolute mode, or if the load counter expression is absolute, then the
overlay is absolute. If the assembler is in relative mode and the load counter
expression is relative, the overlay is relocatable. Runtime relocatable overlay code is
addressed relative to the location given in the runtime location counter expression.
This expression, if relative, may not refer to another overlay block.

Note: See also MODE.

Example B-64 ORG Directive

CRG P $1000

Sets the runtime memory space to P. Selects the default runtime counter (counter 0)
associated with P space to use as the runtime location counter and initializes it to
$1000. The load memory space is implied to be P, and the load location counter is
assumed to be the same as the runtime location counter.

G PE

Sets the runtime memory space to P. Selects the H load counter (counter 2)
associated with P space to use as the runtime location counter. The H counter will
not be initialized, and its last value will be used. Code generated hereafter will be
mapped to external (E) memory. The load memory space is implied to be P, and
the load location counter is assumed to be the same as the runtime location counter.

G P:OLL Y.

Indicates code will be generated for an overlay. The runtime memory space is P, and
the default counter is used as the runtime location counter. It will be reset to the
value of OVLL1. If the assembler is in absolute mode via the -A command line option
then OVL1 must be an absolute expression. If OVLL1 is an absolute expression the
assembler uses the absolute runtime location counter. If OVLL1 is a relocatable value
the assembler uses the relative runtime location counter. In this case OVL1 must not
itself be an overlay symbol (e.g. defined within an overlay block). The load memory
space is Y. Since neither H, L, nor any counter expression was specified as the load
counter, the default load counter (counter 0) will be used as the load location
counter. The counter value and mode will be whatever it was the last time it was
referenced.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-51

Motorola Assembler Notes

Assembler Directives

Example B-64 ORG Directive (Continued)

G X, B8

Sets the runtime memory space to X. Selects the L counter (counter 1) associated
with X space to use as the runtime location counter. The L counter will not be
initialized, and its last value will be used. The load memory space is set to E, and the
gualifier 8 indicates a bytewise RAM configuration. Instructions and data will be
generated eight bits per output word with byte-oriented load addresses. The default
load counter will be used and there is no explicit load origin.

CRG P(5):, Y: $8000

Indicates code will be generated for an absolute overlay. The runtime memory
space is P, and the counter used as the runtime location counter is counter 5. It will
not be initialized, and the last previous value of counter 5 will be used. The load
memory space is Y. Since neither H, L, nor any counter expression was specified as
the load counter, the default load counter (counter 0) will be used as the load
location counter. The default load counter will be initialized to $8000.

C.3.44 PAGE Top of Page/Size Page

PACE [<expl>, <exp2>.. ., <exp5>]]

The PAGE directive has two forms:

1. If no arguments are supplied, then the assembler will advance the listing to
the top of the next page. In this case, the PAGE directive will not be output.

2. The PAGE directive with arguments can be used to specify the printed format
of the output listing. Arguments may be any positive absolute integer
expression. The arguments in the operand field (as explained below) are
separated by commas. Any argument can be left as the default or last set
value by omitting the argument and using two adjacent commas. The PAGE
directive with arguments will not cause a page eject and will be printed in the
source listing.

Note: A label is not allowed with this directive.
The arguments in order are:

= PAGE_WIDTH <expl>—Page width in terms of number of output columns
per line (default 80, min 1, max 255).

C-52 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

e PAGE_LENGTH <exp2>—~Page length in terms of total number of lines per
page (default 66, min 10, max 255). As a special case a page length of 0 (zero)
turns off all headers, titles, subtitles, and page breaks.

e BLANK TOP <exp3>—-Blank lines at top of page. (default 0, min 0, max see
below).

e BLANK BOTTOM <exp4>—-Blank lines at bottom of page. (default 0, min 0,
max see below).

= BLANK_LEFT <exp5>—Blank left margin. Number of blank columns at the
left of the page. (default 0, min 0, max see below).

The following relationships must be maintained:

BLANK TCP + BLANK BOTTCOM <= PACE LENGTH - 10
BLANK_LEFT < PAGE WDTH

Note: See also LSTCOL.

Example B-65 PAGE Directive

PACE 132,,3,3 ; Set width tol32, 3 line top/bottom nargins
PACE ; Page gj ect

C.3.45 PMACRO Purge Macro Definition

PMACRO <synbol >, <synbol >, . . ., <synbol >]

The specified macro definition will be purged from the macro table, allowing the
macro table space to be reclaimed.

Note: A label is not allowed with this directive.

Note: See also MACRO.

Example B-66 PMACRO Directive

PMACRO MRCL, M2

This statement would cause the macros named MAC1 and MAC2 to be purged.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-53

Motorola Assembler Notes

Assembler Directives

C.3.46 PRCTL Send Control String to Printer

PRCTL <exp>l <string>,..., <exp>l <string>

PRCTL simply concatenates its arguments and ships them to the listing file (the
directive line itself is not printed unless there is an error). <exp> is a byte expression
and <string> is an assembler string. A byte expression would be used to encode
non-printing control characters, such as ESC. The string may be of arbitrary length,
up to the maximum assembler-defined limits.

PRCTL may appear anywhere in the source file and the control string will be output
at the corresponding place in the listing file. However, if a PRCTL directive is the
last line in the last input file to be processed, the assembler insures that all error
summaries, symbol tables, and cross-references have been printed before sending out
the control string. This is so a PRCTL directive can be used to restore a printer to a
previous mode after printing is done. Similarly, if the PRCTL directive appears as
the first line in the first input file, the control string will be output before page
headings or titles.

The PRCTL directive only works if the -L command line option is given; otherwise it
is ignored.

Note: A label is not allowed with this directive.

Example B-67 PRCTL Directive

PRCTL $1B'E ; Reset HP LaserJet printer

C.3.47 RADIX Change Input Radix for Constants

RADI X <expr essi on>

Changes the input base of constants to the result of <expression>. The absolute
integer expression must evaluate to one of the legal constant bases (2, 10, or 16). The
default radix is 10. The RADIX directive allows the programmer to specify constants
in a preferred radix without a leading radix indicator. The radix prefix for base 10
numbers is the grave accent (). Note that if a constant is used to alter the radix, it
must be in the appropriate input base at the time the RADIX directive is
encountered.

C-54 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

Note: A label is not allowed with this directive.

Example B-68 RADIX Directive

_RADIO DC 10 ; Bvaluates to hex A
RAD X 2

_RAR DC 10 ; Bvaluates to hex 2
RAD X " 16

_RADL6 DoC 10 ; Bvaluates to hex 10
RAD X 3 ; Bad radix expression

C.3.48 RDIRECT Remove Directive or Mnemonic from Table

RO RECT <direc>[,<direc>,..., <di rec>]

The RDIRECT directive is used to remove directives from the assembler directive
and mnemonic tables. If the directive or mnemonic that has been removed is later
encountered in the source file, it will be assumed to be a macro. Macro definitions
that have the same name as assembler directives or mnemonics will cause a warning
message to be output unless the RDIRECT directive has been used to remove the
directive or mnemonic name from the assembler’s tables. Additionally, if a macro is
defined through the MACLIB directive which has the same name as an existing
directive or opcode, it will not automatically replace that directive or opcode as
previously described. In this case, the RDIRECT directive must be used to force the
replacement.

Since the effect of this directive is global, it cannot be used in an explicitly-defined
section (see SECTION directive). An error will result if the RDIRECT directive is
encountered in a section.

Note: A label is not allowed with this directive.

Example B-69 RDIRECT Directive

RO RECT PAGE MDVE

This would cause the assembler to remove the PAGE directive from the directive
table and the MOVE mnemonic from the mnemonic table.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-55

Motorola Assembler Notes

Assembler Directives

C.3.49 SCSJMP Set Structured Control Statement Branching
Mode

SCSIMP {SHRT | LONG | NON\G}

The SCSIMP directive is analogous to the FORCE directive, but it only applies to
branches generated automatically by structured control statements (See Section C.4
on page C-64). There is no explicit way, as with a forcing operator, to force a branch
short or long when it is produced by a structured control statement. This directive
will cause all branches resulting from subsequent structured control statements to be
forced to the specified mode.

Just like the FORCE pseudo-op, errors can result if a value is too large to be forced
short. For relocatable code, the error may not occur until the linking phase.

Note: See also FORCE, SCSREG.

Note: A label is not allowed with this directive.

Example B-70 SCSIJMP Directive

SCSIWP SHORT ; force all subsequent SCS junps short

C.3.50 SCSREG Reassign Structured Control Statement
Registers

SCSREG [<srcreg>[, <dstreg>[, <t npreg>[, <extreg>]]]1]

The SCSREG directive reassigns the registers used by structured control statement
(SCS) directives. It is convenient for reclaiming default SCS registers when they are
needed as application operands within a structured control construct. <srcreg> is
ordinarily the source register for SCS data moves. <dstreg> is the destination
register. <tmpreg> is a temporary register for swapping SCS operands. <extreg> is
an extra register for complex SCS operations. With no arguments SCSREG resets the
SCS registers to their default assignments.

The SCSREG directive should be used judiciously to avoid register context errors
during SCS expansion. Source and destination registers may not necessarily be used
strictly as source and destination operands. The assembler does no checking of
reassigned registers beyond validity for the target processor. Errors can result when a
structured control statement is expanded and an improper register reassignment has
occurred. It is recommended that the MEX option (see the OPT directive) be used to

C-56 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

examine structured control statement expansion for relevant constructs to determine
default register usage and applicable reassignment strategies.

Note: See also OPT (MEX), SCSIMP.

Note: A label is not allowed with this directive.

Example B-71 SCSREG Directive

SCSREG YO, B ; reassign SCS source and dest. registers

C.3.51 SECTION Start Section

SECTTON <synbol> [QCBAL | STATIC| LQOA]

l<SECt i on source stat enent s>

ENDSEC
The SECTION directive defines the start of a section. All symbols that are defined
within a section have the <symbol> associated with them as their section name. This
serves to protect them from like-named symbols elsewhere in the program. By

default, a symbol defined inside any given section is private to that section unless the
GLOBAL or LOCAL qualifier accompanies the SECTION directive.

Any code or data inside a section is considered an indivisible block with respect to
relocation. Code or data associated with a section is independently relocatable within
the memory space to which it is bound, unless the STATIC qualifier follows the
SECTION directive on the instruction line.

Symbols within a section are generally distinct from other symbols used elsewhere in
the source program, even if the symbol name is the same. This is true as long as the
section name associated with each symbol is unique, the symbol is not declared
public (XDEF/GLOBAL), and the GLOBAL or LOCAL qualifier is not used in the
section declaration. Symbols that are defined outside of a section are considered
global symbols and have no explicit section name associated with them. Global
symbols may be referenced freely from inside or outside of any section, as long as the
global symbol name does not conflict with another symbol by the same name in a
given section.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-57

Motorola Assembler Notes

Assembler Directives

If the GLOBAL qualifier follows the <section name> in the SECTION directive, then
all symbols defined in the section until the next ENDSEC directive are considered
global. The effect is as if every symbol in the section were declared with GLOBAL.
This is useful when a section needs to be independently relocatable, but data hiding
is not desired.

If the STATIC qualifier follows the <section name> in the SECTION directive, then
all code and data defined in the section until the next ENDSEC directive are
relocated in terms of the immediately enclosing section. The effect with respect to
relocation is as if all code and data in the section were defined within the parent
section. This is useful when a section needs data hiding, but independent relocation
is not required.

If the LOCAL qualifier follows the <section name> in the SECTION directive, then
all symbols defined in the section until the next ENDSEC directive are visible to the
immediately enclosing section. The effect is as if every symbol in the section were
defined within the parent section. This is useful when a section needs to be
independently relocatable, but data hiding within an enclosing section is not
required.

The division of a program into sections controls not only labels and symbols, but also
macros and DEFINE directive symbols. Macros defined within a section are private
to that section and are distinct from macros defined in other sections even if they
have the same macro name. Macros defined outside of sections are considered global
and may be used within any section. Similarly, DEFINE directive symbols defined
within a section are private to that section and DEFINE directive symbols defined
outside of any section are globally applied. There are no directives that correspond to
XDEF for macros or DEFINE symbols, and therefore, macros and DEFINE symbols
defined in a section can never be accessed globally. If global accessibility is desired,
the macros and DEFINE symbols should be defined outside of any section.

Sections can be nested to any level. When the assembler encounters a nested section,
the current section is stacked and the new section is used. When the ENDSEC
directive of the nested section is encountered, the assembler restores the old section
and uses it. The ENDSEC directive always applies to the most previous SECTION
directive. Nesting sections provides a measure of scoping for symbol names, in that
symbols defined within a given section are visible to other sections nested within it.
For example, if section B is nested inside section A, then a symbol defined in section
A can be used in section B without XDEFing in section A or XREFing in section B.
This scoping behavior can be turned off and on with the NONS and NS options
respectively (see the OPT directive, this chapter).

C-58 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

Sections may also be split into separate parts. That is, <section name> can be used
multiple times with SECTION and ENDSEC directive pairs. If this occurs, then these
separate (but identically named) sections can access each others symbols freely
without the use of the XREF and XDEF directives. If the XDEF and XREF directives
are used within one section, they apply to all sections with the same section name.
The reuse of the section name is allowed to permit the program source to be arranged
in an arbitrary manner (for example, all statements that reserve X space storage
locations grouped together), but retain the privacy of the symbols for each section.

When the assembler operates in relative mode (the default), sections act as the basic
grouping for relocation of code and data blocks. For every section defined in the
source a set of location counters is allocated for each DSP memory space. These
counters are used to maintain offsets of data and instructions relative to the
beginning of the section. At link time sections can be relocated to an absolute
address, loaded in a particular order, or linked contiguously as specified by the
programmer. Sections which are split into parts or among files are logically
recombined so that each section can be relocated as a unit.

Sections may be relocatable or absolute. In the assembler absolute mode (command
line -A option) all sections are considered absolute. A full set of locations counters is
reserved for each absolute section unless the GS option is given (see the OPT
directive, this chapter). In relative mode, all sections are initially relocatable.
However, a section or a part of a section may be made absolute either implicitly by
using the ORG directive, or explicitly through use of the MODE directive.

Note: A label is not allowed with this directive.

Note: See also MODE, ORG, GLOBAL, LOCAL, XDEF, XREF.

Example B-72 SECTION Directive

SECTI ON TABLES ; TABLES will be the section nane

MOTOROLA DSP56303EVMUM/AD, Preliminary C-59

Motorola Assembler Notes

Assembler Directives

C.3.52 SET Set Symbol to a Value

<l abel > SET <expr essi on>
SET <l abel > <expr essi on>

The SET directive is used to assign the value of the expression in the operand field to
the label. The SET directive functions somewhat like the EQU directive. However,
labels defined via the SET directive can have their values redefined in another part of
the program (but only through the use of another SET directive). The SET directive is
useful in establishing temporary or reusable counters within macros. The expression
in the operand field of a SET must be absolute and cannot include a symbol that is
not yet defined (no forward references are allowed).

Note: See also EQU, GSET.

Example B-73 SET Directive

QAT SET 0 ; INTIALI ZE GONT

C.3.53 STITLE Initialize Program Sub-Title

STI TLE [<string>]

The STITLE directive initializes the program subtitle to the string in the operand
field. The subtitle will be printed on the top of all succeeding pages until another
STITLE directive is encountered. The subtitle is initially blank. The STITLE directive
will not be printed in the source listing. An STITLE directive with no string
argument will cause the current subtitle to be blank.

Note: A label is not allowed with this directive.

Note: See also TITLE.

Example B-74 STITLE Directive

STITLE " QALLECT SAMPLES

C-60 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

C.3.54 SYMOBJ Write Symbol Information to Object File

SYMBJ <synol >, <synbol >, . . ., <synbol >]

The SYMOBJ directive causes information for each <symbol> to be written to the
object file. This directive is recognized but currently performs no operation in COFF
assemblers.

Note: A label is not allowed with this directive.

Example B-75 SYMOBJ

SYMBJ XSTART, H RIN ERRPRCC

C.3.55 TABS Set Listing Tab Stops

TABS <t abst ops>

The TABS directive allows resetting the listing file tab stops from the default value of
8.

Note: A label is not allowed with this directive.

Note: See also LSTCOL.

Example B-76 TABS Directive

TABS 4 ; Set listing file tab stops to 4

C.3.56 TITLE Initialize Program Title

TI TLE [<string>]

The TITLE directive initializes the program title to the string in the operand field.
The program title will be printed on the top of all succeeding pages until another
TITLE directive is encountered. The title is initially blank. The TITLE directive will
not be printed in the source listing. A TITLE directive with no string argument will
cause the current title to be blank.

Note: A label is not allowed with this directive.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-61

Motorola Assembler Notes

Assembler Directives

Note: See also STITLE.

Example B-77 TITLE Directive

TITLE 'ARHALTER

C.3.57 UNDEF Undefine DEFINE Symbol

UNDEF- [<syniol >

The UNDEF directive causes the substitution string associated with <symbol> to be
released, and <symbol> will no longer represent a valid DEFINE substitution. See
the DEFINE directive for more information.

Note: A label is not allowed with this directive.

Note: See also DEFINE.

Example B-78 UNDEF Directive

UNDE- DEBUG ; UNDEH NES THE DEBUG SUBSTI TUTI ON STR NG

C.3.58 WARN Programmer Generated Warning

VWARN [{<str>| <exp>}[, {<str>| <exp>},..., {<str>| <exp>}]1]

The WARN directive will cause a warning message to be output by the assembler.
The total warning count will be incremented as with any other warning. The WARN
directive is normally used in conjunction with conditional assembly directives for
exceptional condition checking. The assembly proceeds normally after the warning
has been printed. An arbitrary number of strings and expressions, in any order but
separated by commas with no intervening white space, can be specified optionally to
describe the nature of the generated warning.

Note: A label is not allowed with this directive.

Note: See also FAIL, MSG.

Example B-79 WARN Directive

WARN ' paraneter too |arge'

C-62 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Assembler Directives

C.3.59 XDEF External Section Symbol Definition

XOE- <syniol >[, <synbol >, .. ., <synbol >]

The XDEF directive is used to specify that the list of symbols is defined within the
current section, and that those definitions should be accessible by sections with a
corresponding XREF directive. This directive is only valid if used within a program
section bounded by the SECTION and ENDSEC directives. The XDEF directive
must appear before <symbol> is defined in the section. If the symbols that appear in
the operand field are not defined in the section, an error will be generated.

Note: A label is not allowed with this directive.

Note: See also SECTION, XREF.

Example B-80 XDEF Directive

SECTION 10
XOE- LGCPA ; LOPA W Il be accessible by sections with XREF
ENCSEC

C.3.60 XREF External Section Symbol Reference

XREF <syniol >[, <synbol >, . . ., <synbol >]

The XREF directive is used to specify that the list of symbols is referenced in the
current section, but is not defined within the current section. These symbols must
either have been defined outside of any section or declared as globally accessible
within another section using the XDEF directive. If the XREF directive is not used to
specify that a symbol is defined globally and the symbol is not defined within the
current section, an error will be generated, and all references within the current
section to such a symbol will be flagged as undefined. The XREF directive must
appear before any reference to <symbol> in the section.

Note: A label is not allowed with this directive.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-63

Motorola Assembler Notes

Structured Control Statements

Note: See also SECTION, XDEF.

Example B-81 XREF Directive

SECTION FILTER
XReE- AACC DD ; XoHEed synbol s within section

C.4 STRUCTURED CONTROL STATEMENTS

An assembly language provides an instruction set for performing certain
rudimentary operations. These operations in turn may be combined into control
structures such as loops (FOR, REPEAT, WHILE) or conditional branches (IF-THEN,
IF-THEN-ELSE). The assembler, however, accepts formal, high-level directives that
specify these control structures, generating the appropriate assembly language
instructions for their efficient implementation. This use of structured control
statement directives improves the readability of assembly language programs,
without compromising the desirable aspects of programming in an assembly
language.

C4.1 Structured Control Directives

The following directives are used for structured control. Note the leading period,
which distinguishes these keywords from other directives and mnemonics.
Structured control directives may be specified in either upper or lower case, but they
must appear in the opcode field of the instruction line (e.g. they must be preceded
either by a label, a space, or a tab).

.BREAK .ENDI .LOOP
.CONTINUE .ENDL .REPEAT
.ELSE .ENDW UNTIL
.ENDF .FOR WHILE
AF

In addition, the following keywords are used in structured control statements:

C-64 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Note:

C.A4.2

Structured Control Statements

AND DOWNTO TO
BY OR
DO THEN

AND, DO, and OR are reserved assembler instruction mnemonics.

Syntax

The formats for the . BREAK, .CONTINUE, .FOR, .IF, .LOOP, .REPEAT, and
\WHILE statements are given in sections C.4.2.1 through C.4.2.7. Syntactic variables
used in the formats are defined as follows:

Note:

<expression>—A simple or compound expression (section C.4.3).

<stmtlist>—Zero or more assembler directives, structured control statements,
or executable instructions.

An assembler directive occurring within a structured control statement is
examined exactly once—at assembly time. Thus the presence of a directive
within a .FOR, .LOOP, .REPEAT, or WHILE statement does not imply
repeated occurrence of an assembler directive; nor does the presence of a
directive within an .IF-THEN-.ELSE structured control statement imply
conditional assembly.

<opl>—A user-defined operand whose register/memory location holds the
.FOR loop counter. The effective address must use a memory alterable
addressing mode (e.g., it cannot be an immediate value).

<op2>—The initial value of the .FOR loop counter. The effective address may
be any mode, and may represent an arbitrary assembler expression.

<op3>—The terminating value of the .FOR loop counter. The effective
address may be any mode, and may represent an arbitrary assembler
expression.

<op4>—The step (increment/decrement) of the .FOR loop counter each time
through the loop. If not specified, it defaults to a value of #1. The effective
address may be any mode, and may represent an arbitrary assembler
expression.

<cnt>—The terminating value in a .LOOP statement. This can be any arbitrary
assembler expression.

All structured control statements may be followed by normal assembler comments
on the same logical line.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-65

Motorola Assembler Notes

Structured Control Statements

C4.21 .BREAK Statement
. BREAK

The .BREAK statement causes an immediate exit from the innermost enclosing loop
construct (WHILE, .REPEAT, .FOR, .LOOP). A .BREAK statement does not exit an
AF-THEN-.ELSE construct. If a .BREAK is encountered with no loop statement
active, a warning is issued.

Note: .BREAK should be used with care near .ENDL directives or near the end

of DO loops. It generates a jump instruction which is illegal in those
contexts.

Example B-82 .BREAK Statement

.V LE X:(rl)+ <GI> #0; 1 oop until zero is found

JAF <cs>

. BREAK ;causes exit fromWH LE | oop
.BND

;any instructions here are ski pped
. BNDV

;execution resunes here after . BREAK

C4.2.2 .CONTINUE Statement
. GONTI NLE

The .CONTINUE statement causes the next iteration of a looping construct (WHILE,
.REPEAT, .FOR, .LOOP) to begin. This means that the loop expression or operand
comparison is performed immediately, bypassing any subsequent instructions. If a
.CONTINUE is encountered with no loop statement active, a warning is issued.

Note: .CONTINUE should be used with care near .ENDL directives or near the
end of DO loops. It generates a jump instruction which is illegal in those
contexts.

C-66 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Structured Control Statements

Note: One or more .CONTINUE directives inside a .LOOP construct will
generate a NOP instruction just before the loop address.

Example B-83 .CONTINUE Statement

. REPEAT

AF <cs>
. QONTI NLE ;causes immediate junp to . UNTIL

;any instructions here are ski pped

. UINTI L x: (r1)+ <BEQ> #0; eval uation here after . GONTI NLE

C.4.23 .FOR Statement
.FR <opl> = <op2> {TO| DOMIGQ <op3> [BY <op4>] [DJ
<stmlist>
. BENDF

Initialize <op1> to <op2> and perform <stmtlist> until <opl1> is greater (TO) or less
than (DOWNTO) <op3>. Makes use of a user-defined operand, <opl>, to serve as a
loop counter. .FOR-TO allows counting upward, while .FOR-DOWNTO allows
counting downward. The programmer may specify an increment/decrement step
size in <op4>, or elect the default step size of #1 by omitting the BY clause. A
.FOR-TO loop is not executed if <op2> is greater than <op3> upon entry to the loop.
Similarly, a .FOR-DOWNTO loop is not executed if <op2> is less than <op3>.

<opl> must be a writable register or memory location. It is initialized at the
beginning of the loop, and updated at each pass through the loop. Any immediate
operands must be preceded by a pound sign (#). Memory references must be
preceded by a memory space qualifier (X:, Y:, or P:). L memory references are not
allowed. Operands must be or refer to single-word values.

The logic generated by the .FOR directive makes use of several DSP data registers. In
fact, two data registers are used to hold the step and target values, respectively,
throughout the loop; they are never reloaded by the generated code. It is
recommended that these registers not be used within the body of the loop, or that
they be saved and restored prior to loop evaluation.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-67

Motorola Assembler Notes

Structured Control Statements

Note: The DO keyword is optional.

Example B-84 .FOR Statement

FR XONT = #0 TO Y:.(targ*2)+114; | oop on X ONT

. BENDF

C4.2.4 IF Statement

JdF <expr essi on> THEN
<stntlist>

[.B.SE
<stmlist>]
.BND

If <expression> is true, execute <stmtlist> following THEN (the keyword THEN is
optional); if <expression> is false, execute <stmtlist> following .ELSE, if present;
otherwise, advance to the instruction following .ENDI.

Note: In the case of nested .IF-THEN-.ELSE statements, each .ELSE refers to the
most recent .IF-THEN sequence.

Example B-85 .IF Statement

AF <EQ> ; zero bit set?

.BND

C4.25 .LOOP Statement

.LAP <cnt>
<stnilist>
. BENOL

Execute <stmtlist> <cnt> times. This is similar to the .FOR loop construct, except that
the initial counter and step value are implied to be #1. It is actually a shorthand
method for setting up a hardware DO loop on the DSP, without having to worry
about addressing modes or label placement.

Since the .LOOP statement generates instructions for a hardware DO loop, the same
restrictions apply as to the use of certain instructions near the end of the loop, nesting

C-68 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Structured Control Statements

restrictions, etc. One or more .CONTINUE directives inside a .LOOP construct will
generate a NOP instruction just before the loop address.

Example B-86 .LOOP Statement

.LaP LPONT ; hardware | oop LPONT ti nes
:EN:L
C.4.2.6 .REPEAT Statement
. REPEAT
<stnlist>

.UNTIL <expressi on>

<stmtlist> is executed repeatedly until <expression> is true. When expression
becomes true, advance to the next instruction following .UNTIL. The <stmtlist> is
executed at least once, even if <expression> is true upon entry to the .REPEAT loop.

Example B-87 .REPEAT Statement

. REPEAT

. UNTI L x:(rl)+ <BEQ> #0; loop until zero is found

C4.2.7 .WHILE Statement

.VH LE <expr essi on> DJ
<stntlist>
. BENDV

The <expression> is tested before execution of <stmtlist>. While <expression>
remains true, <stmtlist> is executed repeatedly. When <expression> evaluates false,
advance to the instruction following the .ENDW statement. If <expression> is false
upon entry to the WHILE loop, <stmtlist> is not executed; execution continues after
the .ENDW directive.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-69

Motorola Assembler Notes

Structured Control Statements

Note: The DO keyword is optional.

Example B-88 .WHILE Statement

.VH LE X:(rl)+ <GI> #0; loop until zero is found

C.4.3 Simple and Compound Expressions

Expressions are an integral part of .IF, .REPEAT, and .WHILE statements. Structured
control statement expressions should not be confused with the assembler
expressions. The latter are evaluated at assembly time and will be referred to here as
"assembler expressions”; they can serve as operands in structured control statement
expressions. The structured control statement expressions described below are
evaluated at run time and will be referred to in the following discussion simply as
“expressions”.

A structured control statement expression may be simple or compound. A
compound expression consists of two or more simple expressions joined by either
AND or OR (but not both in a single compound expression).

C431 Simple Expressions

Simple expressions are concerned with the bits of the Condition Code Register
(CCR). These expressions are of two types. The first type merely tests conditions
currently specified by the contents of the CCR (section C.4.3.2). The second type sets
up a comparison of two operands to set the condition codes, and afterwards tests the
codes.

C.43.2 Condition Code Expressions

A variety of tests (identical to those in the Jcc instruction) may be performed, based
on the CCR condition codes. The condition codes, in this case, are preset by either a
user-generated instruction or a structured operand-comparison expression. Each test
is expressed in the structured control statement by a mnemonic enclosed in angle
brackets.

C-70 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Structured Control Statements

When processed by the assembler, the expression generates an inverse conditional
jump to beyond the matching .ENDx/.UNTIL directive.

Example B-89 Condition Code Expression

AIF <EQ> ;zero bit set?

+ bne Z 100002 ;code generated by assenbl er
ar DL ;user code
.BND

+ Z 100002 ; assenbl er - gener at ed | abel
. REPEAT ;subtract until DO < D7

+ Z 100034 ; assenbl er - gener at ed | abel
SB D7, DO ; user code
.UNT L <LT>

+ bge Z 100034 ;code generated by assenbl er

C.4.3.3 Operand Comparison Expressions

Two operands may be compared in a simple expression, with subsequent transfer of
control based on that comparison. Such a comparison takes the form:

<opl> <cc> <op2>

where <cc> is a condition mnemonic enclosed in angle brackets (as described in
section C.4.3.2), and <op1> and <op2> are register or memory references, symbols, or
assembler expressions. When processed by the assembler, the operands are arranged
such that a compare/jump sequence of the following form always results:

aw <regl>, <reg2>
(J|Bcc < abel >

where the jump conditional is the inverse of <cc>. Ordinarily <opl1> is moved to the
<regl> data register and <op2> is moved to the <reg2> data register prior to the
compare. This is not always the case, however: if <opl> happens to be <reg2> and
<op2> is <regl>, an intermediate register is used as a scratch register. In any event,
worst case code generation for a given operand comparison expression is generally
two moves, a compare, and a conditional jump.

Jumps or branches generated by structured control statements are forced long
because the number and address of intervening instructions between a control
statement and its termination are not known by the assembler. The programmer may
circumvent this behavior by use of the SCSIMP directive.

Any immediate operands must be preceded by a pound sign (#). Memory references
must be preceded by a memory space qualifier (X:, Y:, or P:). L memory references
are not allowed. Operands must be or refer to single-word values.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-71

Motorola Assembler Notes

Structured Control Statements

Note that values in the <reg1> and <reg2> data registers are not saved before
expression evaluation. This means that any user data in those registers will be
overwritten each time the expression is evaluated at runtime. The programmer
should take care either to save needed contents of the registers, reassign data
registers using the SCSREG directive, or not use them at all in the body of the
particular structured construct being executed.

C.4.3.4 Compound Expressions

A compound expression consists of two or more simple expressions (section C.4.3.1)
joined by a logical operator (AND or OR). The boolean value of the compound
expression is determined by the boolean values of the simple expressions and the
nature of the logical operator. Note that the result of mixing logical operators in a
compound expression is undefined:

AIF Xl <G> B AD <SS AD RL <NB> R2thisis &K
AIF Xl <LB> B AD <IC (R B <G> R undefined

The simple expressions are evaluated left to right. Note that this means the result of
one simple expression could have an impact on the result of subsequent simple
expressions, because of the condition code settings stemming from the
assembler-generated compare.

If the compound expression is an AND expression and one of the simple expressions
is found to be false, any further simple expressions are not evaluated. Likewise, if the
compound expression is an OR expression and one of the simple expressions is
found to be true, any further simple expressions are not evaluated. In these cases, the
compound expression is either false or true, respectively, and the condition codes
reflect the result of the last simple expression evaluated.

C.4.35 Statement Formatting

The format of structured control statements differs somewhat from normal assembler
usage. Whereas a standard assembler line is split into fields separated by blanks or
tabs, with no white space inside the fields, structured control statement formats vary
depending on the statement being analyzed. In general, all structured control
directives are placed in the opcode field (with an optional label in the label field) and
white space separates all distinct fields in the statement. Any structured control
statement may be followed by a comment on the same logical line.

C.4.3.6 Expression Formatting
Given an expression of the form:

<opl> <LT> <op2> (R <0p3> <@E> <op4>

C-72 DSP56303EVMUM/AD, Preliminary MOTOROLA

Motorola Assembler Notes

Structured Control Statements

there must be white space (blank, tab) between all operands and their associated
operators, including boolean operators in compound expressions. Moreover, there
must be white space between the structured control directive and the expression, and
between the expression and any optional directive modifier (THEN, DO). An
assembler expression used as an operand in a structured control statement
expression must not have white space in it, since it is parsed by the standard
assembler evaluation routines:

JAF #@M (@QJ(4.0)) <G> #2; no white space in first operand

C.4.3.7 .FOR/.LOOP Formatting
The .FOR and .LOORP directives represent special cases. The .FOR structured control
statement consists of several fields:

.FCR <opl> = <op2> TO <o0p3> BY <op4> DO
There must be white space between all operands and other syntactic entities such as
=, TO, BY, and DO. As with expression formatting, an assembler expression used as
an operand must not have white space in it:

CFCQR XONT = #0 TO Y:(targ*2)+1 BY #@MW (@ON2.0, @FR))

In the example above, the .FOR loop operands represented as assembler expressions
(symbol, function) do not have embedded white space, whereas the loop operands
are always separated from structured control statement keywords by white space.

The count field of a .LOOP statement must be separated from the .LOOP directive by
white space. The count itself may be any arbitrary assembler expression, and
therefore must not contain embedded blanks.

C44 Assembly Listing Format

Structured control statements begin with the directive in the opcode field; any
optional label is output in the label field. The rest of the statement is left as is in the
operand field, except for any trailing comment; the X and Y data movement fields are
ignored. Comments following the statement are output in the comment field (unless
the unreported comment delimiter is used).

Statements are expanded using the macro facilities of the assembler. Thus the
generated code can be sent to the listing by specifying the MEX assembler option,
either via the OPT directive or the -O command line option.

MOTOROLA DSP56303EVMUM/AD, Preliminary C-73

Motorola Assembler Notes

Structured Control Statements

C.45 Effects on the Programmer’s Environment

During assembly, global labels beginning with “Z_L” are generated. They are stored
in the symbol table and should not be duplicated in user-defined labels. Because
these non-local labels ordinarily are not visible to the programmer there can be
problems when local (underscore) labels are interspersed among structured control
statements. The SCL option (see the OPT directive) causes the assembler to maintain
the current local label scope when a structured control statement label is
encountered.

In the.FOR loop, <opl> is a user-defined symbol. When exiting the loop, the
memory/register assigned to this symbol contains the value which caused the exit
from the loop.

A compare instruction is produced by the assembler whenever two operands are
tested in a structured statement. At runtime, these assembler-generated instructions
set the condition codes of the CCR (in the case of a loop, the condition codes are set
repeatedly). Any user-written code either within or following a structured statement
that references CCR directly (move) or indirectly (conditional jump/transfer) should
be attentive to the effect of these instructions.

Jumps or branches generated by structured control statements are forced long
because the number and address of intervening instructions between a control
statement and its termination are not known by the assembler. The programmer may
circumvent this behavior by use of the SCSIMP directive. In all structured control
statements except those using only a single condition code expression, registers are
used to set up the required counters and comparands. In some cases, these registers
are effectively reserved; the.FOR loop uses two data registers to hold the step and
target values, respectively, and performs no save/restore operations on these
registers. The assembler, in fact, does no save/restore processing in any structured
control operation; it simply moves the operands into appropriate registers to execute
the compare. The SCSREG directive may be used to reassign structured control
statement registers. The MEX assembler option (see the OPT directive may be used to
send the assembler-generated code to the listing file for examination of possible
register use conflicts.

C-74 DSP56303EVMUM/AD, Preliminary MOTOROLA

APPENDIXD
CODEC PROGRAMMING TUTORIAL

MOTOROLA DSP56303EVMUM/AD, Preliminary

D-1

Codec Programming Tutorial

D.1 INTRODUCTION. . .. e D-3
D.2 PROGRAMMING THE CODEC. D-3
D.3 ECHO.ASM PROGRAM DESCRIPTION D-3
D-2 DSP56303EVMUM/AD,

Preliminary MOTOROLA

Codec Programming Tutorial

Introduction

D.1 INTRODUCTION

OK, you’ve got a new toy and you can’t wait to start developing application. But first
you’ve got the task of reading and understanding all the seemingly endless pages of
specifications, manuals, and related documentation. How are you going to get that
killer application ready quickly and sold in time to make this month’s mortgage?
Well, we can’t promise help with your banker, but we can save you some time by
easing that initial foray into the codec documentation.

D.2 PROGRAMMING THE CODEC

The good news is that the Crystal Semiconductor CS4215 codec (“COder-DECoder™)
used on the DSP56303EVM offers a myriad of options that are all user-programmable
via software. The bad news is that you have to learn how to program it.

A first scan of the CS4215 codec literature might lead you to conclude that the
greatest obstacle between you and your goals is in learning to program the myriad of
user-programmable features. To help you begin, there is an example program named
ECHO.ASM that is included in the software shipped with the DSP56303EVM Kkit.
This program is our effort to isolate the user from the details of programming the
various CS4215 codec options. This appendix is provided to lead a new user through
ECHO.ASM and help to explain how to use the tools developed to let you
communicate most expediently with the analog world. So, let’s get started.

D.3 ECHO.ASM PROGRAM DESCRIPTION

The ECHO.ASM program actually creates one of two versions from the same source
code file. One version is the stand-alone program that is examined in this appendix.
The other a version is loaded into the FLASH EPROM as a part of the code shipped
with the self-test program.

A batch file MAKEECHO.BAT included with the software allows the user to create
the stand-alone demonstration. A command line entry uses parameters that invoke
the DSP56300 assembler program, selects the stand-alone version of the routine, and
generates an executable module. The command line, which can either be typed in or
executed from a batch file, is:

asnb6300 -d STANDALONE 1 -a -b -1 -g echo. asm

MOTOROLA DSP56303EVMUM/AD, Preliminary D-3

Codec Programming Tutorial
ECHO.ASM Program Description

The command line entry generates the ECHO.ASM file. The following sections
described the contents and format of this file. Begin by viewing the contents of the
ECHO.ASM file. Set up the listing format as 132 columns and 60 line per page and
display the file, or print it out on a printer.

D.3.1 Source Code Description

The ECHO.ASM file starts with a banner followed by a general description of the
program and copyright notice:

Example B-90 Program Description

page 132, 60
;**
; ECHO ASM Ver. 2.0
; Exanpl e programto nove audi o t hrough C34215
; Thi s programuses 2k sanpl es of del ay
; to add a noticeabl e echo to the audio.

Qopyright (c) MOTGRQLA 1995, 1996
Semi conduct or Products Sect or
Dgital Sgnal Processing O vision

’
shkkkkhkkhkkhkkhhkhkkhkhkhkkhhhkhkkhhhkhkhhhkhhhhkhhhhkhhhkhhhhkhhhhhhhkhhhhkhhhkhhhhkhhkhkhhhkhkhhkhkhkkkdkhxkx%x%x
’

This is followed by the following sections of code:

e |ncluded files
= Constant definitions
= Interrupt buffers

= Sample program listing

D-4 DSP56303EVMUM/AD, Preliminary MOTOROLA

Codec Programming Tutorial
ECHO.ASM Program Description

D.3.1.1 Included Files
The file includes references to four included files:

Example B-91 Included Files

| F (STANDALONE==1)

nol i st

i ncl ude ‘i oequ. asm

i ncl ude ‘i ntequ. asm

i ncl ude ‘ ada_equ. asm
i ncl ude ‘ vectors. asm
list

IR RS ST SRS S S SRS SRR SRS SR SRS SR SRS E SR LR R TR R

the followng EQhates will define the operational paraneters
of the codec. Hease refer to the ADA EQJ ASMsource file

for a description of the paraneters sel ections avail able. The
variabl es defined by the EQates are sent to the codec via
the transmt buffer, TX BUFF.

S nce the paraneters are defined in ADA EQJ ASM these |ines nust
foll ow the include statenent.

Pkkkkkkhhkhhkhkhhkkhkhhkkhhkhkhkkhhkkhhkhhkkhhkhhhkhhkhhhhhhhhhhhhhdhhhhhhhkdrhhrhhhkdrhhrhhkrx
’

These files perform the following functions:
< |OEQU.ASM defines a standard set of symbolic names for the addresses of the
on-chip peripheral registers.
= INTEQU.ASM sets up the interrupt definitions.

< ADA_EQU.ASM defines the registers, parameters and bit mapping of the
CS4215. This is the key to facilitating the selection of the codec’s functions.

< VECTORS.ASM defines the interrupt vectors required by the interrupt
handlers.

MOTOROLA DSP56303EVMUM/AD, Preliminary D-5

Codec Programming Tutorial
ECHO.ASM Program Description

D.3.1.2 Constant Definitions
The next 4 lines of the program construct the constants that define the feature
selections which are made during initialization of the codec.

Example B-92 Constant Definitions

CTRL_ WD 12 equ NO PREAVP+H _PASS FI LT+SAVP_RATE 48+STEREOHDATA 16; CLB=0
CTRL_ VD 34 equ | MMED 3STATE+XTALL_SELECT+BI TS 64+0CDEC MASTER
CTR__WD 56 equ $000000

CTR__WD 78 equ $000000

TONE_ QUTPUT EQU HEADPHONE ENLI NEQUT_ENH(0% LEFT_ATTN) +(0*R GHT_ATTN)
TONE | NPUT EQU M C | N_SELECT+(15 MIN TCR ATTN) +(8*LEFT GAI N +(8*R GHT_GAIN)

Among the features initialized at this time are sample rate, data format, clock
selection and interface mechanism. These are features which generally require
re-initialization when altered. By referring to the ADA_EQU.ASM file, the user can
view the constants available for specifying the different feature options. The two
lines that follow construct ‘tone_output’ and ‘tone_input’ are the constants that
define those feature selections available when the analog subsystem is running. This
includes such features as gain, mixer and attenuator settings.

D.3.1.3 Interrupt Buffers

The CS4215 interrupt routines used by this software are based on 2 four word
buffers, one each for transmit data and receive data. The lines shown in allocate eight
words of data memory, starting at address x:000000. These are the buffers used by
the interrupt handler.

Example B-93 Interrupt Buffers

;---Buffer for talking to the C4215

org x:0
RX_BUFF BASE equ *
R{data 1 2 ds 1 ;data tinme slot 1/2 for RX ISR
RX data 3 4 ds 1 ;data tine slot 3/4 for RX ISR
R{ data 5 6 ds 1 ;data tinme slot 5/6 for RX ISR
RX data 7 8 ds 1 ;data time slot 7/8 for RX ISR

TX BUFF_BASE equ *

TX data 1 2 ds 1 ;data tinme slot /2 for TX ISR
TX data 3 4 ds 1 ;data tinme slot 3/4 for TX ISR
TX data 5 6 ds 1 ;data tinme slot 5/6 for TX ISR
TX data 7 8 ds 1 ;data tine slot 7/8 for TX ISR
RXPTR ds 1 ;Pointer for rx buffer
TXPIRds 1 ;Pointer for tx buffer

D-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

Codec Programming Tutorial

D.3.14 Sample Program

ECHO.ASM Program Description

This portion of the code starts at P:000000. This code initializes the DSP and codec
and performs the example operations. It begins by setting the on-chip PLL multiplier
to run the DSP at a higher frequency. The number of external bus wait states is set up
(1 one Wait State in all external spaces is selected here). The program runs initializes
all the internal registers and buffers. Then a separate program initializes the codec.
Finally, the last part of the program processes the analog data as specified. This last
part ends the conditional assembly code (ENDIF).

Example B-94 Sample Program Listing

org P $100
START
nai n
novep #$040005, x: M PCTL
novep #012421, x: M BOR
BND F

org p:
echo
novec #0, SP
nove #0, SC
ori #3,m
novep #$040005, x: M PCTL
nmovep #$11, x: M TCSRD
nove #$40,r6
nove #-1, n®
nove #RX BUFF_BASE, x0
nove x0, x: RX_ PTR
nove #TX BUFF_BASE, x0
nove X0, x: TX PTR

. --- INT THE GQIDEC ---
jsr ada_ init
nove #$0400, r4
nove #$03FF, nd

PLL = 6 x 16.9344Mz = 101. 6Mhz

; clear stack pointer

; clear stack counter

; disable interrupts

; PLL = 16.9344 x 6 = 101. 6Mhz
; turn LED of f

; initialize stack pointer

; linear addressing

; Initialize the rx pointer
; Initialize the tx pointer
; Junp to initialize the codec

; echo buffer starts at $400
;...and is 1024 deep

MOTOROLA DSP56303EVMUM/AD, Preliminary D-7

Codec Programming Tutorial

ECHO.ASM Program Description

Example B-94 Sample Program Listing (Continued)

loop_1

this is where the work gets done. ..

jset #2,x: MSS SR, * ; Wit for frane sync to pass.
jclr #2,x: MSS SR, * ; Wit for frane sync.
nove x: RX BUFF_BASE, a ; get new sanpl es
nove X: RX BUFF BASE+HL, b
asr a x:(r4),x0 ; divide themby 2 and get ol dest
asr by:(r4),y0 ; sanpl es frombuffer
add x0, a ; add the new sanpl es and the ol d
add yo, b
asr a ; reduce nagni tude of new data
asr b
nove a, x: (r4) ; save the altered sanpl es
nove b,y: (r4)+ ; and bunp the pointer
nove a, x: TX BUFF_BASE ; Put value in left channel tx.
nove b, x: TX BUFF_BASE+L ; Put value in right channel tx.
nove #TONE QUTPUT, yO ; headphones, line out, mite spkr, no attn.
nove y0, x: TX BUFF_BASE+2
nove #TONE | NPUT, yO ; Nnoinput gain, nonitor nute
nove y0, x: TX BUFF_BASE+3
jnp loop_1 ; Loop back.
IF (STANDALONE=D)
nol i st
include ‘ada init.asm ; load the code init routines
list
B\D F

D-8 DSP56303EVMUM/AD, Preliminary MOTOROLA

INDEX

Symbols

" C-7

C-11
#< C-11
#> C-12
% C-6

* C-8
++ C-9
; C-3

5 C-4

< C-10
<< C-9
> C-10
?C-5

@ C-8
\ C4
~NC-6

A

A/D converter 4-10
AARO 4-8

programming 4-7
Address Attribute Pin Polarity Bit, BAAP 4-7
Address Attribute Pin, AAO 4-6
Address Attribute Pin, AA1 4-9
Address Attribute Pin, AA3 4-6
Address Attribute Register (AAROQ) 4-8
Address Attribute Register, AARO 4-7
Address Muxing Bit, BAM 4-7
Address Pins, A(0:17) 4-6, 4-9
Address to Compare Bits, BAC(11:0) 4-8
Addressing

170 short C-9

immediate C-11

long C-10

long immediate C-12

short C-10

short immediate C-11
Analog Circuitry Test 1-9
Analog Input/Output 4-11
Assembler 3-16

warning C-49
assembler 3-3
control 3-12
data definition/storage allocation 3-12, 3-13
directives 3-11
listing control and options 3-14
macros and conditional assembly 3-15
object file control 3-14
options 3-8
significant characters 3-11
structured programming 3-15
symbol definition 3-12, 3-13
assembler control 3-12
assembler directives 3-11
assembler options 3-8
assembling the example program 3-16
assembling the program 3-7
assembly programming 3-3
Audio Codec 4-3
audio codec 4-10
Audio Codec Clock 4-13
Audio Codec Common Headphone Return Pin,
HEADC 4-11
Audio Codec Crystals 4-13
Audio Codec Data/Control Select Pin, D/C 4-12
Audio Codec Digital Interface 4-12
Audio Codec Frame Sync Pin, FSYNC 4-12
Audio Codec Left Headphone Output Pin,
HEADL 4-11
Audio Codec Left Line Output Pin, LOUTL 4-11
Audio Codec Left Microphone Input Pin,
MINL 4-11
Audio Codec Reset Pin, RESET 4-12
Audio Codec Right Headphone Output Pin,
HEADR 4-11
Audio Codec Right Line Output Pin,
LOUTR 4-11
Audio Codec Right Microphone Input Pin,
MINR 4-11
Audio Codec Serial Data Input Pin, SDIN 4-12
Audio Codec Serial Data Output Pin,
SDOUT 4-12
Audio Codec Serial Port Clock Pin, SCLK 4-12

m0(_je C-40 audio interface cable 1-4, 1-9
option C-42 audio source 1-4
MOTOROLA DSP56303EVMUM/AD, Preliminary Index-1

B JIF C-68

.LOOP C-68
bootstrap 4-10 -REPEAT C-69
Bootstrap, DSP56303 4-10 WHILE C-69
Buffer BADDR C-13
address C-13 BSB C-13
end C-27 BSC C-14
BSM C-15
C BUFFER C-16
COBJ C-17
Checksum C-44, C-45 COMMENT C-17
code example 3-6 DC C-17
codec 4-10 DCB C-19
digital interface 4-12 DEFINE C-7, C-19, C-45
digital interface connections 4-12 DS C-20
codec programming D-1 DSM C-21
Command Converter 4-3 DSR C-22
command converter 4-14 DUP C-22
command format DUPA C-23
assembler 3-7 DUPC C-25
Comment C-17 DUPF C-26
delimiter C-3 END C-27
object file C-17 ENDBUF C-27
unreported C-4 ENDIF C-28
comment field 3-4 ENDM C-28
Conditional assembly C-34, C-45 ENDSEC C-29
Constant EQU C-29
define C-17, C-19 EXITM C-30
storage C-14 FAIL C-31
Crystal Semiconductor CS4215 4-10 FORCE C-31
CS4215 4-10 GLOBAL C-32
Cycle count C-44, C-45 GSET C-32
HIMEM C-33
D IDENT C-33
IF C-34
D/A converter 4-10 in loop C-45
Data PinS, D(023) 4-6, 4-9 INCLUDE C-35
data transfer fields 3-5 LIST C-35
DC Offset 1-11 LOCAL C-36
Debugger 3-3, 3-24 LOMEM C-37
running the 3-26 LSTCOL C-37
Debugger software 3-24 MACLIB C-38
Debugger window display 3-25 MACRO C-39
demonstration MODE C-40
running the 2-4 MSG C-40
demonstration file 2-1 NOLIST C-41
development process flow 3-3 OPT C-42
Directive C-13 ORG C-49
.BREAK C-66 PAGE C-52
.CONTINUE C-66 PMACRO C-53
.FOR C-67 PRCTL C-54

Index-2 DSP56303EVMUM/AD, Preliminary MOTOROLA

RADIX C-54
RDIRECT C-55
SCSIMP C-56
SCSREG C-56
SECTION C-57
SET C-60
STITLE C-60
SYMOBJ C-61
TABS C-61
TITLE C-61
UNDEF C-62
WARN C-62
XDEF C-63
XREF C-63
Diskette 3-5, 4-9, 4-10
document description ii

Domain Technologies Debugger 1-3, 1-8, 2-4,

2-5,3-24
DSP development tools 3-3
DSP Help Line 1-13
DSP Helpline ii
DSP linker 3-16
DSP56002 4-14
DSP56002 Receive Data Pin, RXD 4-14
DSP56002 Transmit Data Pin, TXD 4-14
DSP56300 Family Manual 4-3
DSP56303 3-3
Chip Errata 4-3
Product Specification 1-3
Product Specification, Revision 1.02 4-3
Technical Data 1-3, 4-3
User’s Manual 4-3
DSP56303 code example 3-6
DSP56303 Features 4-3
DSP56303EVM
additional requirements 1-4
Component Layout 4-4
component layout 1-6, 2-4
connecting to the PC 1-7
contents 1-3
description 4-3
features 4-3
Flash PEROM 4-4
functional block diagram 4-5
installation procedure 1-4
interconnection diagram 1-7
jumper settings 1-6
memory 4-4
power connection 1-7
preparation for installation 1-5
Product Information 1-3

software installation 1-8
SRAM 4-4

testing the installation 1-9
User’s Manual 1-3

E

ECHO.ASM file D-3
ESD warning 1-5
ESSIO 4-10
example
assembling the 3-16
example program 3-5
Expression
address C-44
compound C-72
condition code C-70
formatting C-72
operand comparison C-71
radix C-54
simple C-70
External Access Type Bits, BAT(1:0) 4-7
External Memory Test 1-9

F

field

comment 3-5

data transfer 3-5

label 3-4

operand 3-5

operation 3-4

X data transfer 3-4

Y data transfer 3-4
File

include C-35

listing C-46
filtering

16-bit coefficients 2-5

24-bit coefficients 2-5
Flash PEROM 4-4, 4-9

bootstrap 4-10

connections 4-9

standalone operation 4-9
Flash PEROM Address Pins, A(0:15) 4-9
Flash PEROM Chip Enable Pin, CE 4-9
Flash PEROM Data Pins, 1/0(0:7) 4-9
Flash PEROM Output Enable Pin, OE 4-9
Flash PEROM Write Enable Pin, WE 4-9
Flash.asm 4-9
format

MOTOROLA

DSP56303, Preliminary

Index-3

assembler command 3-7
source statement 3-4
Function C-8

H

headphones 1-4, 1-9

Host Address Pin, HA2 4-14

host PC 4-14

Host PC Data Terminal Ready Pin, DTR 4-14
Host PC Receive Data Pin, RD 4-14

host PC requirements 1-4

Host PC Transmit Data Pin, TD 4-14

Include file C-35
installing software 1-8
internet address ii

IRQA 2-4

IRQD 2-5

J

4 4-14

J5 4-14

J7 4-10

J9 4-6

JTAG 4-14

jumper settings 1-6

K

kit contents 1-3

L

Label
local C-46, C-49

label field 3-4

LED, red 4-14

Line continuation C-4

linker 3-3, 3-16
options 3-17

linker directives 3-23
Listing file C-46
format C-37, C-45, C-48, C-52, C-61
sub-title C-60
title C-61
llinker
directives 3-23
Location counter C-8, C-49

Long Memory Data Moves 4-6
M

Macro
call C-46
comment C-45
definition C-39, C-46
directive C-39
end C-28
exit C-30
expansion C-46
library C-38, C-46
purge C-53
Macro argument
concatenation operator C-4
local label override operator C-6
return hex value operator C-6
return value operator C-5
MC145407 4-14
MC33078 4-11
MC74HCT241A 4-10
Memory
limit C-33, C-37
utilization C-46
Memory space C-46, C-49
Motorola
DSP linker 3-16
Motorola software 1-8

N

Noise Level 1-11
Number of Bits to Compare Bits, BCN(3:0) 4-8

O

Object file
comment C-17
identification C-33
symbol C-48, C-49, C-61
object files 3-3
ONnCE commands 4-14
ONnCE/JTAG conversion 4-14
operand field 3-5
operand fields 3-5
Operating Mode, DSP56303 4-9
operation field 3-4
Option
AE C-43, C-44
assembler operation C-43

Index-4

DSP56303EVMUM/AD, Preliminary

MOTOROLA

CC C-44 NOMI C-47

CEX C-42, C-44 NOMSW C-47

CK C-44 NONL C-47

CL C-42, C-45 NONS C-47

CM C-44, C-45 NOPP C-47

CONST C-44, C-45 NOPS C-47

CONTC C-45 NORC C-47

CONTCK C-44, C-45 NORP C-48

CRE C-42, C-45 NOSCL C-48

DEX C-43, C-45 NOU C-48

DLD C-44, C-45 NOUR C-48

DXL C-42, C-45 NOW C-48

FC C-42, C-45 NS C-43, C-48

FF C-42, C-45 PP C-42, C-48

FM C-42, C-45 PS C-44, C-48

GL C-44, C-45 PSM C-44

GS C-44, C-45 RC C-42, C-48

HDR C-43, C-45 reporting C-42

IC C-43, C-46 RP C-44, C-48

IL C-43, C-46 RSV C-44

INTR C-44, C-46 S C-43, C-48

LB C-44, C-46 SCL C-43, C-48

LDB C-44, C-46 SCO C-43, C-48

listing format C-42 Sl C-44

LOC C-43, C-46 SO C-43, C-48, C-49

MC C-43, C-46 SVO C-44

MD C-43, C-46 symbol C-43

message C-43 U C-43, C-49

MEX C-43, C-46 UR C-43, C-49

MI C-44, C-46 W C-43, C-49

MSW C-43, C-46 WEX C-49

MU C-43, C-46 XLL C-43, C-49

NL C-43, C-46 XR C-43, C-49

NOAE C-46

NOCC C-46 P

NOCEX C-46

NOCK C-47 P Space Enable Bit, BPEN 4-8

NOCL C-47 Packing Enable Bit, BPAC 4-7

NOCM C-47 PC 4-14

NODEX C-47 PC requirements 1-4

NODLD C-47 PEROM 4-9

NODXL C-47 bootstrap 4-10

NOEC C-47 standalone operation 4-9

NOFF C-47 power supply, external 1-4, 1-7

NOFM C-47 program

NOGS C-47 assembling the 3-7

NOHDR C-47 example 3-5

NOINTR C-47 writing the 3-4

NOMC C-47 Program counter C-8, C-49

NOMD C-47 programming

NOMEX C-47 AARO 4-7
MOTOROLA DSP56303, Preliminary Index-5

assembly 3-3
development 3-3
example 3-3

Q

Quick Start Guide ii, 1-1
R

Read Enable Pin, RD 4-6, 4-9

Reset, DSP56002 4-14

Reset, DSP56303 4-9

RS-232 cable connection 1-7

RS-232 interface 4-14

RS-232 interface cable 1-4

RS-232 serial interface 4-14

running the Debugger program 3-26
running the demonstration 2-1, 2-4

S

SCI, DSP56002 4-14
Section C-57
end C-29
global C-32, C-45, C-58
local C-36, C-58
nested C-48
static C-45, C-58
self-test 1-9
Serial Clock Pin, SCKO0 4-12
Serial Control Pin 0, SC00 4-12
Serial Control Pin 1, SC01 4-12
Serial Control Pin 2, SC02 4-12
serial interface 4-14
Serial Receive Data Pin, SRDO0 4-12
Serial Transmit Data Pin, STDO 4-12
software
Domain Technologies 1-8
Motorola 1-8
software installation 1-8
Source file
end C-27
source statement format 3-4
SRAM 4-4, 4-5
connections 4-6
SRAM Address Pins, A(0:14) 4-6
SRAM Chip Enable Pin, E 4-6
SRAM Data Pins, DQ(0:7) 4-6
SRAM memory map 4-7
SRAM Output Enable Pin, G 4-6

SRAM Write Enable Pin, W 4-6
Stand-Alone Operation 4-9
standalone operation 4-9
Stereo Headphones 4-11
Stereo Input 4-11
Stereo Output 4-11
String
concatenation C-9
delimiter C-7
packed C-48
SW2 2-4
SW3 2-5
Symbol
case C-46
cross-reference C-45
equate C-29, C-45
global C-45
listing C-48
set C-32, C-60
undefined C-49

T

test
analysis 1-9, 1-10
self 1-9
test results
fail 1-11
pass 1-12
trademark notices ii
tutorial, codec programming D-1

U
Unified Memory Map 4-6
W

Warning C-49

Windows 1-8

world-wide web address ii
Write Enable Pin, WR 4-6, 4-9

X

X data transfer field 3-4
X Space Enable Bit, BXEN 4-8

Y

Y data transfer field 3-4
Y Space Enable Bit, BYEN 4-8

Index-6 DSP56303EVMUM/AD, Preliminary MOTOROLA

	COVER
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	QUICK START GUIDE
	RUNNING THE DEMONSTRATION FILE
	EXAMPLE TEST PROGRAM
	DSP56303EVM TECHNICAL SUMMARY
	DSP56303EVM SCHEMATICS
	DSP56303EVM PARTS LIST
	MOTOROLA ASSEMBLER NOTES
	CODEC PROGRAMMING TUTORIAL
	INDEX

