|NSERT Insert Bit Field |NSERT

Condition Codes

* V. Always cleared.

* C Always cleared.

— Unchanged by the instruction.

v Changed according to the standard definition.

Example

INSERT B1,X0,A

4 2

7 4

g1 |ol9lololo[ofo]o]o1[o[2]o]o]o[o]oo]o]o[1]o]1[o
width =5 Offset =10

2

4
7 4
x0 (x| x]x|fx|x]xx|x|{x|({x|]1]o]o 19

4
7 0
A el e e e e e e 2] of o ol x| x|

Al A0

Instruction Formats and opcodes

23 16 15 8 7 0
INSERT S1,82,D [0 o0oo01100[/00011011/0qgggSSSD
23 16 15 8 7 0
INSERT #CO,S2,D 00001100[/00011001/0qggg0O0O0D

Control Word Extension

Motorola 13-79

Jcc Jump Conditionally Jcc

Operation Assembler Syntax

If cc, then Oxxx — PC Jce Xxx
else PC+1 - PC

If cc, thenea - PC Jcc ea
elsePC+1 - PC

Instruction Fields

{cc} ccece Condition code (se€able 12-18on page 12-28)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

Description Jump to the location in program memory given by the instruction’s effective
address if the specified condition is true. If the specified condition is false, the Program
Counter (PC) is incremented and the effective address is ignored. However, the address
register specified in the effective address field is always updated independently of the
specified condition. All memory-alterable addressing modes can be used for the effective
address. A Fast Short Jump addressing mode can also be used. The 12-bit data is
zero-extended to form the effective address. The conditions specified by “cc” are listed on
Table 12-18on page 12-28.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and opcodes
23 16 15 8 7 0
Jecc XXX |00001110|CCCCaaaa|aaaaaaaa
23 16 15 8 7 0
Jec ea 00001010[(11MMMRRR|[1010CCCC

Optional Effective Address Extension

13-80 DSP56300 Family Manual Motorola

JCLR Jump if Bit Clear JCLR

Operation Assembler Syntax

If S{n}=0 then xxxx - PC JCLR #n,[X or Y]:ea,xxxx
else PC+1 - PC

If S{n} =0 then xxxx - PC JCLR #n,[X or Y],aa,xxxx
else PC+1 - PC

If S{n}=0 then xxxx - PC JCLR #n,[X or Y]:pp,XXxx
else PC+1 - PC

If S{n} =0 then xxxx - PC JCLR #n,[X or Y]:qg,xxxx
else PC+1 - PC

If S{n}=0 then XXXX - PC JCLR #n,S,XXXX
else PC+1 - PC

Instruction Fields

{t} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

{xrmy s Memory Space [X,Y] (se@able 12-13on page 12-22)
{ooxxt 24-bit absolute Address extension word

{aa} aaaaaa Absolute Address [0—63]

{pp} PPPPPP I/O Short Address [64 addresses: $FFFFCO — $FFFFFF]
{qa} q999ad I/O Short Address [64 addresses: $FFFF80 — $FFFFBF]
{s} DDDDDD Source register [all on-chip registers] (Jexbdle 12-13

on page 12-22)

Description Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if théVbit of the source operand S is clear. The bitto

be tested is selected by an immediate bit number from 0-23. If the specified memory bit is
not clear, the Program Counter (PC) is incremented and the absolute address in the
extension word is ignored. However, the address register specified in the effective address
field is always updated independently of the state of thieitn All address register

indirect addressing modes can reference the source operand S. Absolute Short and 1/0
Short addressing modes can also be used.

Motorola 13-81

JCLR

Condition Codes

Vv

Jump if Bit Clear

CCR

Changed according to the standard definition.
Unchanged by the instruction.

Instruction Formats and opcodes

JCLR

23 16 15 8 7 0
JCLR #n,[X or Y]:ea,xxxx 00 0101001 MMMRRR|L 0O bbbwb
Absolute Address Extension
23 16 15 8 7 0
JCLR #n,[X or Y]:aa,xxxx 00 01 0 10|00 aawaaaall O bbbwb
Absolute Address Extension
23 16 15 8 7 0
JCLR #n,[X or Y]:pp,XXxx 00 01010(20pppopopep|l O bbbob
Absolute Address Extension
23 16 15 8 7 0
JCLR #n,[X or Y]:qg,xxxx 00 000O0T1(1 0q9gq9gq9ggqgqggqaq|l 0O bbbob
Absolute Address Extension
23 16 15 8 7 0
JCLR #n,S,XXXX 00 01010|121DDUDDTDDJ|O 0O bbbob
Absolute Address Extension
13-82 DSP56300 Family Manual Motorola

JMP Jump JMP

Operation Assembler Syntax
Oxxx —» Pc JMP XXX
ea - Pc JMP ea

Instruction Fields

{xx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

Description Jump to the location in program memory given by the instruction’s effective
address. All memory-alterable addressing modes can be used for the effective address. A
Fast Short Jump addressing mode can also be used. The 12-bit data is zero-extended to
form the effective address.

Condition Codes

CCR

— Unchanged by the instruction.
Instruction Formats and opcodes
23 16 15 8 7 0

JMP ea 0000101021 MMMRRR|{10O0O0UOTUOU OO
Optional Effective Address Extension

23 16 15 8 7 0
JMP XXX 0 0O0O0O0O1100(00O0O0Oawawaalaaaaaaaa

Motorola 13-83

JScc Jump to Subroutine Conditionally JScc

Operation Assembler Syntax

Ifcc, thenSP +1 - SP; PC - SSH;SR - SSL;0xxx —» PC JScec xxx
else PC+1 - PC

If cc, then SP+1 - SP; PC - SSH;SR - SSL;ea - PC JScc ea
else PC+1 - PC

Instruction Fields

{cc} ccee Condition code (se€able 12-18on page 12-28)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

Description Jump to the subroutine whose location in program memory is given by the
instruction’s effective address if the specified condition is true. If the specified condition
is true, the address of the instruction immediately following the JScc instruction (PC) and
the SR are pushed onto the system stack. Program execution then continues at the
specified effective address in program memory. If the specified condition is false, the PC
is incremented, and any extension word is ignored. However, the address register
specified in the effective address field is always updated independently of the specified
condition. All memory-alterable addressing modes can be used for the effective address.
A fast short jump addressing mode can also be used. The 12-bit data is zero-extended to
form the effective address. The conditions specified by “cc” are listdclole 12-18

on page 12-28.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and opcodes
23 16 15 8 7 0
JScc XXX |00001111|CCCCaaaa|aaaaaaaa
23 16 15 8 7 0
JSce ea 0000101111 MMMRRR|[1010CCCC

Optional Effective Address Extension

13-84 DSP56300 Family Manual Motorola

JSCLR Jump to Subroutine if Bit Clear JSCLR

Operation Assembler Syntax

If S{n}=0 then SP+1 - SP;PC - SSH;SR - SSL; JSCLR #n,[X or Y]:ea,xxxx
XXXX — PC
else PC+1 - PC

If S{n}=0 then SP+1 - SP;PC - SSH;SR - SSL; JSCLR #n,[X or Y],aa,xxxx
XXXX — PC
else PC+1 - PC

If S{n}=0 then SP+1 - SP;PC - SSH;SR - SSL; JSCLR #n,[X or Y]:pp,XXxx
XXXX - PC
else PC+1 - PC

If S{n}=0 then SP+1 - SP;PC - SSH;SR - SSL; JSCLR #n,[X or Y]:qq,XxXxx
XXXX — PC
else PC+1- PC

If S{n}=0 then SP+1 - SP;PC - SSH;SR - SSL; JSCLR #N,S,XXXX

xxxx fiPC
else PC+1 - PC

Instruction Fields

{t} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address

{X/v} S Memory Space [X,Y]

{ooxxt 24-bit absolute Address extension word

{aa} aaaaaa Absolute Address [0—-63] SeeTable 12-13

{pp} PPPPPP I/O Short Address [64 addresses: on page 12-22
$FFFFCO$FFFFFF]

{qq} qaqqqq I/O Short Address [64 addresses:
$FFFF80-$FFFFBF]

{s} DDDDDD Source register [all on-chip registers]

Description Jump to the subroutine at the 24-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if tHB it of the source operand Sis

clear. The bit to be tested is selected by an immediate bit number from 0-23. if thie n

of source operand S is clear, the address of the instruction immediately following the
JSCLR instruction (PC) and the SR are pushed onto the system stack. Program execution
then continues at the specified absolute address in the instruction’s 24-bit extension word.
If the specified memory bit is not clear, the PC is incremented and the extension word is
ignored. However, the address register specified in the effective address field is always
updated independently of the state of thepit. All address register indirect addressing
modes can reference the source operand S. Absolute short and 1/0 short addressing modes
can also be used.

Motorola 13-85

JSCLR

Condition Codes

v

Instruction Formats and opcodes

Jump to Subroutine if Bit Clear

6 5 4 3 2 1 0
L E U N 4 \% C
N | = = = = | =

CCR

Changed according to the standard definition.
Unchanged by the instruction.

JSCLR

23 16 15 8 7 0
JSCLR #n,[X or Y]:ea,xxxx 0000101101 MMMRRRJ|1 b b
Absolute Address Extension
23 16 15 8 7 0
JSCLR #n,[X or Y]:aa,xxxx 0000101 1({00aawawaaall b b
Absolute Address Extension
23 16 15 8 7 0
JSCLR #n,[X or Y]:pp,Xxxx 000010111 0ppppppll b b
Absolute Address Extension
23 16 15 8 7 0
JSCLR #n,[X or Y]:qg,XXxx 0000O0OO0OOT1|119gqqqgaqgaqq]ll b b
Absolute Address Extension
23 16 15 8 7 0
JSCLR #n,S,xxxx 00001011112 DDDDTDD|O b b
Absolute Address Extension
13-86 DSP56300 Family Manual Motorola

JSET Jump if Bit Set JSET

Operation Assembler Syntax

If S{n}=1 thenxxxx - PC JSET #n,[X or Y]:ea,xxxx
elsePC + 1 - PC

If S{n}=1 thenxxxx - PC JSET #n,[X or Y],aa,xxxx
elsePC + 1 - PC

If S{n}=1 thenxxxx - PC JSET #n,[X or Y]:pp,XxXxx
elsePC + 1 - PC

If S{n}=1 thenxxxx - PC JSET #n,[X or Y]:qqg,Xxxx
elsePC + 1 - PC

If S{n}=1 thenxxxx - PC JSET #Nn,S ,XXXX
elsePC + 1 - PC

Instruction Fields

{t} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

{xrv} S Memory Space [X,Y] (se@able 12-13on page 12-22)
{ooxxt 24-bit Absolute Address in extension word

{aa} aaaaaa Absolute Address [0 — 63]

{pp} PPPPPP I/O Short Address [64 addresses: $FFFFCO — $FFFFFF]
{qa} qqqdad I/O Short Address [64 addresses: $FFFF80 — $FFFFBF]
{s} DDDDDD Source register [all on-chip registers] (Jexbdle 12-13

on page 12-22)

Description Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if th&rit of the source operand S is set. The bit to

be tested is selected by an immediate bit number from 0-23. If the specified memory bit is
not set, the Program Counter (PC) is incremented, and the absolute address in the
extension word is ignored. However, the address register specified in the effective address
field is always updated independently of the state of thieitn All address register

indirect addressing modes can be used to reference the source operand S. Absolute short
and I/0O short addressing modes can also be used.

Motorola 13-87

JSET

Condition Codes

v

Jump if Bit Set

CCR

Changed according to the standard definition.
Unchanged by the instruction.

Instruction Formats and opcodes

JSET

23 16 15 8 7 0
JSET #n,[X or Y]:ea,xxxx 00 0101001 MMMRRRJ|1 0O bbbwb
Absolute Address Extension
23 16 15 8 7 0
JSET #n,[X or Y]:aa,xxxx 00 01 010|00awawaaaall O bbbwb
Absolute Address Extension
23 16 15 8 7 0
JSET #n,[X or Y]:pp,XxXxx 00 010102 0ppppopop|ll O bbbob
Absolute Address Extension
23 16 15 8 7 0
JSET #n,[X or Y]:qq,xxxx 00 0 00O01(109gq9qgqggqggqgqaq|l 0O bbbob
Absolute Address Extension
23 16 15 8 7 0
JSET #N,S ,XXXX 00 01010|121DDUDDTDD|O O bbbob
Absolute Address Extension
13-88 DSP56300 Family Manual Motorola

JSR Jump to Subroutine JSR

Operation Assembler Syntax
SP + 1 - SP; PC - SSH; SR - SSL; Oxxx - PC JSR XXX
SP + 1 - SP; PC - SSH; SR - SSL; ea - PC JSR ea

Instruction Fields

{xx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

Description Jump to the subroutine whose location in program memory is given by the
instruction’s effective address. The address of the instruction immediately following the
JSR instruction (PC) and the system Status Register (SR) is pushed onto the system stack.
Program execution then continues at the specified effective address in program memory.
All memory-alterable addressing modes can be used for the effective address. A fast short
jump addressing mode can also be used. The 12-bit data is zero-extended to form the
effective address.

Condition Codes

CCR

— Unchanged by the instruction.
Instruction Formats and opcodes
23 16 15 8 7 0

JSR ea 000010112 1 MMMRRR|100O0UOUOU OO
Optional Effective Address Extension

23 16 15 8 7 0
JSR XXX 0000110 1/0000aawaalaaawaaaaa

Motorola 13-89

JSSET Jump to Subroutine if Bit Set JSSET

Operation Assembler Syntax

IfS{n}=1 then SP + 1 - SP;PC - SSH;SR - SSL; JSSET #n,[X or Y]:ea,xxxx
XXxX —» PC
elsePC+1 - PC

If S{n}=1 then SP +1 - SP;PC - SSH;SR - SSL; JSSET #n,[X or Y],aa,xxxx
XXXX — PC
else PC+1 - PC

If S{n}=1 then SP +1 - SP;PC - SSH;SR - SSL; JSSET #n,[X or Y]:pp,XXxx
XXXX - PC
elsePC+1 - PC

If S{n}=1 then SP +1 - SP;PC - SSH;SR - SSL; JSSET #n,[X or Y]:qqg,Xxxx
XXXX —» PC
elsePC + 1 - PC

If S{n}=1 thenSP + 1 - SP;PC - SSH;SR - SSL; JSSET #N,S,XXXX

XXXX - PC
elsePC + 1 - PC

Instruction Fields

{#n} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

xny s Memory Space [X,Y] (se@able 12-13on page 12-22)
{rooxx} 24-bit PC absolute Address extension word

{aa} aaaaaa Absolute Address [0—-63]

{pp} PPPPPP I/O Short Address [64 addresses: $FFFFCO-$FFFFFF]
{qq} qq99ad I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
{s} DDDDDD Source register [all on-chip registers] (Jedble 12-13

on page 12-22)

Description Jump to the subroutine at the 24-bit absolute address in program memory
specified in the instruction’s 24-bit extension word if tHB it of the source operand S is

set. The bit to be tested is selected by an immediate bit number from 0-23. ¢ thieof

the source operand S is set, the address of the instruction immediately following the
JSSET instruction (PC) and the system Status Register (SR) are pushed onto the system
stack. Program execution then continues at the specified absolute address in the
instruction’s 24-bit extension word. If the specified memory bit is not set, the Program
Counter (PC) is incremented, and the extension word is ignored. However, the address
register specified in the effective address field is always updated independently of the

13-90 DSP56300 Family Manual Motorola

JSSET Jump to Subroutine if Bit Set JSSET

state of the I bit. All address register indirect addressing modes can be used to reference
the source operand S. Absolute short and I/O short addressing modes can also be used.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0
JSSET #n,[X or Y]:ea,xxxx o0oo0oo001011{01 MMMRRR|21S1O0DbDbwbwhb
Absolute Address Extension

23 16 15 8 7 0
JSSET #n,[X or Y]:aa,xxxx 0000101 1({00aaaaaallsi1o0bbb@ob
Absolute Address Extension

23 16 15 8 7 0
JSSET #n,[X or Y]:pp,XXxx 000010111 0ppppppl/llS10bbbhb
Absolute Address Extension

23 16 15 8 7 0
JSSET #n,[X or Y]:qg,Xxxx 0000O0O0O01{11 9g999g9g0qg(l sS10bbbeob
Absolute Address Extension

23 16 15 8 7 0
JSSET #n,S,XXXX 0000101 1({1 12 DDDDDD|0OO0O1O0DbVDbUDbD
Absolute Address Extension

Motorola 13-91

L RA Load PC-Relative Address LRA

Operation Assembler Syntax
PC+Rn - D LRA Rn,D
PC + xxxx - D LRA XXXX,D

Instruction Fields

{Rn} RRR Address register [RO—R7]

{D} ddddd Destination address register
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0—R7,NO-N7] (see
Table 12-16on page 12-24)

{rooxx} 24-bit PC Long Displacement

Descripton ~ The PC is added to the specified displacement and the result is stored in
destination D. The displacement is a two’s-complement 24-bit integer that represents the
relative distance from the current PC to the destination PC. Long Displacement and
Address Register PC-Relative addressing modes can be used. Note that if D is SSH, the
SP is pre-incremented by one.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and opcode
23 16 15 8 7 0
LRA RnD 000001 00[11000RRR|[000ddddad
23 16 15 8 7 0
LRA xxxx,D 00000100[/01000000[010ddddd

Long Displacement

13-92 DSP56300 Family Manual Motorola

LSL Logical Shift Left LSL

Operation

C 31 16
0

Assembler Syntax

LSL D (parallel move)

LSL #ii,D

LSL S,.D
Instruction Fields
{D} D Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

{s} sss Control register [X0,X1,Y0,Y1,A1,B1] (sekable 12-13
on page 12-22)
{#ii} i 5-bit unsigned integer [0—16] denoting the shift amount

Description

= Single-bit shift: Logically shift Bits 47—24 of the destination operand D one bit to
the left and store the result in the destination accumulator. Prior to instruction
execution, Bit 47 of D is shifted into the carry bit C,daa O isshifted into Bit 24 of
the destination accumulator D.

= Multi-bit shift: The contents of bits 47—24 of the destination accumulator D are
shifted left #ii bits. Bits shifted out of position 47 are lost, except for the last bit that
is latched in the Carry bit. Zeros are supplied to the vacated positions on the right.
The result is placed into bits 47—-24 of the destination accumulator D. The number
of bits to shift is determined by the 5-bit immediate field in the instruction, or by
the unsigned integer located in the control register S. If a zero shift count is
specified, the carry bit is cleared.

This is a 24-bit operation. The remaining bits of the destination accumulator are not
affected. The number of shifts should not exceed the value of 24.

Motorola 13-93

LSL Logical Shift Left

Condition Codes

CCR

Set if Bit 47 of the result is set.
Set if bits 47-24 of the result are 0.
Always cleared.

*
0O < N Z

0, and cleared otherwise.

v Changed according to the standard definition.

— Unchanged by the instruction.
Example
LSL #7, A

4 2
4

;
(oo ool

Shift left 7

4 2
4

4
[0] A1 [o]a]sJolo]2]ols]o]s]o]o]1]o]o]o]1]o]o]o]clololo]
C

Instruction Formats and opcodes

LSL

Set if the last bit shifted out of the operand is set, cleared for a shift count of

23 8 7 0

LSL D Data Bus Move Field 0 011DO0O11
Optional Effective Address Extension

23 16 15 8 7 0
LSL #ii,D l00001100/00011110[/10 i i i i i D]

23 16 15 8 7 0
LSL S.D loooo01100/00011110[/0001s s s D
13-94 DSP56300 Family Manual Motorola

LSR Logical Shift Right LSR

Operation

47 24
0 > > C

Assembler Syntax

LSR D (parallel move)

LSR #ii,D

LSR S,D
Instruction Fields
{D} D Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

{s} sss Control register [X0,X1,Y0,Y1,A1,B1] (sekable 12-13
on page 12-22)
{#ii} i 5-bit unsigned integer [0—23] denoting the shift amount

Description

= Single-bit shift: Logically shift bits 47—24 of the destination operand D one bit to
the right and store the result in the destination accumulator. Prior to instruction
execution, Bit 24 of D is shifted into the Carry bit (C), and a 0 is shifted into Bit 47
of the destination accumulator D.

= Multi-bit shift: The contents of bits 47-24 of the destination accumulator D are
shifted right #ii bits. Bits shifted out of position 16 are lost except for the last bit
that is latched in the C bit. Zeroes are supplied to the vacated positions on the left.
The result is placed into bits 47—24 of the destination accumulator D. The number
of bits to shift is determined by the 5-bit immediate field in the instruction, or by
the unsigned integer located in the control register S. If a zero shift count is
specified, the C bit is cleared.

This is a 24-bit operation. The remaining bits of the destination register are not affected.
The number of shifts should not exceed the value of 24.

Motorola 13-95

LSR

Logical Shift Right LSR

Condition Codes

*
0O < N Z

Example

LSR X0,B

X0

B1

B1

CCR

Set if Bit 47 of the result is set.

Set if Bits 47-24 of the result are 0.

Always cleared.

Set if the last bit shifted out of the operand is set, cleared for a shift count of
zero, and cleared otherwise.

Changed according to the standard definition.

Unchanged by the instruction.

2
3 0
[l x|l

SH field
4 2
7 4
[2]1[2]1]ololo]olo[a]1]]1]]olo]olo]o]1|]1]1]]

Shift right 3
4 2

7
[ololof]]sJ1]o]ololofo1J1]]4]]o]o]olofo]]a]
C

Instruction Formats and opcodes

23 8 7 0

LSR D Data Bus Move Field 001 0DbDOT11
Optional Effective Address Extension

23 16 15 8 7 0
LSR #ii,D loooo1100/00011110[11 i i i i iD|

23 16 15 8 7 0
LSR SD loooo01100/00011110[/0011s s s D
13-96 DSP56300 Family Manual Motorola

L UA Load Updated Address LUA

Operation Assembler Syntax
ea - D (No update performed) LUA ea,D
Rn+aa - D LUA (Rn + aa),D
ea - D (No update performed) LEA ea,D
Rn+aa -~ D LEA (Rn + aa),b

Instruction Fields

{ea} MMRRR Effective address (séleable 12-13on page 12-22)

{D} ddddd Destination address register
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0-R7,NO-N7] (see
Table 12-160on page 12-24)

{D} dddd Destination address register [RO—R7,NO-N7] (Balgle 12-16
on page 12-24)

{ad} aaaaaaa 7-bit sign extended short displacement address

{Rn} RRR Source address register [RO-R7]

Note: RRR refers to a source address register (RO—R7), while dddd/ddddd refer to a
destination address register (RO—R7 or NO—N7).

Descripion ~ Load the updated address into the destination address register D. The source
address register and the update mode used to compute the updated address are specified by
the effective address (ea). Only the following addressing modes can be used: Post + N,
Post— N, Post + 1, Post — 1. Note that the source address register specified in the effective
address is not updated. This is the only case where an address register is not updated,
although stated otherwise in the effective address mode bits.

Condition Codes

— Unchanged by the instruction.

Motorola 13-97

L UA Load Updated Address L UA

Instruction Formats and opcode

23 16 15 8 7 0
LUA/LEA ea,D [0 0000100[010MMRRR|[0ODOGG dGdd d]
23 16 15 8 7 0
LUA/LEA (Rn + aa),D [0 0000100[00aaaRRRlaaaadddd]

Note: LEA is a synonym for LUA. The simulator on-line disassembly translates the
opcodes into LUA.

13-98 DSP56300 Family Manual Motorola

MAC Signed Multiply Accumulate MAC

Operation Assembler Syntax

D *s1 [Is2 _. D (parallel move) MAC (+)s1,52,D (parallel move)
D *s1 [Is2 _. D (parallel move) MAC (+)s2,51,D (parallel move)
D (s1 LJ2™M) - D (no parallel move) MAC (&)s #n,D (no parallel move)

Instruction Formats and opcodes 1

23 16 15 8 7 0
MAC (£)S1,52,D Data Bus Move Field 1QQQdk 10
MAC (+)S2,51,D Optional Effective Address Extension

Instruction Fields

{182} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,YO*X0,X1*Y0,Y1*X1]
(seeTable 12-16on page 12-24)

{D} d Destination accumulator [A,B] (s@&ble 12-160n page 12-24)

£} k Sign [+,—] (seél'able 12-160n page 12-24)

Instruction Formats and opcode 2

23 16 15 8 7 0
MAC (*)S,#n,D 0000O0O0OOO1/0000ssss|11QQdZEk?10O0

Instruction Fields

{S} QQ Source register [Y1,X0,Y0,X1]] (s€kable 12-160n page 12-24)
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
{} k Sign [+,—] (se€élable 12-160n page 12-24)

{#n} $sSS Immediate operand (sd@able 12-16on page 12-24)

Description Multiply the two signed 24-bit source operands S1 anB&hE signed

24-bit source operand S by the positive 24-bit immediate operdhdrd add/subtract the
product to/from the specified 56-bit destination accumulator D. The “~" sign option is
used to negate the specified product prior to accumulation. The default sign option is “+”.

Motorola 13-99

MAC Signed Multiply Accumulate MAC

Note that when the processor is in the Double Precision Multiply mode, the following
instructions do not execute in the normal way and should only be used as part of the

double precision multiply algorithm:
MAC X1, YO, AMAC X1, YO, B
MAC X0, Y1, AMAC X0, Y1, B
MAC Y1, X1, AMAC Y1, X1, B

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

13-100 DSP56300 Family Manual Motorola

MACI MACI

Signed Multiply Accumulate With Immediate Operand

Operation Assembler Syntax

D *Hoox[s - D MACI (F)#xxxx,S,D

Instruction Fields

{s} qq Source register [X0,Y0,X1,Y1] (séable 12-160n page 12-24)
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
(3 k Sign [+,—] (se€lable 12-160n page 12-24)

XXX 24-bit Immediate Long Data extension word

Description Multiply the two signed 24-bit source operands #xxxx and S and add/subtract
the product to/from the specified 56-bit destination accumulator D. The “~” sign option is
used to negate the specified product prior to accumulation. The default sign option is “+”.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcode

23 16 15 8 7 0
MACI (yimxx,S.D 0000000O0T11[0100000T1(11qgqd%k 110

Immediate Data Extension

Motorola 13-101

MAC(su,uu) MAC(su,uu)

Mixed Multiply Accumulate

Operation Assembler Syntax
D *s1 [Is2 . D (S1 unsigned, S2 unsigned) MACuu (+)s1,52,D (no parallel move)
D *s1 [Is2 . D (S1 signed, S2 unsigned) MACsU (4+)s2,51,D (no parallel move)

Instruction Fields

{182} QQRQRQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]

(seeTable 12-160n page 12-24)

{0} d Destination accumulator [A,B] (sdable 12-13on page 12-22)
{#} k Sign [+,—] (sedlable 12-160n page 12-24)
{s} [ss,us] (se@able 12-160n page 12-24)

Description Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D. One or two of the source

operands can be unsigned. The “~" sign option is used to negate the specified product
prior to accumulation. The default sign option is “+”.

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcodes

MACsu (£)s1,52,D 23 16 15 8 7 0
MACuu (+)S1,52,D 00000O0O0OT1(00100110|1sdkQQQQ

13-102 DSP56300 Family Manual Motorola

MACR Signed Multiply Accumulate and Round MACR

Operation Assembler Syntax

D *s1 [1s2 +r - D (parallel move) MACR (£)S1,52,D (parallel move)
D *s1 [1s2 +r - D (parallel move) MACR (£)S2,51,D (parallel move)
D Z(s1 LJ2M +r = D (no parallel move) MACR (£)S.#n,D (no parallel move)

Instruction Formats and opcodes 1

23 16 15 8 7 0
MACR (1)31 s2D Data Bus Move Field 1 QQQdk 11
MACR ()S2,51,D Optional Effective Address Extension

Instruction Fields

{S1,s2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]

(seeTable 12-160n page 12-24)
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
{} k Sign [+,—] (se€élable 12-160n page 12-24)

Instruction Formats and opcode 2

23 16 15 8 7 0
MACR ()5 #nD 00000001/00003sss(11QQdFkZ171

Instruction Fields

{s} QQ Source register [Y1,X0,Y0,X1] (s€leable 12-160n page 12-24)
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
{} k Sign [+,—] (se€élable 12-160n page 12-24)

{tn} ssss Immediate operand (sd@@ble 12-16on page 12-24)

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate oper3neaa@d/subtract the
product to/from the specified 56-bit destination accumulator D, and round the result using
either convergent or two’s-complement rounding. The rounded result is stored in
destination accumulator D. The “~" sign option negates the specified product prior to
accumulation. The default sign option is “+.” The LSB of the result is rounded into the

upper portion of the destination accumulator. Once rounding is complete, the LSBs of

Motorola 13-103

MACR Signed Multiply Accumulate and Round MACR

destination accumulator D are loaded with 0s to maintain an unbiased accumulator value
that the next instruction can reuse. The upper portion of the accumulator contains the
rounded result that can be read out to the data buses. Refer to the RND instruction for
details on the rounding process.

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

13-104 DSP56300 Family Manual Motorola

MACRI MACRI

Signed MAC and Round With Immediate Operand

Operation Assembler Syntax

D Hhoooxx [1s - D MACRI (F)#xxxxxx,S,D

Instruction Fields

{s} qq Source register [X0,Y0,X1,Y1] (s€leable 12-160n page 12-24)
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
{* K Sign [+,-] (seeTable 12-16o0n page 12-24)

XXX 24-bit Immediate Long Data extension word

Description Multiply the two signed 24-bit source operands #xxxx and S, add/subtract

the product to/from the specified 56-bit destination accumulator D, and then round the
result using either convergent or two’s-complement rounding. The rounded result is stored
in the destination accumulator D. The “~" sign option negates the specified product prior
to accumulation. The default sign option is “+”. The contribution of the LSBs of the result

Is rounded into the upper portion of the destination accumulator. Once rounding is
complete, the LSBs of the destination accumulator D are loaded with Os to maintain an
unbiased accumulator value that the next instruction can reuse. The upper portion of the
accumulator contains the rounded result that can be read out to the data buses. Refer to the

RND instruction for details on the rounding process.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcode

23 16 15 8 7 0
MACRI (ysxx,S,D 00000O0O0U1/0100000O0T1({11qagqdk11]1

Immediate Data Extension

Motorola 13-105

MAX Transfer by Signed Value MAX

Operation Assembler Syntax

fFB-—A<O0OthenA - B MAX A,B (parallel move)

Description Subtract the signed value of the source accumulator from the signed value of
the destination accumulator. If the difference is negative or & BAthen transfer the

source accumulator to destination accumulator. Otherwise, do not change the destination
accumulator. This is a 56-bit operation. Note that the Carry bit signifies a transfer has been
performed.

Condition Codes

CCR

C This bit is cleared if the conditional transfer is performed, and set otherwise.
4 Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcodes
23 16 15 8 7 0

MAX A, B Data Bus Move Field 000 1|1 1 01
Optional Effective Address Extension

13-106 DSP56300 Family Manual Motorola

MAXM Transfer by Magnitude MAXM

Operation Assembler Syntax

If |B| - |A| < Othen A — B MAXM A,B (parallel move)

Description Subtract the absolute value (magnitude) of the source accumulator from the
absolute value of the destination accumulator. If the difference is negative or 0

(JA| = |B]), then transfer the source accumulator to the destination accumulator. Otherwise,
do not change the destination accumulator. This is a 56-bit operation. Note that the Carry
bit (C) signifies a transfer has been performed.

Condition Codes

CCR

* C This bitis cleared if the conditional transfer was performed, and set
otherwise.

v Changed according to the standard definition.

— Unchanged by the instruction.

Instruction Formats and Opcodes
23 16 15 8 7 0

MAXM A, B Data Bus Move Field 0 00 1{0 101
Optional Effective Address Extension

Motorola 13-107

MERGE Merge Two Half Words MERGE

Operation Assembler Syntax

{S[7:0],D[35:24]} — D[47:24] MERGE S,D

Instruction Fields

{D} D Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
{s} SSS Source register [X0,X1,Y0,Y1,Al1,B1] (sdable 12-16
on page 12-24)

Description ~ The contents of bits 11-0 of the source register are concatenated to the
contents of bits 35-24 of the destination accumulator. The result is stored in the
destination accumulator. This instruction is a 24-bit operation. The remaining bits of the
destination accumulator D are not affected.

Note:

1. MERGE can be used in conjunction with EXTRACT or INSERT instructions to
concatenate width and offset fields into a control word.

2. In Sixteen-bit Arithmetic mode, the contents of bits 15-8 of the source register are
concatenated with the contents of bits 39-32 of the destination accumulator. The
result is placed in bits 47-32 of the destination accumulator.

Condition Codes

CCR

* N Set if bit 47 of the result is set.

* Z Set if bits 47-24 of the result are 0.
* V. Always cleared.

— Unchanged by the instruction.

13-108 DSP56300 Family Manual Motorola

MERGE Merge Two Half Words MERGE

Example

MERGE X0,B

0

2
3
xo (Xxx]xx]x{x]x[x]<|[ola]ol1][1]]olo]]o
2 \ 4 5
4 7 4

4
7
g1 [Xxxl{x]x|x]x{x|x]1]olo]o|]o]o]o[olo]s]2| —————5;® [1]o[a]o[1]o]1]o|o[o]]o[1]o]o]o1[o|o]c]ofo]a]1]

Instruction Formats and Opcodes

23 16 15 8 7 0
MERGE S,D |000011000001101110008$SD

Motorola 13-109

MOVE MOVE

The DSP56300 (family) core provides a set of MOVE instructidadle 12-14lists these
instructions, which are fully described in the following pages.

Move Data

Table 12-14. Move Instructions

Instruction Description Page
MOVE Move Data page 12-110
NO Parallel Data Move page 12-112
| Immediate Short Data Move page 12-113
R Register-to-Register Data Move page 12-116
U Address Register Update page 12-117
X: X Memory Data Move page 12-118
X:R X Memory and Register Data Move page 12-120
Y Y Memory Data Move page 12-122
R:Y Register and Y Memory Data Move page 12-124
L: Long Memory Data Move page 12-126
XY X Memory Data Move page 12-128

13-110

DSP56300 Family Manual

Motorola

MOVE Move Data MOVE

Operation Assembler Syntax

S-D MOVE S,D

Descripion ~ Move the contents of the specified data source S to the specified destination
D. This instruction is equivalent to a Data ALU NOP with a parallel data move.

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
MOVE S,D Data Bus Move Field 0 00O OO O OO
Optional Effective Address Extension

Instruction Fields/

Parallel Move Description Thirty of the sixty-two instructions allow an optional parallel

data bus movement over the X and/or Y data bus. This allows a Data ALU operation to be
executed in parallel with up to two data bus moves during the instruction cycle. Ten types
of parallel moves are permitted, including register-to-register moves, register-to-memory
moves, and memory-to-register moves. However, not all addressing modes are allowed
for each type of memory reference. The following section contains detailed descriptions
about each type of parallel move operation.

Motorola 13-111

NO Parallel Data Move

Operation Assembler Syntax

(.) (-2

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Description ~ Many instructions in the instruction set allow parallel moves. The parallel
moves have been divided into ten opcode categories. This category is a parallel move
NOP and does not involve data bus move activity.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0
¢.) [0 0100 000[000000O0 0| Instuction opcode

Instruction Format (defined by instruction)

13-112 DSP56300 Family Manual Motorola

| Immediate Short Data Move |

Operation Assembler Syntax

(...),#&x > D (...)#xD

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

fog il 8-bit Immediate Short Data

{D} ddddd Destination register
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0O-R7,NO-N7] (sdable
12-130n page 12-22)

Descripion Move the 8-bit immediate data value (#xx) into the destination operand D. If
the destination register D is A0, Al, A2, BO, B1, B2, RO—R7, or NO-N7, the 8-bit
immediate short operand is interpreted asiasigned integeand is stored in the specified
destination register. That is, the 8-bit data is stored in the eight LSBs of the destination
operand and the remaining bits of the destination operand D are zeroed. If the destination
register D is X0, X1, YO, Y1, A, or B, the 8-bitimmediate short operand is interpreted as a
signed fractiorand is stored in the specified destination register. That is, the 8-bit data is
stored in the eight MSBs of the destination operand and the remaining bits of the
destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator cannot be
specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify A0, Al,
A2, or A as its destination D. Similarly, if the opcode-operand portion of the instruction
specifies the 56-bit B accumulator as its destination, the parallel data bus move portion of
the instruction cannot specify BO, B1, B2, or B as its destination D. That is, duplicate
destinations araot allowed within the same instruction.

Condition Codes

— Unchanged by the instruction.

Motorola 13-113

| Immediate Short Data Move |

Instruction Formats and Opcodes

23 16 15 8 7 0
(...)#xx,D |O 01 ddddd|i i i i i i 1 i Instruction opcode

13-114 DSP56300 Family Manual Motorola

R Register-to-Register Data Move R

Operation Assembler Syntax

(...;S->D (...)SD

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves.

Instruction Fields

{s} eeeee Source register
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,
B,RO—R7,NO-N7]

0 dddd Destination register SeeTable 12-13on page 12-22
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,

B,RO-R7,NO-N7]

Descripion ~ Move the source register S to the destination register D. If the arithmetic or
logical opcode-operand portion of the instruction specifies a given destination
accumulator, that same accumulator or portion of that accumulator cannot be specified as
a destination D in the parallel data bus move operation. Thus, if the opcode-operand
portion of the instruction specifies the 56-bit A accumulator as its destination, the parallel
data bus move portion of the instruction cannot specify A0, Al, A2, or A as its destination
D. Similarly, if the opcode-operand portion of the instruction specifies the 56-bit B
accumulator as its destination, the parallel data bus move portion of the instruction cannot
specify B0, B1, B2, or B as its destination D. That is, duplicate destinationstare

allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register can be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which a Data ALU operation is using it as a source operand. That is, duplicate sources are
allowed within the same instruction. Note that the MOVE A,B operation results in a 24-bit
positive or negative saturation constant being stored in the B1 portion of the B
accumulator if the signed integer portion of the A accumulator is in use.

Motorola 13-115

R Register-to-Register Data Move R

Condition Codes

Y2 VAR R I
CCR
v Changed according to the standard definition.
— Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0
(...)s,D |0 01 000 eejeeeddddd Instruction opcode

13-116 DSP56300 Family Manual Motorola

U Address Register Update U

Operation Assembler Syntax

(...);eafiRn (...)ea

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
Instruction Fields

{ea} MMRRR Effective Address (se€able 12-13on page 12-22)

Description ~ Update the specified address register according to the specified effective
addressing mode. All update addressing modes can be used.

Condition Codes

CCR

— Unchanged by the instruction.
Instruction Formats and Opcodes

23 16 15 8 7 0
(...)ea |O 01 00O0O0OO0OO01I 0OMMRRR R Instruction opcode

Motorola 13-117

X: X Memory Data Move X:

Operation Assembler Syntax
(...);Xea-D (...) X:ea,D
(...);X:aa > D (...) X:aa,D
(...);S - Xea (...) S, X:ea
(...);S - Xaa (...) S, X:aa

X:(Rn +xxx) - D MOVE X:(Rn + xxx),D
X:(Rn + xxxx) - D MOVE X:(Rn + xxxx),D
D - X:(Rn + xxx) MOVE D,X:(Rn + xxx)
D - X:(Rn + xxxx) MOVE D,X:(Rn + XxxX)

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves.

Instruction Formats and Opcodes 1

(...)XeaD 23 16 15 8 7 0
(...)SXea 01 ddodddWI1IMMMRRR Instruction opcode
(...)Hoxxxx,D Optional Effective Address Extension

(...)XaaDbh 23 16 15 8 7 0
(...)SXaa 01 ddodddWOaaaaaa Instruction opcode

Instruction Fields

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)
w Read S / Write D bit (seBable 12-16on page 12-24)
{SD} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,RO—R7,NO-N7] (see
Table 12-13on page 12-22)
{aa} aaaaaa 6-bit Absolute Short Address

Instruction Formats and Opcodes 2

23 16 15 8 7 0
MOVE X:(Rn + xxxx),D 00001010/01110RRR|1I1WDDDDTDTD
MOVE S,X:(Rn + xxxx) Rn Relative Displacement
MOVE X:(Rn + xxx),D 23 16 15 8 7 0
MOVE S,X:(Rn + xxx) 0000001alaaaaaRRR[1a0OWDDD D]

13-118 DSP56300 Family Manual Motorola

X: X Memory Data Move X:

Instruction Fields

w Read S / Write D bit (seEable 12-16on page 12-24)
(ot aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0O-R7)
{D} DDDD Source/Destination registers

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (sedable 12-16
on page 12-24)

{Sb} DDDDDD Source/Destination registers [all on-chip registers] {sdse
12-130n page 12-22)

Description Move the specified word operand from/to X memory. All memory addressing
modes can be used, including absolute addressing and 24-bit immediate data. Absolute
short addressing can also be used. If the arithmetic or logical opcode-operand portion of
the instruction specifies a given destination accumulator, that same accumulator or portion
of that accumulator cannot be specified as a destination D in the parallel data bus move
operation. Thus, if the opcode-operand portion of the instruction specifies the 56-bit A
accumulator as its destination, the parallel data bus move portion of the instruction cannot
specify AO, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of
the instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction cannot specify BO, B1, B2, or B as its destination D. That
Is, duplicate destinations amet allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register can be used as a source S in the
parallel data bus move operation. This allows data to be moved in the same instruction in
which it is being used as a source operand by a Data ALU operation. That is, duplicate
sources are allowed within the same instruction. As a result of the MOVE A, X:ea
operation, a 24-bit positive or negative saturation constant is stored in the specified 24-bit
X memory location if the signed integer portion of the A accumulator is in use.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Motorola 13-119

X: R X Memory and Register Data Move X: R

Operation Assembler Syntax

Class |

(...); Xiea - D1;S2 - D2 (...) X:ea,D1 S2,D2
(...);S1 - Xea; S2 - D2 (...) S1,X:ea S2,D2
(...);#xxxxxx - D1; S2 - D2 (...) H#HxXXxxxx,D1 S2,D2
Class Il

(...);A > Xea; X0 - A (...) A, X:ea X0,A
(...);B - Xea; X0 - B (...) B,X:ea X0,B

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Class I Instruction Formats and Opcodes

(...)XeaD1S2D2 23 16 15 8 7 0
(...)S1,XeaS2, D2 ooo0o1ffdFWOMMMRRR R Instruction opcode
(...)#xxx,D1 S2,D2 Optional Effective Address Extension

Instruction Fields

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)
w Read S1/Write D1 bit (s€eable 12-160n page 12-24)
{s1,D1} ff S1/D1 register [X0,X1,A,B] (se€able 12-16
on page 12-24)
{s2} d S2 accumulator [A,B] (se€able 12-13on page 12-22)
{D2} F D2 input register [Y0,Y1] (se€able 12-160n page 12-24)

Class Il Instruction Formats and Opcodes

23 16 15 8 7 0
(...)A - XeaX0 - A 0000100 d/OOMMMRRR R Instruction opcode
(...)B - XeaX0-B Optional Effective Address Extension

Instruction Fields

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)
d Move opcode (se€able 12-16on page 12-24)

13-120 DSP56300 Family Manual Motorola

X: R X Memory and Register Data Move X: R

Description

= Class I: Move a one-word operand from/to X memory and move another word
operand from an accumulator (S2) to an input register (D2). All memory
addressing modes, including absolute addressing and 24-bit immediate data, can be
used. The register-to-register move (S2,D2) allows a Data ALU accumulator to be
moved to a Data ALU input register for use as a Data ALU operand in the
following instruction.

= Class Il: Move one-word operand from a Data ALU accumulator to X memory and
one-word operand from Data ALU register X0 to a Data ALU accumulator. One
effective address is specified. All memory addressing modes except long absolute
addressing and long immediate data can be used.

For both Class | and Class Il X:R parallel data moves, if the arithmetic or logical
opcode-operand portion of the instruction specifies a given destination accumulator, that
same accumulator or portion of that accumulator cannot be specified as a destination D1
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 40-bit A accumulator as its destination, the parallel data bus move
portion of the instruction cannot specify A0, Al, A2, or A as its destination D1. Similarly,

if the opcode-operand portion of the instruction specifies the 56-bit B accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify BO, B1,
B2, or B as its destination D1. That is, duplicate destinationscaedlowed within the

same instruction. If the opcode-operand portion of the instruction specifies a given source
or destination register, that same register or portion of that register can be used as a source
S1 and/or S2 in the parallel data bus move operation. This allows data to be moved in the
same instruction in which a Data ALU operation is using it as a source operand. That is,
duplicate sources are allowed within the same instruction—S1 and S2 can specify the
same register.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Motorola 13-121

Y Y Memory Data Move Y

Operation Assembler Syntax
(...);Yea-D (...) Y:ea,D
(...);Yaa > D (...) Y:aa,D
(...);S - Yea (...) S,Y:ea
(...);S - Yaa (...) S,Y:aa

Y:(Rn + xxx) - D MOVE Y:(Rn + xxx),D
Y:(Rn + xxxx) - D MOVE Y:(Rn + xxxx),D
D - Y:(Rn + xxx) MOVE D,Y:(Rn + xxx)
D - Y:(Rn + xxxx) MOVE D,Y:(Rn + Xxxx)

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Formats and Opcodes 1

...)Y:eaD 23 16 15 8 7 0
¢..-)

(...)SYea 01 dd1l1ldddWI1IMMMRRR Instruction opcode
(...)#Hxxx,D Optional Effective Address Extension

(...)Y:aaD 23 16 15 8 7 0
(...)SY:aaa 01 dd1dddWOaaaaaa Instruction opcode

Instruction Fields

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)
w Read S/Write D bit (se€able 12-16on page 12-24)
{SD} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,RO—R7,NO-N7] (see
Table 12-13on page 12-22)
{aa} aaaaaa Absolute Short Address

Instruction Formats and Opcodes 2

23 16 15 8 7 0
MOVE Y:(Rn + xxxx),D 00001011({01110RRR|2WDDUDUDUDD
MOVE D,Y:(Rn + xxxx) Rn Relative Displacement
MOVE Y:(Rn + xxx),D 23 16 15 8 7 0
MOVE D,Y:(Rn + xxx) 0000001alaaaaaRRR[1alwWDDD D]

13-122 DSP56300 Family Manual Motorola

Y Y Memory Data Move Y

Instruction Fields

w Read S/Write D bit (se€able 12-16on page 12-24)
(ot aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0O-R7)
{D} DDDD Source/Destination registers

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (sedable 12-16
on page 12-24)

{Sb} DDDDDD Source/Destination registers [all on-chip registers] {sdse
12-130n page 12-22)

Descripion ~ Move the specified word operand from/to Y memory. All memory

addressing modes can be used, including absolute addressing, absolute short addressing,
and 24-bit immediate data. If the arithmetic or logical opcode-operand portion of the
instruction specifies a given destination accumulator, that same accumulator or portion of
that accumulator cannot be specified as a destination D in the parallel data bus move
operation. Thus, if the opcode-operand portion of the instruction specifies the 56-bit A
accumulator as its destination, the parallel data bus move portion of the instruction cannot
specify A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion of
the instruction specifies the 56-bit B accumulator as its destination, the parallel data bus
move portion of the instruction cannot specify BO, B1, B2, or B as its destination D. That
Is, duplicate destinations amet allowed within the same instruction. If the

opcode-operand portion of the instruction specifies a given source or destination register,
that same register or portion of that register can be used as a source S in the parallel data
bus move operation. This allows data to be moved in the same instruction in which a Data
ALU operation is using it as a source operand. That is, duplicate sources are allowed
within the same instruction. As a result of the MOVE A,Y:ea operation, a 24-bit positive

or negative saturation constant is stored in the specified 24-bit Y memory location if the
signed integer portion of the A accumulator is in use.

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

Motorola 13-123

R:Y Register and Y Memory Data Move R:Y

Operation Assembler Syntax

Class |

(...);S1 - D1;Y:ea - D2 (...) S1,D1 Y:.ea,D2
(...);S1 - D1;S2 - Yeea (...) S1,D1 S2,Y:ea
(...); S1 - D1; #xxxxxx - D2 (...) S1,D1 #xxxxxx,D2
Class Il

(...);Y0O - AA - Yea (...) YO0,A AY:ea
(...);Y0O - B;B - Yea (...) Y0,B B,Y:ea

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Class I Instruction Formats and Opcodes

(...)S1,D1Y:eabD2 23 16 15 8 7 0
(...)S1,D1S2,Y:ea 0001def fW1IMMMRRR R Instruction opcode
(...)S1,D1 #xxxx,D2 Optional Effective Address Extension

Instruction Fields

{ea} MMMRRR Effective Address Se€able 12-13
on page 12-22
w Read S2/Write D2 bit
{s1} d S1 accumulator [A,B]
{D1} e D1 input register [X0,X1] Table 12-160n page 12-24
{s2,D2} ff S2/D2 register [YO,Y1,A,B]

Class Il Instruction Formats and opcodes

23 16 15 8 7 0
(...)YO - AA - Yea 0000100d|1 OMMMRRR R Instruction opcode
(...)YO -~ BB - Yea Optional Effective Address Extension

Instruction Fields

MMMRRR ea = 6-bit Effective Address (s&able 12-13on page 12-22)
d Move opcode (se€able 12-16on page 12-24)

13-124 DSP56300 Family Manual Motorola

R:Y Register and Y Memory Data Move R:Y

Description

= Class I: Move a one-word operand from an accumulator (S1) to an input register
(D1) and move another word operand from/to Y memory. All memory addressing
modes, including absolute addressing and 16-bit immediate data, can be used. The
register to register move (S1,D1) allows a Data ALU accumulator to be moved to a
Data ALU input register for use as a Data ALU operand in the following
instruction.

= Class Il: Move a one-word operand from a Data ALU accumulator to Y memory
and a one-word operand from Data ALU register YO to a Data ALU accumulator.
One effective address is specified. All memory addressing modes, excluding long
absolute addressing and long immediate data, can be used.

For both Class | and Class Il R:Y parallel data moves, if the arithmetic or logical
opcode-operand portion of the instruction specifies a given destination accumulator, that
same accumulator or portion of that accumulator cannot be specified as a destination D2
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus move
portion of the instruction cannot specify AO, Al, A2, or A as its destination D2. Similarly,

if the opcode-operand portion of the instruction specifies the 56-bit B accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify BO, B1,
B2, or B as its destination D2. That is, duplicate destinationscaedlowed within the

same instruction. If the opcode-operand portion of the instruction specifies a given source
or destination register, that same register or portion of that register can be used as a source
S1 and/or S2 in the parallel data bus move operation. This allows data to be moved in the
same instruction in which it is being used as a source operand by a Data ALU operation.
Thatis, duplicate sources are allowed within the same instruction. Note that S1 and S2 can
specify the same register.

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

Motorola 13-125

L: Long Memory Data Move L:

Operation Assembler Syntax
(...);X:ea - D1; Y:ea - D2 (...) L:ea,D
(...);X:aa » D1; Y:aa - D2 (...) L:aa,D
(...);S1 - Xea; S2 - Yiea (...) S,L:ea
(...);S1 - X:aa; S2 - Y:aa (...) S,L:aa

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

{ea} MMMRRR Effective Address Table 12-13on page 12-22

W Read S/Write D bit
{L} LLL Two Data ALU registers SeeTable 12-160n page 12-24
{aa} aaaaaa Absolute Short Address

Descripton Move one 48-bit long-word operand from/to X and Y memory. Two Data

ALU registers are concatenated to form the 48-bit long-word operand. This allows
efficient moving of both double-precision (high:low) and complex (real:imaginary) data
from/to one effective address in L (X:Y) memory. The same effective address is used for
both the X and Y memory spaces; thus, only one effective address is required. Note that
the A, B, A10, and B10 operands reference a single 48-bit signed (double-precision)
guantity while the X, Y, AB, and BA operands reference two separate (i.e., real and
imaginary) 24-bit signed quantities. All memory alterable addressing modes can be used.
Absolute short addressing can also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator cannot be
specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify A, A10,
AB, or BA as destination D. Similarly, if the opcode-operand portion of the instruction
specifies the 56-bit B accumulator as its destination, the parallel data bus move portion of
the instruction cannot specify B, B10, AB, or BA as its destination D. That is, duplicate
destinations araotallowed within the same instruction. If the opcode-operand portion of
the instruction specifies a given source or destination register, that same register or portion
of that register can be used as a source S in the parallel data bus move operation. This
allows data to be moved in the same instruction in which it is being used as a source
operand by a Data ALU operation. That is, duplicate sources are allowed within the same

13-126 DSP56300 Family Manual Motorola

L: Long Memory Data Move L:

instruction. Note that the operands A10, B10, X, Y, AB, and BA can be used only for a
32-bit long memory move as previously described. These operands cannot be used in any
other type of instruction or parallel move.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

As a result of the MOVE A, L:ea operation, a 48-bit positive or negative saturation
constant is stored in the specified 24-bit X and Y memory locations if the signed integer
portion of the A accumulator is in use. As a result of the MOVE AB,L:ea operation, either
one or two 24-bit positive and/or negative saturation constant(s) are stored in the specified
24-bit X and/or Y memory location(s) if the signed integer portion of the A and/or B
accumulator(s) is in use.

Instruction Formats and Opcodes

23 16 15 8 7 0
(...)LeaD 0100LOLLWI1IMMMRRR Instruction opcode
(...)S,Lea Optional Effective Address Extension
(...)LaaD 23 16 15 8 7 0
(...)S,L:aa 01 0O0LOLILIWO aaaaaa Instruction opcode

Motorola 13-127

XY XY Memory Data Move X Y:

Operation Assembler Syntax

(...); Xi<eax> - D1, Y:<eay> - D2 (...)X:<eax> D1 Y:<eay>D2
(...); Xi<eax> - D1; S2 - Y:<eay> (...) Xi<eax>D1 S2,Y:<eay>
(...);S1 - Xi<eax>; Y:i<eay> - D2 (...)S1,X<eax> Y:<eay>D2
(...);S1 - Xi<eax>; S2 - Y:<eay> (...)S1,X<eax> S2,Y:<eay>

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

{<eax>} MMRRR 5-bit X Effective Address (RO-R3 or R4-R7)

{<eay>} mmir 4-bit Y Effective Address (R4—R7 or RO-R3)

{S1,01} ee S1/D1 register [X0,X1,A,B]

{S2,02} ff S2/D2 register [Y0,Y1,A,B]

MMRRR,mmir,ee, ff SeeTable 12-13on page 12-22
W X move Operation Control (S8@ble 12-16on page 12-24)
w Y move Operation Control (S8@able 12-16on page 12-24)

Descripton Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are specified
(<eax> and <eay>) where one of the effective addresses uses the lower bank of address
registers (RO—R3) while the other effective address uses the upper bank of address
registers (R4—-R7). All parallel addressing modes can be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a given
destination accumulator, that same accumulator or portion of that accumulator cannot be
specified as a destination D1 or D2 in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify A as its
destination D1 or D2. Similarly, if the opcode-operand portion of the instruction specifies
the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction cannot specify B as its destination D1 or D2. That is, duplicate destinations are
not allowed within the same instruction. D1 and D2 cannot specify the same register.

13-128 DSP56300 Family Manual Motorola

X Y: XY Memory Data Move X Y:

If the instruction specifies an access to an internal X 1/0O and internal Y 1/0O modules
(reflected by the address of the X memory and the Y memory), only the access to the
internal X 1/O module is executed. The access to the Y I/O module is discarded.

If the opcode-operand portion of the instruction specifies a given source or destination
register, that same register or portion of that register can be used as a source S1 and/or S2
in the parallel data bus move operation. This allows data to be moved in the same
instruction in which itis being used as a source operand by a Data ALU operation. That s,
duplicate sources are allowed within the same instruction. Note that S1 and S2 can specify
the same register.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes

...) X:<eax>D1 Y:<eay>D2

...) Xi<eax>D1 S2,Y:<eay>

...) S1,X:<eax> Y:<eay>D2 23 1615 8 7 0
...) S1 X:<eax> S2,Y:<eay> lwmmee f flWr r MMR R R| Instruction opcode

(
(
(
(

Motorola 13-129

M OVEC Move Control Register M OVEC

Operation Assembler Syntax
[XorY]ea - D1 MOVE(C) [Xor Y]:ea,D1
[XorY]aa - D1 MOVE(C) [Xor Y]:aa,D1
S1 - [XorY]ea MOVE(C) S1,[X or Y]:ea
S1 - [XorY]aa MOVE(C) S1,[X or Y]:aa
S1 - D2 MOVE(C) S1,D2

S2 . D1 MOVE(C) S2,D1

#xxxx - D1 MOVE(C) #xxxx,D1

#xx - D1 MOVE(C) #xx,D1

Instruction Fields

{ea} MMMRRR Effective Address Se€able 12-13
on page 12-22
W Read S/Write D bit

{X1v} S Memory Space [X,Y]

{s1D1} ddddd Program Controller register
[MO-M7, VBA, SR, OMR, SP, SeeTable 12-16
SSH,SSL,LA,LC] on page 12-24

{aa} aaaaaa aa = 6-bit Absolute Short Address

{S2.D2} eeeeee S2/D2 register [all on-chip registers]

{#xx} iiiii #xx = 8-bit Immediate Short Data

Descripton Move the contents of the specified source control register S1 or S2 to the
specified destination, or move the specified source to the specified destination control
register D1 or D2. The control registers S1 and D1 are a subset of the S2 and D2 register
set and consist of the Address ALU modifier registers and the program controller

registers. These registers can be moved to or from any other register or memory space. All
memory addressing modes, as well as an Immediate Short Addressing mode, can be used.

If the System Stack register SSH is specified as a source operand, the Stack Pointer (SP) is
post-decremented by 1 after SSH has been read. If SSH is specified as a destination
operand, the SP is preincremented by 1 before SSH is written. This allows the system
stack to be efficiently extended using software stack pointer operations.

13-130 DSP56300 Family Manual Motorola

M OVEC Move Control Register M OVEC

Condition Codes

For D1 or D2 = SR operand:

* Set according to bit 7 of the source operand.
Set according to bit 6 of the source operand.
Set according to bit 5 of the source operand.
Set according to bit 4 of the source operand.
Set according to bit 3 of the source operand.
Set according to bit 2 of the source operand.
Set according to bit 1 of the source operand.
Set according to bit O of the source operand.
For D1 and D2t SR operand:

* S Setif data growth has been detected.

* L Setif data limiting has occurred during the move.

*

*

*
O < N Z Ccmr o»w

*

Instruction Formats and Opcodes

MOVE(C) [X or Y]:ea,D1 23 16 15 8 7 0
MOVE(C) S1,[Xor Y]ea 0000010 1W1MMMRRR|OS1ddddd
MOVE(C) #xxxx,D1 Optional Effective Address Extension
MOVE(C) [X or Y]:aa,D1 23 16 15 8 7 0
MOVE(C) S1,[X or Y]:aa 0000010 1/Wo0oaaaaaal0S1ddddd|
MOVE(C) S1,D2 23 16 15 8 7 0
MOVE(C) S2,D1 000001 00/W1leeeeeell 01ddddd|
23 16 15 8 7 0
MOVE(C) #xx,D1 00000210 1[i i i i i i i i|]101ddddd]|

Motorola 13-131

MOVEM

Operation
S - Piea
S - P:aa
P:ea - D

P:aa - D

Instruction Fields

{ea} MMMRRR
w
{SD} dddddd

{aa} aaaaaa

Move Program Memory M OVE M

Assembler Syntax

MOVE(M) S,Pea
MOVE(M) S,P:aa
MOVE(M) P:ea,D
MOVE(M) P:aa,D

Effective Address (se€able 12-13on page 12-22)

Read S/Write D bit (se€able 12-16on page 12-24)
Source/Destination register [all on-chip registers] ({Gaae
12-130n page 12-22)

Absolute Short Address

Description ~ Move the specified operand from/to the specified Program (P) memory
location. This is a powerful move instruction in that the source and destination registers S
and D can be any register. All memory-alterable addressing modes can be used, as well as
the Absolute Short Addressing mode. If the system stack register SSH is specified as a
source operand, the system Stack Pointer (SP) is post-decremented by 1 after SSH has
been read. If the system stack register SSH is specified as a destination operand, the SP is
pre-incremented by 1 before SSH is written. This allows the system stack to be efficiently
extended using software stack pointer operations.

Condition Codes

13-132

DSP56300 Family Manual Motorola

MOVEM Move Program Memory MOVEM

For D1 or D2 = SR operand:

* Set according to bit 7 of the source operand.
Set according to bit 6 of the source operand.
Set according to bit 5 of the source operand.
Set according to bit 4 of the source operand.
Set according to bit 3 of the source operand.
Set according to bit 2 of the source operand.
Set according to bit 1 of the source operand.
Set according to bit O of the source operand.
For D1 and D2t SR operand:

* S Setif data growth has been detected.

* L Setif data limiting has occurred during the move.

*

*

*
O < N Z Ccmr on

*

Operation Assembler Syntax

S - Pea MOVE(M) S,Pea
S - P:aa MOVE(M) S,P:aa
P:ea - D MOVE(M) P:ea,D
P:aa - D MOVE(M) P:aa,D

Instruction Formats and Opcodes

23 16 15 8 7 0
MOVE(M) S,P:ea 0000011 1WI1IMMMRRR|1O0dddddd
MOVE(M) P:ea,D Optional Effective Address Extension
MOVE(M) S,P:aa 23 16 15 8 7 0
MOVE(M) P:aa,D 0000011 1WO0awaawawaald00dddddd

Motorola 13-133

MOVEP Move Peripheral Data MOVEP

Operation Assembler Syntax

[XorY]pp - D MOVEP [X or Y]:pp,.D
[XorY]qq - D MOVEP [X or Y]:qq,.D
[XorY]pp - [XorY]ea MOVEP [X or Y]:pp,[X or Y]:ea
[XorY]qq - [XorY]ea MOVEP [X or Y]:qq,[X or Y].ea
[XorY]:pp - P:ea MOVEP [X or Y]:pp,P:ea
[XorY]:qq - P:ea MOVEP [X or Y]:qq,P:ea

S - [XorY]pp MOVEP S,[X or Y]:pp

S - [XorY]qq MOVEP S,[X or Y]:qq
[XorY]ea - [XorY]:pp MOVEP [X or Y]:ea,[X or Y]:pp
[XorY]ea - [XorY]qq MOVEP [X or Y]:ea,[X or Y]:qq
P:ea - [Xor Y]:pp MOVEP P:ea,[X or Y]:pp

P:ea - [Xor Y]:qq MOVEP P:ea,[X or Y]:qq

Instruction Fields

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

{PP} PPPPPP I/O Short Address [64 addresses: $FFFFCO — $FFFFFF]
{aq} 9gaqaq I/O Short Address [64 addresses: $FFFF80 — $FFFFBF]
xivy s Memory space [X,Y] (se€able 12-13on page 12-22)
xrny s Peripheral space [X,Y] (séeable 12-13on page 12-22)

W Read/write-peripheral (sdeable 12-13on page 12-22)
{S.D} dddddd Source/Destination register [all on-chip registers] (Gaae

12-130n page 12-22)

Description Move the specified operand to or from the specified X or Y I/O peripheral.

The 1/0 Short Addressing mode is used for the I/O peripheral address. All memory
addressing modes can be used for the X or Y memory effective address; all
memory-alterable addressing modes can be used for the P memory effective address. All
the 1/0 space ($FFFF80 — $FFFFFF) can be accessed, except for the P: reference
opcode.If the System Stack register SSH is specified as a source operand, the system
Stack Pointer (SP) is post-decremented by 1 after SSH has been read. If SSH is specified
as a destination operand, the SP is pre-incremented by 1 before SSH is written. This
allows the system stack to be efficiently extended using software stack pointer operations.

13-134 DSP56300 Family Manual Motorola

MOVEP

Condition Codes

Move Peripheral Data

CCR

For D1 or D2 = SR operand:

*

*

*

*
O < N Z Ccmr o»w

Set according to bit 7 of the source operand.
Set according to bit 6 of the source operand.
Set according to bit 5 of the source operand.
Set according to bit 4 of the source operand.
Set according to bit 3 of the source operand.
Set according to bit 2 of the source operand.
Set according to bit 1 of the source operand.
Set according to bit O of the source operand.

For D1 and D2t SR operand:
* S Setif data growth is detected.

* L Setif data limiting occurred during the move.

Instruction Formats and Opcodes
X: or Y: Reference (high I/O address)

MOVEP [Xor Y]:pp,[X or Y]:ea
MOVEP [X or Y]:ea,[X or Y]:pp

X: or Y: Reference (low I/0O address)

MOVEP X:qq,[X or Y]:ea
MOVEP [Xor Y]:ea,X:qq

X: or Y: Reference (low I/0O address)

MOVEP Y:qq,[X or Y].ea
MOVEP [Xor Y]ea,Y:qq

23 16 15

MOVEP

0

0000100sW1IMMMRRR|ISpppppPpPeP

Optional Effective Address Extension

23 16 15

0

00000111WIMMMRRR|0Sqqgqaqqgq

Optional Effective Address Extension

23 16 15

0

00000111WOMMMRRR|1I1SqgqqgqgQqg(q

Optional Effective Address Extension

Motorola

13-135

MOVEP

P: Reference (high I/O address)

MOVEP P:ea,[X or Y]:pp
MOVEP [X or Y]:;pp,P:ea

P: Reference (low I/O address)

MOVEP P:ea,[X or Y]:qq
MOVEP [Xor Y]:qq,P:ea

Register Reference (high 1/0 address)

MOVEP S,[Xor Y]:pp
MOVEP [Xor Y]:pp,D

Register Reference: (low I/O address)

MOVEP S, X:qq
MOVEP X:qq,D

Register Reference: (low I/O address)

MOVEP S,Y:qq
MOVEP Y:qq,D

Move Peripheral Data

16 15

8 7

MOVEP

0000100 sW1IMMMRR

16 15

8 7

|OOOOOOOOlWMMMRR

23 16 15

8 7

l0ooo00100s/widdddd

23 16 15

8 7

looooo0o100widdddd

23 1615

8 7

looooo0100widdddd

13-136

DSP56300 Family Manual

Motorola

MPY Signed Multiply MPY

Operation Assembler Syntax

+s1[]s2 - D (parallel move) MPY (£)S1,52,D (parallel move)
+s1[]s2 . D (parallel move) MPY (£)S2,S1,D (parallel move)
+s1 2™ - b (no parallel move) MPY (£)S,#n,D (no parallel move)

Instruction Fields 1

{s1,52} QQQ Source registers S1,S2 [X0*X0, YO*YO, X1*X0, Y1*YO, X0*Y1,
YO0*X0, X1*Y0, Y1*X1] (see Table 12-160n page 12-24)

{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

{x+} k Sign [+,—] (se€élable 12-160n page 12-24)

Instruction Fields 2

st QQ Source register [Y1,X0,Y0,X1] (s€eable 12-160n page 12-24)
{by d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
&k Sign [+,-] (se€Table 12-160n page 12-24)

t} sssss Immediate operand (sdeable 12-16on page 12-24)

Description Multiply the two signed 24-bit source operands S1 and S2 and store the
resulting product in the specified 56-bit destination accumulator D. Or, multiply the

signed 24-bit source operand S by the positive 24-bit immediate operaad®store the
resulting product in the specified 56-bit destination accumulator D. The “~" sign option is
used to negate the specified product prior to accumulation. The default sign option is “+”.
When the processor is in the Double-Precision Multiply mode, the following instructions
do not execute in the normal way and should be used only as part of the double-precision
multiply algorithm:

MPY YO0,X0,A MPY YO, X0,B

Motorola 13-137

MPY Signed Multiply MPY

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes 1

23 16 15 8 7 0
MPY (+)S1,52,D Data Bus Move Field 1 QQQfd k 00
MPY (£)S2,51,D Optional Effective Address Extension

Instruction Formats and Opcode 2

23 16 15 8 7 0
MPY s#nD 000000010000 ssss(l11QQdEko?O

o

13-138 DSP56300 Family Manual Motorola

MPY (su,uu) Mixed Multiply MPY (su,uu)

Operation Assembler Syntax
+s1 []S2 . D (S1 unsigned, S2 unsigned) MPYuu (£)S1,S2,D (no parallel move)
+3S1 [JS2 - D (S1 signed, S2 unsigned) MPYsu (3)S2,S1,D (no parallel move)

Instruction Fields

{S1.82} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see
Table 12-160n page 12-24)

{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
{#} k Sign [+,—] (se€lable 12-160n page 12-24)
{s} [ss,us] (se@able 12-160n page 12-24)

Description Multiply the two 24-bit source operands S1 and S2 and store the resulting
product in the specified 56-bit destination accumulator D. One or two of the source
operands can be unsigned. The “~" sign option is used to negate the specified product
prior to accumulation. The default sign option is “+”.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes

MPY su (£)S1,52,D 23 16 15 8 7 0
MPY uu (+)S1,52,D 00000O0O0OT1|/00 1001111 sdkQQQQ

Motorola 13-139

M PY| Signed Multiply With Immediate Operand M PY|

Operation Assembler Syntax

+#xo00ox L5 - D MPYI (H)#xxxxxx,S,D

Instruction Fields

{s} qq Source register [X0,Y0,X1,Y1] (sé&able 12-160n page 12-24)
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
s k Sign [+,—] (se€lable 12-160n page 12-24)

#OKX 16-bit Immediate Long Data extension word

Description Multiply the immediate 24-bit source operand #xxxx with the 24-bit register
source operand S and store the resulting product in the specified 56-bit destination

accumulator D. The “~" sign option is used to negate the specified product prior to
accumulation. The default sign option is “+”.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcode

23 16 15 8 7 0
MPYl (hyimocxx.S.D 00000001101 000001[11qgqdFkOO

Immediate Data Extension

13-140 DSP56300 Family Manual Motorola

M PYR Signed Multiply and Round M PYR

Operation Assembler Syntax

+s1[]s2+r - D (parallel move) MPYR (})S1,52,D (parallel move)
+s1[Js2+r-D (parallel move) MPYR (£)S2,S1,D (parallel move)
w1 02M+r - D (no parallel move) MPYR (£)S.#n.D (no parallel move)

Instruction Fields 1

{S1,82} QQQ Source registers S1,S2 [X0*X0, YO*YO0, X1*XO0, Y1*YO0, X0*Y1,
Y0*X0, X1*YO0, Y1*X1] (see Table 12-160n page 12-24)

{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

{#} k Sign [+,—] (se€lable 12-160n page 12-24)

Instruction Fields 2

st QQ Source register [Y1,X0,Y0,X1] (sélable 12-160n page 12-24)
{oy d Destination accumulator [A,B] (s@@ble 12-13on page 12-22)
{#} K Sign [+,—] (se€élable 12-160n page 12-24)

{#n} sssss Immediate operand (sd@ble 12-16on page 12-24)

Description Multiply the two signed 24-bit source operands S1 anB&heE signed

16-bit source operand S by the positive 24-bit immediate oper3nddind the result

using either convergent or two’s-complement rounding, and store it in the specified 56-bit
destination accumulator D. The “~” sign option negates the product prior to rounding. The
default sign option is “+”. The contribution of the LS bits of the result is rounded into the
upper portion of the destination accumulator. Once the rounding has been completed, the
LSBs of the destination accumulator D are loaded with Os to maintain an unbiased
accumulator value that can be reused by the next instruction. The upper portion of the
accumulator contains the rounded result that can be read out to the data buses. Refer to the
RND instruction for more complete information on the rounding process.

Motorola 13-141

M PYR Signed Multiply and Round

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes 1

MPYR

23 16 15 8 7 0
MPYR (+)S2,S1,D Optional Effective Address Extension
Instruction Formats and Opcode 2

23 16 15 8 7 0
MPYR (+)s4nD 0000000100 0sssssil11QQdek?Oo0a1l
13-142 DSP56300 Family Manual Motorola

MPYRI MPYRI

Signed Multiply and Round With Immediate Operand

Operation Assembler Syntax

+xoox LIS +r1 - D MPYRI (F)#txxxx,S,D

Instruction Fields

{s} qq Source register [X0,Y0,X1,Y1] (séleable 12-160n page 12-24)
{D} d Destination accumulator [A,B] (s@@&ble 12-13on page 12-22)
{* k Sign [+,—] (se€lable 12-160n page 12-24)

XXX 24-bit Immediate Long Data extension word

Description Multiply the two signed 24-bit source operands #xxxx and S, round the result
using either convergent or two’s-complement rounding, and store it in the specified 56-bit
destination accumulator D. The “~” sign option is used to negate the product before
rounding. The default sign option is “+”. The contribution of the LS bits of the result is
rounded into the upper portion of the destination accumulator. Once the rounding has been
completed, the LS bits of the destination accumulator D are loaded with Os to maintain an
unbiased accumulator value that can be reused by the next instruction. The upper portion
of the accumulator contains the rounded result that can be read out to the data buses. Refer
to the RND instruction for more complete information on the rounding process.

Condition Codes

CCR

V. This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

Instruction Formats and Opcode

23 16 15 8 7 0
MPYRI (ysmxx.S.D 000000O0T11[0100000T1(11qgqd%k O]l

Immediate Data Extension

Motorola 13-143

N EG Negate Accumulator N EG

Operation Assembler Syntax

0-D-D (parallel move) NEG D (parallel move)

Instruction Fields

{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

Descripton ~ Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, two’s-complement operation.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes
23 16 15 8 7 0

NEG D Data Bus Move Field 0 01 1|jd110
Optional Effective Address Extension

13-144 DSP56300 Family Manual Motorola

NOP No Operation NOP

Operation Assembler Syntax

PC+1 - PC NOP

Instruction Fields
None

Description Increment the Program Counter (PC). Pending pipeline actions, if any, are
completed. Execution continues with the instruction following the NOP.

Condition Codes

CCR

— This bit is unchanged by the instruction.

Instruction Formats and Opcode

23 16 15 8 7 0
NOP | 000OO0O0OO0OO0OOO0OOO0OOOOCO|OO0O0ODO0OO0CDO
13-145

Motorola

NORM Norm Accumulator lterations NORM

Operation Assembler Syntax
If E® U ® Z=1, then ASL D and Rn-1fiRn NORM Rn,D
else ifE=1, then ASR D and Rn+1fiR

else NOP

whereE denotes the logical complement of E ardknotes the logical AND operator

Instruction Fields

{D} d Destination accumulator [A,B] (s@@ble 12-13on page 12-22)
{Rn} RRR Address register [RO-R7]

Description ~ Perform one normalization iteration on the specified destination operand D,
update the specified address register Rn based upon the results of that iteration, and store
the result back in the destination accumulator. This is a 56-bit operation. If the
accumulator extension is not in use, the accumulator is unnormalized, and the accumulator
is not zero, the destination operand is arithmetically shifted one bit to the left, and the
specified address register is decremented by 1. If the accumulator extension register is in
use, the destination operand is arithmetically shifted one bit to the right, and the specified
address register is incremented by 1. If the accumulator is normalized or zero, a NOP is
executed and the specified address register is not affected. Since the operation of the
NORM instruction depends on the E, U, and Z condition code register bits, these bits must
correctly reflect the current state of the destination accumulator prior to executing the
NORM instruction.

Condition Codes

CCR

* V. Setif bit 55 is changed as a result of a left shift
v This bit is changed according to the standard definition
— This bit is unchanged by the instruction

Instruction Formats and Opcode

23 16 15 8 7 0
NORM RnD [0 0000001[11011RRR[00DO01d10 1]

13-146 DSP56300 Family Manual Motorola

NORMF Fast Accumulator Normalization NORMF

Operation Assembler Syntax
If S[23] = 0 then ASR S,D NORMF S,D
else ASL -S,D

Instruction Fields

{S} sss Source register [X0,X1,Y0,Y1,Al1,B1] (sdable 12-13
on page 12-22)
{D} D Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

Description Arithmetically shift the destination accumulator either left or right as

specified by the source operand sign and value. If the source operand is negative then the
accumulator is left shifted, and if the source operand is positive then it is right shifted. The
source accumulator value should be between +56 to -55 (or +40 to -39 in sixteen bit
mode). This instruction can be used to normalize the specified accumulator D, by
arithmetically shifting it either left or right so as to bring the leading one or zero to bit
location 46. The number of needed shifts is specified by the source operand. This number
could be calculated by a previous CLB instruction. For normalization the source
accumulator value should be between +8 to -47 (or +8 to -31 in Sixteen- bit Arithmetic
mode). NORMF is a 56 bit operation.

Condition Codes

CCR

*

V- Set if bit 39 is changed any time during the shift operation, and cleared otherwise.
v Changed according to the standard definition.
— Unchanged by the instruction.

Example

CLB AB ;Count leading bits
NORMF B1LA ;:Normalize A.

If the base exponent is stored in R1 it can be updated by the following commands:

MOVE B1,N1 ;Update N1 with shift amount
MOVE (RD)+N1 ;Increment or decrement exponent

Motorola 13-147

N O R M F Fast Accumulator Normalization N O R M F

Prior to execution, the 56-bit A accumulator contains the value $20:0000:0000. The CLB
instruction updates the B accumulator to the number of needed shifts, seven in this
example. The NORMF instruction performs seven shifts to the right on A accumulator,
and normalization of A is achieved. The exponent register is updated according to the
number of shifts.

Before execution After execution
CLB AB A: $20:0000:0000 B: $00:0007:0000
NORMF B1,A A: $20:0000:0000 A: $00:4000:0000

Instruction Formats and Opcode

23 16 15 8 7 0
NORMF S,D |00001100000111100010335D

13-148 DSP56300 Family Manual Motorola

NOT Logical Complement NOT

Operation Assembler Syntax
D[31:16] fi D[31:16] (parallel move) NOT D (parallel move)
where “—”" denotes the logical NOT operator.

Instruction Fields

oy d Destination accumulator [A,B] (s@@ble 12-13on page 12-22)

Description ~ Take the one’s complement of bits 47—-24 of the destination operand D and
store the result back in bits 47—24 of the destination accumulator. This is a 24-bit
operation. The remaining bits of D are not affected.

Condition Codes

CCR

* N Setif bit 47 of the result is set.

* Z Setif bits 47-24 of the result are 0.

* V. Always cleared.

v Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes
23 16 15 8 7 0

NOT D Data Bus Move Field 0 00 1|d1 11
Optional Effective Address Extension

Motorola 13-149

O R Logical Inclusive OR O R

Operation Assembler Syntax

S 00 D[47:24] — D[47:24] (parallel move) ORSD (parallel move)
#xx 0 D[47:24] - D[47:24] OR #xx,D

#xxxx O D[47:24] - D[47:24] OR #xxxx,D

wherel] denotes the logical inclusive OR operator.

Instruction Fields

{s} 3 Source input register [X0,X1,Y0,Y1] (sd@able 12-13
on page 12-22)
{0} d Destination accumulator [A/B] (sd@able 12-13on page 12-22)
{#xx} il 6-bit Immediate Short Data
{#xxxx} 24-bit Immediate Long Data extension word

Description Logically inclusive OR the source operand S with Bits24 of the

destination operand D and store the result indyits24 of the destination accumulator.

The source can be a 24-bit register, 6-bit short immediate, or 24-bit long immediate. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected. When using 6-bit immediate data, the data is interpreted as an unsigned integer.
That is, the six bits are right aligned, and the remaining bits are zeroed to form a 16-bit
source operand.

Condition Codes

CCR

* N Setif bit 47 of the result is set.

* Z Setif bits 47-24 of the result are 0.

* V. Always cleared.

v Changed according to the standard definition.
— Unchanged by the instruction.

13-150 DSP56300 Family Manual Motorola

O R Logical Inclusive OR O R

Instruction Formats and Opcodes

23 16 15 8 7 0
ORS,D Data Bus Move Field 01 J J(d o010
Optional Effective Address Extension

23 16 15 8 7 0
OR #xx,D 0000000U1[01 i i i i i i|]1000dO0 10
23 16 15 8 7 0
OR #xxxx,D 000000O00O0TU1/01000000[1100dO0T10

Immediate Data Extension

Motorola 13-151

OR| OR Immediate With Control Register OR|

Operation Assembler Syntax

#xx+D - D OR(l) #xx,D

where + denotes the logical inclusive OR operator.

Instruction Fields

{0} EE Program Controller register [MR,CCR,COM,EOM] (Skstble 12-13
on page 12-22)
it il Immediate Short Data
Description Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The

condition codes are affected only when the Condition Code Register (CCR) is specified as
the destination operand.

Condition Codes

CCR

For CCR Operand:

* S Setif bit 7 of the immediate operand is set.
Set if bit 6 of the immediate operand is set.
Set if bit 5 of the immediate operand is set.
Set if bit 4 of the immediate operand is set.
Set if bit 3 of the immediate operand is set.
Set if bit 2 of the immediate operand is set.
Set if bit 1 of the immediate operand is set.
* € Setif bit 0 of the immediate operand is set.
For MR and OMR Operands:

The condition codes are not affected using these operands.

*
< N Z Cc m r

Instruction Formats and Opcodes

23 16 15 8 7 0
OR(l) #xx,D loooooo0o0o0fi i i i iiiil]t111110EE|

13-152 DSP56300 Family Manual Motorola

PFLUSH Program Cache Flush PFLUSH

Operation Assembler Syntax

Flush instruction cache PFLUSH

Instruction Fields

None

Description Flush the whole instruction cache, unlock all cache sectors, set the LRU
stack and tag registers to their default values. The PFLUSH instruction is enabled only in
Cache Mode. When the cache is disabled, execution of this instruction causes an illegal

instruction trap.

Condition Codes

CCR

— This bit is unchanged by the instruction

Instruction Formats and Opcode

23 16 15 8 7 0
|OOOOOOOOOOOOOOOOOOOOOO11

PFLUSH

Motorola 13-153

PFLUSHUN PFLUSHUN

Program Cache Flush Unlocked Sections

Operation Assembler Syntax

Flush Unlocked instruction cache sectors PFLUSHUN

Instruction Fields

None

Description Flush the instruction cache sectors that are unlocked, set the LRU stack to its
default value and set the unlocked tag registers to their default values. The PFLUSHUN
instruction is enabled only in Cache mode. When the cache is disabled, execution of this

instruction causes an illegal instruction trap.

Condition Codes

CCR

— This bit is unchanged by the instruction

Instruction Formats and Opcode

23 16 15 8 7 0
PFLUSHUN |OOOOOOOOOOOOOOOOOOOOOOO1

13-154 DSP56300 Family Manual Motorola

PFREE Program Cache Global Unlock PFREE

Operation Assembler Syntax

Unlock all locked sectors PFREE

Instruction Fields

None

Description Unlock all the locked cache sectors in the instruction cache. The PFREE
instruction is enabled only in Cache Mode. When the cache is disabled, execution of this

Instruction causes an illegal instruction trap.

Condition Codes

— Unchanged by the instruction

Instruction Formats and Opcode

23 16 15 8 7 0
|000000000000000000000010

PFREE

Motorola 13-155

PLOCK PLOCK

Lock Instruction Cache Sector

Operation Assembler Syntax

Lock sector by effective address PLOCK ea

Instruction Fields
{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

Description Lock the cache sector to which the specified effective address belongs. If the
specified effective address does not belong to any cache sector and is therefore definitely
locked, nevertheless, load the least recently used cache sector tag with thel7 most
significant bits of the specified address. Update the LRU stack accordingly. All memory
alterable addressing modes can be used for the effective address, but not a short absolute
address. The PLOCK instruction is enabled only in Cache mode. In PRAM mode it causes
an illegal instruction trap.

Condition Codes

CCR
— Unchanged by the instruction
Instruction Formats and Opcodes
23 16 15 8 7 0
PUNLOCK ea 0oo0oo001011j1 1T MMMRRR[(10O0OOU OT O1

Address Extension Word

13-156 DSP56300 Family Manual Motorola

PLOCKR PLOCKR

Lock Instruction Cache Relative Sector

Operation Assembler Syntax

Lock sector by PC+xxxx PLOCKR Xxxx

Instruction Fields
None

Description Lock the cache sector to which the sum PC + specified displacement

belongs. If the sum does not belong to any cache sector, then load the 17 most significant
bits of the sum into the least recently used cache sector tag, and then lock that cache
sector. Update the LRU stack accordingly. The displacement is a twos-complement 24-bit
integer that represents the relative distance from the current PC to the address to be
locked. The PLOCKR instruction is enabled only in Cache Mode. When the cache is
disabled, execution of this instruction causes an illegal instruction trap.

Condition Codes

CCR
— Unchanged by the instruction
Instruction Formats and Opcodes
23 16 15 8 7 0
PLOCKR XXXX 00O0O0O0OOOOOODODOODOOOIOOOO0O1T 111

ADDRESS EXTENSION WORD

Motorola 13-157

PUNLOCK PUNLOCK

Unlock Instruction Cache Sector

Operation Assembler Syntax

Unlock sector by effective address PUNLOCK ea

Instruction Fields

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

Description Unlock the cache sector to which the specified effective address belongs. If
the specified effective address does not belong to any cache sector, and is therefore
definitely unlocked, nevertheless, load the least recently used cache sector tag with thel7
most significant bits of the specified address. Update the LRU stack accordingly. All
memory alterable addressing modes may be used for the effective address, but not a short
absolute address. The PUNLOCK instruction is enabled only in Cache mode. In PRAM
mode it causes an illegal instruction trap.

Condition Codes

CCR
— Unchanged by the instruction
Instruction Formats and Opcodes
23 16 15 8 7 0
PUNLOCK ea 0000101011 MMMRRRI10O0O OO OT O?1

Address Extension Word

13-158 DSP56300 Family Manual Motorola

PUNLOCKR PUNLOCKR

Unlock Instruction Cache Relative Sector

Operation Assembler Syntax

Unlock sector by PC+xxxx PUNLOCKR XXXX

Instruction Fields

None

Description Unlock the cache sector to which the sum PC + specified displacement
belongs. If the sum does not belong to any cache sector, and is therefore definitely
unlocked, nevertheless, load the least recently used cache sector tag with the 17 most
significant bits of the sum. Update the LRU stack accordingly. The displacement is a
twos-complement 24-bit integer that represents the relative distance from the current PC
to the address to be locked. The PUNLOCKR instruction is enabled only in Cache mode.
In PRAM mode it causes an illegal instruction trap.

Condition Codes

CCR

— Unchanged by the instruction
Instruction Formats and Opcodes
23 16 15 8 7 0

PUNLOCKR XXXX 000O0OOOOOOOOOOOOOIOOOO1I110O0
Address Extension Word

Motorola 13-159

REP Repeat Next Instruction REP

Operation Assembler Syntax
LC -~ TEMP; [Xory]:ea - LC REP [XorY]ea
Repeat next instruction until LC = 1

TEMP - LC

LC - TEMP; [Xor Y]:aa - LC REP [XorY]aa
Repeat next instruction until LC = 1

TEMP - LC

LC - TEMP;S - LC REP S

Repeat next instruction until LC = 1

TEMP - LC

LC - TEMP;#xxx - LC REP HXXX
Repeat next instruction until LC = 1

TEMP - LC

Instruction Fields

{ea} MMMRRR Effective Address
xmy s Memory Space [X,Y

yop [X,Y] SeeTable 12-13
la} aaaaaa Absolute Short Address on page 12-22
{#xxx} hhhhiiiiii Immediate Short Data Pag
{s} dddddd Source register [all on-chip registers]

Description ~ Repeat the single-word instruction immediately following the REP

instruction the specified number of times. The value specifying the number of times the
given instruction is to be repeated is loaded into the 24-bit loop counter (LC) register. The
single-word instruction is then executed the specified number of times, decrementing the
loop counter (LC) after each execution until LC = 1. When the REP instruction is in effect,
the repeated instruction is fetched only one time, and it remains in the instruction register
for the duration of the loop count. Thus, the REP instruction is not interruptible
(sequential repeats are also not interruptible). The current loop counter (LC) value is
stored in an internal temporary register. If LC is set equal to zero, the instruction is
repeated 65,536 times. The instruction’s effective address specifies the address of the
value which is to be loaded into the loop counter (LC). All address register indirect
addressing modes can be used. The absolute short and the immediate short addressing
modes may also be used. The four MS bits of the 12-bit immediate value are zeroed to
form the 24-bit value that is to be loaded into the loop counter (LC).

If the System Stack register SSH is specified as a source operand, the system Stack
Pointer (SP) is post-decremented by 1 after SSH has been read.

13-160 DSP56300 Family Manual Motorola

REP Repeat Next Instruction REP

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
REP [X or Y]:ea loo0o00110/01MMMRRR|[0OS 10000 0]
23 16 15 8 7 0
REP [Xor Y]:aa [0 00001 10[/00aaaaaal0S10000 0]
23 16 15 8 7 0
REP #xxx 000001 10]i i i i iiiilt1010hhhh]
23 16 15 8 7 0
REP S [0 00001 10[11ddddddlo010000 0]

Motorola 13-161

RES ET Reset On-Chip Peripheral Devices RES ET

Operation Assembler Syntax

Reset the interrupt priority register and all RESET
on-chip peripherals

Instruction Fields
None.

Descripton ~ Reset the interrupt priority register and all on-chip peripherals. This is a
software reset, which isotequivalent to a hardwarESET since only on-chip peripherals

and the interrupt structure are affected. The processor state is not affected, and execution
continues with the next instruction. All interrupt sources are disabled except for the stack
error, NMI, illegal instruction, Trap, Debug request, and hardware reset interrupts.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and Opcode
23 16 15 8 7 0
RESET |000000000000000010000100

13-162 DSP56300 Family Manual Motorola

RND Round Accumulator RND

Operation Assembler Syntax

D+r-D (parallel move) RND D (parallel move)

Instruction Fields
oy d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

Descripion Round the 56-bit value in the specified destination operand D and store the
result in the destination accumulator (A or B). The contribution of the LSBs of the
operand is rounded into the upper portion of the operand by adding a rounding constant to
the LSBs of the operand. The upper portion of the destination accumulator contains the
rounded result. The boundary between the lower portion and the upper portion is
determined by the scaling mode bits SO and S1 in the Status Register (SR).

Two types of rounding can be used: convergent rounding (also called round to nearest
(even)) or twos-complement rounding. The type of rounding is selected by the Rounding
Mode bit (RM) in the MR portion of the SR. In both rounding modes a rounding constant
Is first added to the unrounded result. The value of the rounding constant added is
determined by the scaling mode bits SO and S1 in theASRis positioned in the rounding
constant aligned with the MSB of the current LS portion, that is, the rounding constant
weight is actually equal to half the weight of the upper portion’s LSB. The following table
shows the rounding position and rounding constant as determined by the scaling mode
bits:

Rounding Rounding Constant
S1 S0 Scaling Mode Position 55-25 24 23 22 21-0
0 No Scaling 23 0....0
1 Scale Down 24 0....0
0 Scale Up 22 0....0

If convergent rounding is used, the result of this addition is tested and if all the bits of the
result to the right of, and including, the rounding position are cleared, then the bit to the
left of the rounding position is cleared in the result. This ensures that the result is not
biased. In both rounding modes, the Least Significant Bits (LSBs) of the result are cleared.
The number of LSBs cleared is determined by the Scaling Mode bits in the Status Register
(SR). All bits to the right of and including the rounding position are cleared in the result.

In Sixteen-bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D) is
rounded and stored in the destination accumulator (A or B). This implies that the

Motorola 13-163

R N D Round Accumulator R N D

boundary between the lower portion and upper portion is in a different position then in 24
bit mode. The following table shows the rounding position and rounding constant in
sixteen bit arithmetic mode, as determined by the scaling mode bits:

Rounding Rounding Constant
S1 SO Scaling Mode Position 55 - 33 32 23 22 21-8
0 No Scaling 31 0....0 0
1 Scale Down 32 0....0
0 Scale Up 30 0....0

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes

23 16 15 8 7 0
RND D Data Bus Move Field 0 00 1|d 0 01
Optional Effective Address Extension
Motorola

13-164 DSP56300 Family Manual

R O L Rotate Left R O L

Operation

47 24
L C
Assembler Syntax
ROL D (parallel move)
Instruction Fields
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

Description Rotate bits 47-24 of the destination operand D one bit to the left and store the
result in the destination accumulator.The Carry bit (C) receives the previous value of bit
47 of the operand.The previous value of the C bit is shifted into bit 24 of the operand.This
instruction is a 24-bit operation. The remaining bits of destination operand D are not
affected.

Condition Codes

CCR

Set if bit 47 of the result is set.

Set if bits 47-24 of the result are 0.

This bit is always cleared.

Set if bit 47 of the destination operand is set, and cleared otherwise.
v Changed according to the standard definition.

— Unchanged by the instruction.

*
0O < N Z2

Instruction Formats and Opcodes

23 16 15 8 7 0
ROL D Data Bus Move Field 001 1|d111
Optional Effective Address Extension

Motorola 13-165

ROR Rotate Right ROR

Operation

47 24
— Cc—> (parallel move)
Assembler Syntax
ROR D (parallel move)
Instruction Fields
{0} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

Description Rotate bits 47—24 of the destination operand D one bit to the right and store
the result in the destination accumulator.The Carry bit (C) receives the previous value of
bit 24 of the operand.The previous value of the C bit is shifted into bit 47 of the operand.
This instruction is a 24-bit operation. The remaining bits of destination operand D are not
affected.

Condition Codes

CCR

Set if bit 47 of the result is set.

Set if bits 47-24 of the result are 0.

Always cleared.

Set if bit 47 of the destination operand is set, and cleared otherwise.
v Changed according to the standard definition.

— Unchanged by the instruction.

*
0O < N 2

Instruction Formats and Opcodes

23 16 15 8 7 0
ROR D Data Bus Move Field 00 10|d111
Optional Effective Address Extension

13-166 DSP56300 Family Manual Motorola

RT' Return From Interrupt RT'

Operation Assembler Syntax

SSH - PC;SSL -~ SR;SP-1 - SP RTI

Instruction Fields

None.

Description Pull the Program Counter (PC) and the Status Register (SR) from the system
stack. The previous PC and SR values are lost.

Condition Codes

CCR

Set according to the value pulled from the stack.
Set according to the value pulled from the stack.
Set according to the value pulled from the stack.
Set according to the value pulled from the stack.
Set according to the value pulled from the stack.
Set according to the value pulled from the stack.
Set according to the value pulled from the stack.
Set according to the value pulled from the stack.

*
O < N Z Cc mr— o»

Instruction Formats and Opcode

23 16 15 8 7 0
RTI |000000000000000000000100

Motorola 13-167

RTS Return From Subroutine RTS

Operation Assembler Syntax

SSH - PC;SP-1 - SP RTS

Instruction Fields
None.

Description Pull the Program Counter (PC) from the system stack. The previous PC value
is lost. The Status Register (SR) is not affected.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and Opcode
23 16 15 8 7 0
RTS |000000000000000000001100

13-168 DSP56300 Family Manual Motorola

S B C Subtract Long With Carry S B C

Operation Assembler Syntax

D-S-C-D (parallel move) SBC S,D (parallel move)

Instruction Fields

{s} J Source register [X,Y] (se€able 12-13on page 12-22)
{0y d Destination accumulator [A,B] (s@@ble 12-13on page 12-22)

Description ~ Subtract the source operand S and the Carry bit(C) from the destination
operand D and store the result in the destination accumulator. Long words (48-bit words)
are subtracted from the 56-bit destination accumulator. Note that the C bit is set correctly
for multiple-precision arithmetic using long-word operands if the extension register of the
destination accumulator (A2 or B2) is the sign extension of bit 47 of the destination
accumulator (A or B).

Condition Codes

CCR

V. Changed according to the standard definition.
Instruction Formats and Opcodes
23 16 15 8 7 0

SBC S,D Data Bus Move Field 0 01 J(d1o01
Optional Effective Address Extension

Motorola 13-169

STO P Stop Instruction Processing STO P

Operation Assembler Syntax

Enter the stop processing state and stop the STOP
clock oscillator

Instruction Fields

None

Description Enter the Stop processing state. All activity in the processor is suspended
until theRESET or IRQA pin is asserted or the Debug Request JTAG command is detected.
The clock oscillator is gated off internally. The Stop processing state is a low-power
standby state. During the Stop state, the destination port is in an idle state with the control
signals held inactive, the data pins are high impedance, and the address pins are
unchanged from the previous instruction. If the exit from the Stop state is caused by a low
level on theRESET pin, then the processor enters the reset processing state. If the exit from
the Stop state was caused by a low level ofripe pin, then the processor will service

the highest priority pending interrupt and will not servicel®@a interrupt unless it is
highest priority. If no interrupt is pending, the processor will resume program execution at
the instruction following the STOP instruction that caused the entry into the Stop state.
Program execution (interrupt or normal flow) resumes after an internal delay counter
counts:

= If the Stop Delay (SD, OMR[6]) bit is cleared—131,070 clock cycles

= If the Stop Delay (SD, OMR][6]) bit is set—24 clock cycles

= If the Stop Processing State (PSTP, PCTL1[5]) is set—8.5 clock cycles
During the clock stabilization count delay, all peripherals and external interrupts are
cleared and re-enabled/arbitrated at the end of the count interval IRGA®in is asserted

when the STOP instruction is executed, the clock is not gated off, and only the internal
delay counter is started.

Condition Codes

CCR

— Unchanged by the instruction.

13-170 DSP56300 Family Manual Motorola

STO P Stop Instruction Processing STO P

Instruction Formats and Opcode

23 16 15 8 7 0
STOP |000000000000000010000111

Motorola 13-171

SUB Subtract SUB

Operation Assembler Syntax

D-S - D (parallel move) SUB S, D (parallel move)
D—-#xx - D SUB #xx, D

D — #xxxx - D SUB #xxxx,D

Instruction Fields

{s} 333 Source register [B/A,X,Y,X0,Y0,X1,Y1] (s€kable 12-13
on page 12-22)
{D} d Destination accumulator [A/B] (s@@ble 12-13on page 12-22)
{#xx} i 6-bit Immediate Short Data
{xooex) 24-bit Immediate Long Data extension word

Description Subtract the source operand from the destination operand D and store the
result in the destination operand D. The source can be a register (24-bit word, 48-bit long
word, or 56-bit accumulator), 6-bit short immediate, or 24-bit long immediate. When
using 6-bit immediate data, the data is interpreted as an unsigned integer. That is, the six
bits are right-aligned and the remaining bits are zeroed to form a 16-bit source operand.
Note that the Carry bit (C) is set correctly using word or long-word source operands if the
extension register of the destination accumulator (A2 or B2) is the sign extension of bit 47
of the destination accumulator (A or B). The C bit is always set correctly using
accumulator source operands.

Condition Codes

CCR

V. Changed according to the standard definition.

13-172 DSP56300 Family Manual Motorola

SUB

Instruction Formats and Opcodes

SUB S,D

SUB #xx,D

SUB #xxxx,D

SUB

Subtract
23 16 15 8 7 0
Data Bus Move Field 0J JJjd1l1o0O
Optional Effective Address Extension
23 16 15 8 7 0
000O0OO0OOT12(012 i i i i i i|/|2 00 0d100
23 16 15 8 7 0

0 000OO0O0O01

01 00000O00O

1100d100

Immediate Data Extension

Motorola

13-173

S U B L Shift Left and Subtract Accumulators S U B L

Operation Assembler Syntax

20b-S - D (parallel move) SUBL S,D ((parallel move)

Instruction Fields

oy d Destination accumulator [A,B] (s@@ble 12-13on page 12-22)
{s} The source accumulator is B if the destination accumulator (selected by
thed bit in the opcode) is A, or A if the destination accumulator is B

Description Subtract the source operand S from two times the destination operand D and
store the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the left, and a 0 is shifted into the LSB of D prior to the subtraction
operation. The Carry bit (C) is set correctly if the source operand does not overflow as a
result of the left shift operation. The Overflow bit (V) may be set as a result of either the
shifting or subtraction operation (or both). This instruction is useful for efficient divide
and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

CCR

* vV Setif overflow has occurred in the result or if the MS bit of the destination
operand is changed as a result of the instruction’s left shift
v Changed according to the standard definition

Instruction Formats and Opcodes

23 16 15 8 7 0
SUBL S,D Data Bus Move Field 0 0O 1({d 1 1 0
Optional Effective Address Extension

13-174 DSP56300 Family Manual Motorola

SU BR Shift Right and Subtract Accumulators SUBR

Operation Assembler Syntax

D/2-S D (parallel move) SUBR S,D parallel move)

Instruction Fields

{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
{s} The source accumulator is B if the destination accumulator (selected by
thed bit in the opcode) is A, or A if the destination accumulator is B

Description Subtract the source operand S from one-half the destination operand D and
store the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the right while the MS bit of D is held constant prior to the subtraction
operation. In contrast to the SUBL instruction, the Carry bit (C) is always set correctly,
and the Overflow bit (V) can only be set by the subtraction operation, and not by an
overflow due to the initial shifting operation. This instruction is useful for efficient divide
and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

CCR

V. Changed according to the standard definition.
Instruction Formats and Opcodes
23 16 15 8 7 0

SUBR S,D Data Bus Move Field 0 00 O0|d110
Optional Effective Address Extension

Motorola 13-175

Tcc Transfer Conditionally Tcc

Operation Assembler Syntax

If cc, then S1 - D1 Tcc S1,D1

If cc, then S1 -~ D1 and S2 - D2 Tce S1,D1 S2,D2
If cc, then S2 - D2 Tcc S2,D2

Instruction Fields

{cc} ccece Condition code (se€able 12-16on page 12-24)

{s1} 34 Source register [B/A,X0,Y0,X1,Y1] (sekable 12-16
on page 12-24)
{D1} d Destination accumulator [A/B] (s@&able 12-130on page 12-22)
{sz} tit Source address register [RO-R7]
{D2} T Destination Address register [RO—R7]

Description Transfer data from the specified source register S1 to the specified
destination accumulator D1 if the specified condition is true. If a second source register S2
and a second destination register D2 are also specified, transfer data from address register
S2 to address register D2 if the specified condition is true. If the specified condition is
false, a NOP is executed. The conditions that “cc” can specify are listeabten12-16

on page 12-24. When used after the CMP or CMPM instructions, the Tcc instruction can
perform many useful functions, such as a “maximum value,” “minimum value,”
“maximum absolute value,” or “minimum absolute value” function. The desired value is
stored in the destination accumulator D1. If address register S2 is used as an address
pointer into an array of data, the address of the desired value is stored in the address
register D2. The Tcc instruction may be used after any instruction and allows efficient
searching and sorting algorithms. The Tcc instruction uses the internal Data ALU paths
and internal Address ALU paths. It does not affect the condition code bits.

Condition Codes

— Unchanged by the instruction.

13-176 DSP56300 Family Manual Motorola

Tcc Transfer Conditionally Tcc

Instruction Formats and Opcode

23 16 15 8 7 0
Tce S1,D1 loooo00010[/cccco000[0JJJdooo
23 16 15 8 7 0
Tee S1,D1 S2,D2 loooo0o0011[/ccccottt|/0oJJJdTTT]|
23 16 15 8 7 0
Tce S2,D2 loooooo010[/cccci1ttt/looo000TTT|

Motorola 13-177

TFR Transfer Data ALU Register TFR

Operation Assembler Syntax

S-D (parallel move) TFR S,.D (parallel move)

Instruction Fields

{s} SAN Source register [B/A,X0,Y0,X1,Y1] (s€eable 12-160n page 12-24)
{D} d Destination accumulator [A/B] (s@@ble 12-13on page 12-22)

Description Transfer data from the specified source Data ALU register S to the specified
destination Data ALU accumulator D. TFR uses the internal Data ALU data paths; thus,
data does not pass through the data shifter/limiters. This allows the full 56-bit contents of
one of the accumulators to be transferred into the other accumwititout data shifting
and/or limiting. Moreover, since TFR uses the internal Data ALU data paths, parallel
moves are possible.

Condition Codes

CCR

V. Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes
23 16 15 8 7 0

TFR S,D Data Bus Move Field 0J J Jljd 0O 0 1
Optional Effective Address Extension

13-178 DSP56300 Family Manual Motorola

TRAP Software Interrupt TRAP

Operation Assembler Syntax

Begin trap exception process TRAP

Instruction Fields

None

Description Suspend normal instruction execution and begin TRAP exception
processing. The Interrupt Priority Level (11,10) is set to 3 in the Status Register (SR) if a
long interrupt service routine is used.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and Opcode
23 16 15 8 7 0
TRAP |000000000000000000000110

Motorola 13-179

TRAPCcC Conditional Software Interrupt TRAPCC

Operation Assembler Syntax

If cc then begin software exception processing TRAPcc

Instruction Fields

{cc} CCCC Condition code (se€able 12-18on page 12-28)

Description If the specified condition is true, normal instruction execution is suspended
and software exception processing is initiated. The Interrupt Priority Level (11,10) is set to
3 in the Status Register (SR) if a long interrupt service routine is used. If the specified
condition is false, instruction execution continues with the next instruction. The
conditions that the term “cc” can specify are listedrable 12-18on page 12-28.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and Opcode
23 16 15 8 7 0
TRAPcc |00000000000000000001CCCC

13-180 DSP56300 Family Manual Motorola

TST Test Accumulator TST

Operation Assembler Syntax

S-0 (parallel move) TSTS (parallel move)

Instruction Fields
{s} d Source accumulator [A,B] (sdable 12-13on page 12-22)

Descripion ~ Compare the specified source accumulator S with 0 and set the condition
codes accordingly. No result is stored although the condition codes are updated.

Condition Codes

CCR

* V. Always cleared.
v Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and Opcodes
23 16 15 8 7 0

TSTS Data Bus Move Field 0 0 0 O0|d O 11
Optional Effective Address Extension

Motorola 13-181

VSL Viterbi Shift Left VSL

Operation Assembler Syntax

S[47:24] - X:ea; {S[23:0],i} - Y:ea VSL S,i,L:ea

Instruction Fields

{s} S Source register A,B (sé@able 12-13on page 12-22)

{i} i Bit value, O or 1 to be placed in the least significant bit of
Y:<ea>

{ea} MMMRRR Effective address (sélable 12-13on page 12-22)

Description Store the most significant part (24 bits) of the source accumulator at X
memory (at effective address location), while for the least significant part (24 bits) of the
source accumulator shift one bit to the left and insert O or 1 at the Least Significant Bit,
according to operand i, and store the result at Y memory at the same address. This
instruction enhances Viterbi algorithm performance.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and Opcodes
23 16 15 8 7 0
VSL S,i,L:ea 0000101S(1l1MMMRRR|110i|0O0O0O

Optional Effective Address Extension

13-182 DSP56300 Family Manual Motorola

WA'T Wait for Interrupt or DMA Request WA'T

Operation Assembler Syntax

Disable clocks to the processor core and WAIT
enter the Wait processing state

Instruction Fields

None

Description Enter the low-power standby Wait processing state. The internal clocks to

the processor core and memories are gated off, and all activity in the processor is
suspended until an unmasked interrupt occurs. The clock oscillator and the internal I/O
peripheral clocks remain active. If the WAIT instruction is executed when an interrupt is
pending, the interrupt is processed. The effect is the same as if the processor never entered
the Wait state. When an unmasked interrupt or external (hardware) processor reset occurs,
the processor leaves the Wait state and begins exception processing of the unmasked
interrupt or reset condition. The processor also exits from the Wait state when the Debug
RequestiE) pin is asserted or when a Debug Request JTAG command is detected.

Condition Codes

CCR
— Unchanged by the instruction
Instruction Formats and Opcode
23 16 15 8 7 0
WAIT |000000000000000010000110

Motorola 13-183

13-184 DSP56300 Family Manual Motorola

	INSERT Insert Bit Field INSERT
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	q
	q
	q
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	q
	q
	q
	0
	0
	0
	D
	Control Word Extension

	Jcc Jump Conditionally Jcc
	Condition code (see Table 12-18 on�page�12�28)
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the location in program memory given by the instruction’s effective address i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	1
	0
	C
	C
	C
	C
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	1
	0
	C
	C
	C
	C
	Optional Effective Address Extension

	JCLR Jump if Bit Clear JCLR
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	24-bit absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the 24-bit absolute address in program memory specified in the instruction’s ...

	JCLR Jump if Bit Clear JCLR
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	b
	b
	b
	b
	Absolute Address Extension

	JMP Jump JMP
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the location in program memory given by the instruction’s effective address. ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a

	JScc Jump to Subroutine Conditionally JScc
	Condition code (see Table 12-18 on�page�12�28)
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine whose location in program memory is given by the instruction’s...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	1
	1
	C
	C
	C
	C
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	1
	0
	C
	C
	C
	C

	JSCLR Jump to Subroutine if Bit Clear JSCLR
	Bit number [0–23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	24-bit absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
	Source register [all on-chip registers]
	Description�Jump to the subroutine at the 24-bit absolute address in program memory specified in ...

	JSCLR Jump to Subroutine if Bit Clear JSCLR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	q
	q
	q
	q
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	b
	b
	b
	b
	Absolute Address Extension

	JSET Jump if Bit Set JSET
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	24-bit Absolute Address in extension word
	Absolute Address [0 – 63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the 24-bit absolute address in program memory specified in the instruction’s ...

	JSET Jump if Bit Set JSET
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	1
	0
	b
	b
	b
	b
	Absolute Address Extension

	JSR Jump to Subroutine JSR
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine whose location in program memory is given by the instruction’s...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	0
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a

	JSSET Jump to Subroutine if Bit Set JSSET
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	24-bit PC absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine at the 24-bit absolute address in program memory specified in ...

	JSSET Jump to Subroutine if Bit Set JSSET
	state of the nth bit. All address register indirect addressing modes can be used to reference the...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	q
	q
	q
	q
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	1
	0
	b
	b
	b
	b
	Absolute Address Extension

	LRA Load PC-Relative Address LRA
	Address register [R0–R7]
	Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-16 on�...
	24-bit PC Long Displacement
	Description�The PC is added to the specified displacement and the result is stored in destination...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	1
	0
	0
	0
	R
	R
	R
	0
	0
	0
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	d
	d
	d
	d
	d
	Long Displacement

	LSL Logical Shift Left LSL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	5-bit unsigned integer [0–16] denoting the shift amount
	Single-bit shift: Logically shift Bits 47–24 of the destination operand D one bit to the left and...
	Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted left #ii...

	This is a 24-bit operation. The remaining bits of the destination accumulator are not affected. T...

	LSL Logical Shift Left LSL
	Set if Bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and cleare...
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	D
	0
	1
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	1
	0
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	1
	s
	s
	s
	D

	LSR Logical Shift Right LSR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	5-bit unsigned integer [0–23] denoting the shift amount
	Description�
	Single-bit shift: Logically shift bits 47–24 of the destination operand D one bit to the right an...
	Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted right #i...

	This is a 24-bit operation. The remaining bits of the destination register are not affected. The ...

	LSR Logical Shift Right LSR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	Set if Bit 47 of the result is set.
	Set if Bits 47–24 of the result are 0.
	Always cleared.
	Set if the last bit shifted out of the operand is set, cleared for a shift count of zero, and cle...
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	1
	s
	s
	s
	D

	LUA Load Updated Address LUA
	Effective address (see Table 12-13 on�page�12�22)
	Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-16 on�...
	Destination address register [R0–R7,N0–N7] (see Table 12-16 on�page�12�24)
	7-bit sign extended short displacement address
	Source address register [R0–R7]
	Note: RRR refers to a source address register (R0–R7), while dddd/ddddd refer to a destination ad...

	Description�Load the updated address into the destination address register D. The source address ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	LUA Load Updated Address LUA
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0
	M
	M
	R
	R
	R
	0
	0
	0
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	a
	a
	a
	R
	R
	R
	a
	a
	a
	a
	d
	d
	d
	d
	Note: LEA is a synonym for LUA. The simulator on-line disassembly translates the opcodes into LUA.

	MAC Signed Multiply Accumulate MAC
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	1
	0
	Optional Effective Address Extension
	Source registers S1,S2 [X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1] (see Table 12-16 on�page...
	Destination accumulator [A,B] (see Table 12-16 on�page�12�24)
	Sign [+,–] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	s
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	1
	0
	Source register [Y1,X0,Y0,X1]] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit source...

	MAC Signed Multiply Accumulate MAC
	Note that when the processor is in the Double Precision Multiply mode, the following instructions...
	MAC X1, Y0, A MAC X1, Y0, B
	MAC X0, Y1, A MAC X0, Y1, B
	MAC Y1, X1, A MAC Y1, X1, B
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	MACI MACI Signed Multiply Accumulate With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S and add/subtract the produ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	1
	0
	Immediate Data Extension

	MAC(su,uu) MAC(su,uu) Mixed Multiply Accumulate
	Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
	(see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	[ss,us] (see Table 12-16 on�page�12�24)
	Description�Multiply the two 24-bit source operands S1 and S2 and add/subtract the product to/fro...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	0
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	MACR Signed Multiply Accumulate and Round MACR
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	1
	1
	Optional Effective Address Extension
	Source registers S1,S2 [X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
	(see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	3
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	1
	1
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit source...

	MACR Signed Multiply Accumulate and Round MACR
	destination accumulator D are loaded with 0s to maintain an unbiased accumulator value that the n...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	MACRI MACRI Signed MAC and Round With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,-] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S, add/subtract the product ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	1
	1
	Immediate Data Extension

	MAX Transfer by Signed Value MAX
	Description�Subtract the signed value of the source accumulator from the signed value of the dest...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	*
	CCR
	*
	C
	This bit is cleared if the conditional transfer is performed, and set otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	1
	1
	0
	1
	Optional Effective Address Extension

	MAXM Transfer by Magnitude MAXM
	Description�Subtract the absolute value (magnitude) of the source accumulator from the absolute v...
	This bit is cleared if the conditional transfer was performed, and set otherwise.
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	0
	1
	0
	1
	Optional Effective Address Extension

	MERGE Merge Two Half Words MERGE
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on�page�12�24)
	Description�The contents of bits 11–0 of the source register are concatenated to the contents of ...
	Note:

	1. MERGE can be used in conjunction with EXTRACT or INSERT instructions to concatenate width and ...
	2. In Sixteen-bit Arithmetic mode, the contents of bits 15-8 of the source register are concatena...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	*
	*
	*
	—
	CCR
	Set if bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Unchanged by the instruction.

	MERGE Merge Two Half Words MERGE
	MOVE Move Data MOVE
	The DSP56300 (family) core provides a set of MOVE instructions. Table 12-14 lists these instructi...
	Table 12-14. Move Instructions

	MOVE
	Move Data
	page�12-110
	NO Parallel Data Move
	page�12-112
	I
	Immediate Short Data Move
	page�12-113
	R
	Register-to-Register Data Move
	page�12-116
	U
	Address Register Update
	page�12-117
	X:
	X Memory Data Move
	page�12-118
	X: R
	X Memory and Register Data Move
	page�12-120
	Y
	Y Memory Data Move
	page�12-122
	R: Y
	Register and Y Memory Data Move
	page�12-124
	L:
	Long Memory Data Move
	page�12-126
	X: Y
	X Memory Data Move
	page�12-128

	MOVE Move Data MOVE
	Description�Move the contents of the specified data source S to the specified destination D. This...
	Changed according to the standard definition.
	Unchanged by the instruction.
	Instruction Fields/ Parallel Move Description�Thirty of the sixty-two instructions allow an optio...

	NO Parallel Data Move
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	Description�Many instructions in the instruction set allow parallel moves. The parallel moves hav...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	(. . .)
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	Instruction opcode
	Instruction Format � (defined by instruction)

	I Immediate Short Data Move I
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	8-bit Immediate Short Data
	Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�page�12�22)
	Description�Move the 8-bit immediate data value (#xx) into the destination operand D. If the dest...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	I Immediate Short Data Move I
	23
	16
	15
	8
	7
	0
	0
	0
	1
	d
	d
	d
	d
	d
	i
	i
	i
	i
	i
	i
	i
	i
	Instruction opcode

	R Register-to-Register Data Move R
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves.
	Source register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A, B,R0–R7,N0–N7]
	See Table 12-13 on�page�12�22
	Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A, B,R0–R7,N0–N7]
	Description�Move the source register S to the destination register D. If the arithmetic or logica...
	If the opcode-operand portion of the instruction specifies a given source or destination register...

	R Register-to-Register Data Move R
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	e
	e
	e
	e
	e
	d
	d
	d
	d
	d
	Instruction opcode

	U Address Register Update U
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Update the specified address register according to the specified effective addressing...
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	1
	0
	M
	M
	R
	R
	R
	Instruction opcode

	X: X Memory Data Move X:
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves.
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	0
	d
	d
	d
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	0
	d
	d
	d
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode
	Effective Address (see Table 12-13 on�page�12�22)
	Read S / Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�...
	6-bit Absolute Short Address

	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	1
	0
	R
	R
	R
	1
	W
	D
	D
	D
	D
	D
	D
	Rn Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	1
	a
	a
	a
	a
	a
	a
	R
	R
	R
	1
	a
	0
	W
	D
	D
	D
	D

	X: X Memory Data Move X:
	Read S / Write D bit (see Table 12-16 on�page�12�24)
	7-bit sign extended Short Displacement Address
	Address register (R0–R7)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (see Table 12-16 on�page�12�24)
	Source/Destination registers [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified word operand from/to X memory. All memory addressing modes can be ...
	If the opcode-operand portion of the instruction specifies a given source or destination register...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	X:R X Memory and Register Data Move X:R
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	0
	0
	1
	f
	f
	d
	F
	W
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address (see Table 12-13 on�page�12�22)
	Read S1/Write D1 bit (see Table 12-16 on�page�12�24)
	S1/D1 register [X0,X1,A,B] (see Table 12-16 on�page�12�24)
	S2 accumulator [A,B] (see Table 12-13 on�page�12�22)
	D2 input register [Y0,Y1] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	d
	0
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address (see Table 12-13 on�page�12�22)
	Move opcode (see Table 12-16 on�page�12�24)

	X:R X Memory and Register Data Move X:R
	Class I: Move a one-word operand from/to X memory and move another word operand from an accumulat...
	Class II: Move one-word operand from a Data ALU accumulator to X memory and one-word operand from...
	For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode-operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	Y Y Memory Data Move Y
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	1
	d
	d
	d
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	1
	d
	d
	d
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode
	Effective Address (see Table 12-13 on�page�12�22)
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�...
	Absolute Short Address

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	1
	1
	0
	R
	R
	R
	1
	W
	D
	D
	D
	D
	D
	D
	Rn Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	1
	a
	a
	a
	a
	a
	a
	R
	R
	R
	1
	a
	1
	W
	D
	D
	D
	D

	Y Y Memory Data Move Y
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	7-bit sign extended Short Displacement Address
	Address register (R0–R7)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (see Table 12-16 on�page�12�24)
	Source/Destination registers [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified word operand from/to Y memory. All memory addressing modes can be ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	R:Y Register and Y Memory Data Move R:Y
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	0
	0
	1
	d
	e
	f
	f
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address
	See Table 12-13 on�page�12�22
	Read S2/Write D2 bit
	Table 12-16 on�page�12�24
	S1 accumulator [A,B]
	D1 input register [X0,X1]
	S2/D2 register [Y0,Y1,A,B]

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	d
	1
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	ea = 6-bit Effective Address (see Table 12-13 on�page�12�22)
	Move opcode (see Table 12-16 on�page�12�24)

	R:Y Register and Y Memory Data Move R:Y
	Description�
	Class I: Move a one-word operand from an accumulator (S1) to an input register (D1) and move anot...
	Class II: Move a one-word operand from a Data ALU accumulator to Y memory and a one-word operand ...

	For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode-operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	L: Long Memory Data Move L:
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	Effective Address
	Table 12-13 on�page�12�22
	Read S/Write D bit
	See Table 12-16 on�page�12�24
	Two Data ALU registers
	Absolute Short Address
	Description�Move one 48-bit long-word operand from/to X and Y memory. Two Data ALU registers are ...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...

	L: Long Memory Data Move L:
	instruction. Note that the operands A10, B10, X, Y, AB, and BA can be used only for a 32-bit long...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	As a result of the MOVE A,L:ea operation, a 48-bit positive or negative saturation constant is st...

	23
	16
	15
	8
	7
	0
	0
	1
	0
	0
	L
	0
	L
	L
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	0
	0
	L
	0
	L
	L
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode

	X: Y: XY Memory Data Move X: Y:
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	5-bit X Effective Address (R0–R3 or R4–R7)
	4-bit Y Effective Address (R4–R7 or R0–R3)
	S1/D1 register [X0,X1,A,B]
	S2/D2 register [Y0,Y1,A,B]
	See Table 12-13 on�page�12�22
	X move Operation Control (See Table 12-16 on�page�12�24)
	Y move Operation Control (See Table 12-16 on�page�12�24)
	Description�Move a one-word operand from/to X memory and move another word operand from/to Y memo...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...

	X: Y: XY Memory Data Move X: Y:
	If the instruction specifies an access to an internal X I/O and internal Y I/O modules (reflected...
	If the opcode-operand portion of the instruction specifies a given source or destination register...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	1
	w
	m
	m
	e
	e
	f
	f
	W
	r
	r
	M
	M
	R
	R
	R
	Instruction opcode

	MOVEC Move Control Register MOVEC
	Effective Address
	See Table 12-13 on�page�12�22
	Read S/Write D bit
	See Table 12-16 on�page�12�24
	Memory Space [X,Y]
	Program Controller register [M0–M7, VBA, SR, OMR, SP, SSH,SSL,LA,LC]
	aa = 6-bit Absolute Short Address
	S2/D2 register [all on-chip registers]
	#xx = 8-bit Immediate Short Data
	Description�Move the contents of the specified source control register S1 or S2 to the specified ...
	If the System Stack register SSH is specified as a source operand, the Stack Pointer (SP) is post...

	MOVEC Move Control Register MOVEC
	For D1 or D2 = SR operand:
	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth has been detected.

	*
	L
	Set if data limiting has occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	W
	1
	M
	M
	M
	R
	R
	R
	O
	S
	1
	d
	d
	d
	d
	d
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	W
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	e
	e
	e
	e
	e
	e
	1
	0
	1
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	1
	d
	d
	d
	d
	d

	MOVEM Move Program Memory MOVEM
	Effective Address (see Table 12-13 on�page�12�22)
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Absolute Short Address
	Description�Move the specified operand from/to the specified Program (P) memory location. This is...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR

	MOVEM Move Program Memory MOVEM
	For D1 or D2 = SR operand:
	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth has been detected.

	*
	L
	Set if data limiting has occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	1
	M
	M
	M
	R
	R
	R
	1
	0
	d
	d
	d
	d
	d
	d
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	0
	a
	a
	a
	a
	a
	a
	0
	0
	d
	d
	d
	d
	d
	d

	MOVEP Move Peripheral Data MOVEP
	Effective Address (see Table 12-13 on�page�12�22)
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Memory space [X,Y] (see Table 12-13 on�page�12�22)
	Peripheral space [X,Y] (see Table 12-13 on�page�12�22)
	Read/write-peripheral (see Table 12-13 on�page�12�22)
	Source/Destination register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified operand to or from the specified X or Y I/O peripheral. The I/O Sh...

	MOVEP Move Peripheral Data MOVEP
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	For D1 or D2 = SR operand:

	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth is detected.

	*
	L
	Set if data limiting occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	M
	M
	M
	R
	R
	R
	1
	S
	p
	p
	p
	p
	p
	p
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	1
	M
	M
	M
	R
	R
	R
	0
	S
	q
	q
	q
	q
	q
	q
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	0
	M
	M
	M
	R
	R
	R
	1
	S
	q
	q
	q
	q
	q
	q
	Optional Effective Address Extension

	MOVEP Move Peripheral Data MOVEP
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	M
	M
	M
	R
	R
	R
	0
	1
	p
	p
	p
	p
	p
	p
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	W
	M
	M
	M
	R
	R
	R
	0
	S
	q
	q
	q
	q
	q
	q
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	d
	d
	d
	d
	d
	d
	0
	0
	p
	p
	p
	p
	p
	p
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	d
	d
	d
	d
	d
	d
	1
	q
	0
	q
	q
	q
	q
	q
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	d
	d
	d
	d
	d
	d
	0
	q
	1
	q
	q
	q
	q
	q

	MPY Signed Multiply MPY
	Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 ...
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 and store the resulting prod...
	MPY Y0,X0,A MPY Y0, X0,B

	MPY Signed Multiply MPY
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	MPY(su,uu) Mixed Multiply MPY(su,uu)
	Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	[ss,us] (see Table 12-16 on�page�12�24)
	Description�Multiply the two 24-bit source operands S1 and S2 and store the resulting product in ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	1
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	MPYI Signed Multiply With Immediate Operand MPYI
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	16-bit Immediate Long Data extension word
	Description�Multiply the immediate 24-bit source operand #xxxx with the 24-bit register source op...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	0
	0
	Immediate Data Extension

	MPYR Signed Multiply and Round MPYR
	Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 ...
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 16-bit source...

	MPYR Signed Multiply and Round MPYR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	0
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	s
	s
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	0
	1

	MPYRI MPYRI Signed Multiply and Round With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S, round the result using ei...
	÷
	This bit is changed according to the standard definition.

	—
	This bit is unchanged by the instruction.

	NEG Negate Accumulator NEG
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Negate the destination operand D and store the result in the destination accumulator....
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	NEG
	D
	Data Bus Move Field
	0
	0
	1
	1
	d
	1
	1
	0
	Optional Effective Address Extension

	NOP No Operation NOP
	None
	Description�Increment the Program Counter (PC). Pending pipeline actions, if any, are completed. ...
	This bit is unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	NORM Norm Accumulator Iterations NORM
	where E denotes the logical complement of E and · denotes the logical AND operator
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Address register [R0-R7]
	Description�Perform one normalization iteration on the specified destination operand D, update th...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	Set if bit 55 is changed as a result of a left shift

	÷
	This bit is changed according to the standard definition

	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	1
	1
	R
	R
	R
	0
	0
	0
	1
	d
	1
	0
	1

	NORMF Fast Accumulator Normalization NORMF
	Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Arithmetically shift the destination accumulator either left or right as specified by...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	V
	Set if bit 39 is changed any time during the shift operation, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	If the base exponent is stored in R1 it can be updated by the following commands:

	NORMF Fast Accumulator Normalization NORMF
	Prior to execution, the 56-bit A accumulator contains the value $20:0000:0000. The CLB instructio...
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	0
	s
	s
	s
	D

	NOT Logical Complement NOT
	where “—” denotes the logical NOT operator.
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Take the one’s complement of bits 47–24 of the destination operand D and store the re...
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	1
	1
	1
	Optional Effective Address Extension

	OR Logical Inclusive OR OR
	where Å denotes the logical inclusive OR operator.
	Source input register [X0,X1,Y0,Y1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically inclusive OR the source operand S with bits 47–24 of the destination operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	—
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	OR Logical Inclusive OR OR
	ORI OR Immediate With Control Register ORI
	where + denotes the logical inclusive OR operator.
	Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 on�page�12�22)
	Immediate Short Data
	Description�Logically OR the 8-bit immediate operand (#xx) with the contents of the destination c...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	For CCR Operand:
	Set if bit 7 of the immediate operand is set.
	Set if bit 6 of the immediate operand is set.
	Set if bit 5 of the immediate operand is set.
	Set if bit 4 of the immediate operand is set.
	Set if bit 3 of the immediate operand is set.
	Set if bit 2 of the immediate operand is set.
	Set if bit 1 of the immediate operand is set.
	Set if bit 0 of the immediate operand is set.
	For MR and OMR Operands: The condition codes are not affected using these operands.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	1
	1
	1
	1
	0
	E
	E

	PFLUSH Program Cache Flush PFLUSH
	None
	Description�Flush the whole instruction cache, unlock all cache sectors, set the LRU stack and ta...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1

	PFLUSHUN PFLUSHUN Program Cache Flush Unlocked Sections
	None
	Description�Flush the instruction cache sectors that are unlocked, set the LRU stack to its defau...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	PFREE Program Cache Global Unlock PFREE
	None
	Description�Unlock all the locked cache sectors in the instruction cache. The PFREE instruction i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0

	PLOCK PLOCK Lock Instruction Cache Sector
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Lock the cache sector to which the specified effective address belongs. If the specif...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	1
	Address Extension Word

	PLOCKR PLOCKR Lock Instruction Cache Relative Sector
	None
	Description�Lock the cache sector to which the sum PC + specified displacement belongs. If the su...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	ADDRESS EXTENSION WORD

	PUNLOCK PUNLOCK Unlock Instruction Cache Sector
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Unlock the cache sector to which the specified effective address belongs. If the spec...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	1
	Address Extension Word

	PUNLOCKR PUNLOCKR Unlock Instruction Cache Relative Sector
	None
	Description�Unlock the cache sector to which the sum PC + specified displacement belongs. If the ...
	Condition Codes
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction
	Instruction Formats and Opcodes

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	Address Extension Word

	REP Repeat Next Instruction REP
	Effective Address
	See Table 12-13 on�page�12�22
	Memory Space [X,Y]
	Absolute Short Address
	Immediate Short Data
	Source register [all on-chip registers]
	Description�Repeat the single-word instruction immediately following the REP instruction the spec...
	If the System Stack register SSH is specified as a source operand, the system Stack Pointer (SP) ...

	REP Repeat Next Instruction REP
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	1
	0
	0
	0
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	0
	0
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	1
	0
	h
	h
	h
	h
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	d
	d
	d
	d
	d
	d
	0
	0
	1
	0
	0
	0
	0
	0

	RESET Reset On-Chip Peripheral Devices RESET
	None.
	Description�Reset the interrupt priority register and all on-chip peripherals. This is a software...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0

	RND Round Accumulator RND
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Round the 56-bit value in the specified destination operand D and store the result in...
	Two types of rounding can be used: convergent rounding (also called round to nearest (even)) or t...
	0
	0
	No Scaling
	23
	0. . . .0
	0
	1
	0
	0. . . .0
	0
	1
	Scale Down
	24
	0. . . .0
	1
	0
	0
	0. . . .0
	1
	0
	Scale Up
	22
	0. . . .0
	0
	0
	1
	0. . . .0
	If convergent rounding is used, the result of this addition is tested and if all the bits of the ...
	In Sixteen-bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D) is rounded ...

	RND Round Accumulator RND
	boundary between the lower portion and upper portion is in a different position then in 24 bit mo...
	0
	0
	No Scaling
	31
	0. . . .0
	0
	1
	0
	0. . . .0
	0
	1
	Scale Down
	32
	0. . . .0
	1
	0
	0
	0. . . .0
	1
	0
	Scale Up
	30
	0. . . .0
	0
	0
	1
	0. . . .0
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	0
	0
	1
	Optional Effective Address Extension

	ROL Rotate Left ROL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Rotate bits 47–24 of the destination operand D one bit to the left and store the resu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	This bit is always cleared.

	*
	C
	Set if bit 47 of the destination operand is set, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	d
	1
	1
	1
	Optional Effective Address Extension

	ROR Rotate Right ROR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Rotate bits 47–24 of the destination operand D one bit to the right and store the res...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	*
	C
	Set if bit 47 of the destination operand is set, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	1
	1
	1
	Optional Effective Address Extension

	RTI Return From Interrupt RTI
	None.
	Description�Pull the Program Counter (PC) and the Status Register (SR) from the system stack. The...
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

	RTS Return From Subroutine RTS
	None.
	Description�Pull the Program Counter (PC) from the system stack. The previous PC value is lost. T...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0

	SBC Subtract Long With Carry SBC
	Source register [X,Y] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Subtract the source operand S and the Carry bit(C) from the destination operand D and...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	J
	d
	1
	0
	1
	Optional Effective Address Extension

	STOP Stop Instruction Processing STOP
	None
	Description�Enter the Stop processing state. All activity in the processor is suspended until the...
	If the Stop Delay (SD, OMR[6]) bit is cleared—131,070 clock cycles
	If the Stop Delay (SD, OMR[6]) bit is set—24 clock cycles
	If the Stop Processing State (PSTP, PCTL1[5]) is set—8.5 clock cycles

	During the clock stabilization count delay, all peripherals and external interrupts are cleared a...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	STOP Stop Instruction Processing STOP
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	1

	SUB Subtract SUB
	Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Subtract the source operand from the destination operand D and store the result in th...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	SUB Subtract SUB
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	1
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	d
	1
	0
	0
	Immediate Data Extension

	SUBL Shift Left and Subtract Accumulators SUBL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Subtract the source operand S from two times the destination operand D and store the ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	*
	÷
	CCR
	*
	V
	Set if overflow has occurred in the result or if the MS bit of the destination operand is changed...

	÷
	Changed according to the standard definition

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	1
	1
	0
	Optional Effective Address Extension

	SUBR Shift Right and Subtract Accumulators SUBR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Subtract the source operand S from one-half the destination operand D and store the r...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	0
	d
	1
	1
	0
	Optional Effective Address Extension

	Tcc Transfer Conditionally Tcc
	Condition code (see Table 12-16 on�page�12�24)
	Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	Source address register [R0–R7]
	Destination Address register [R0–R7]
	Description�Transfer data from the specified source register S1 to the specified destination accu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	Tcc Transfer Conditionally Tcc
	TFR Transfer Data ALU Register TFR
	Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	Description�Transfer data from the specified source Data ALU register S to the specified destinat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	0
	0
	1
	Optional Effective Address Extension

	TRAP Software Interrupt TRAP
	None
	Description�Suspend normal instruction execution and begin TRAP exception processing. The Interru...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0

	TRAPcc Conditional Software Interrupt TRAPcc
	Condition code (see Table 12-18 on�page�12�28)
	Description�If the specified condition is true, normal instruction execution is suspended and sof...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	C
	C
	C
	C

	TST Test Accumulator TST
	Source accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Compare the specified source accumulator S with 0 and set the condition codes accordi...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	0
	d
	0
	1
	1
	Optional Effective Address Extension

	VSL Viterbi Shift Left VSL
	Source register A,B (see Table 12-13 on�page�12�22)
	Bit value, 0 or 1 to be placed in the least significant bit of Y:<ea>
	Effective address (see Table 12-13 on�page�12�22)
	Description� Store the most significant part (24 bits) of the source accumulator at X memory (at ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	S
	1
	1
	M
	M
	M
	R
	R
	R
	1
	1
	0
	i
	0
	0
	0
	0
	Optional Effective Address Extension

	WAIT Wait for Interrupt or DMA Request WAIT
	None
	Description�Enter the low-power standby Wait processing state. The internal clocks to the process...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0

