
INSERT Insert Bit Field INSERT
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V Always cleared.
* C Always cleared.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0
INSERT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 q q q S S S D

23 16 15 8 7 0
INSERT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 q q q 0 0 0 D

Control Word Extension

INSERT B1,X0,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 0

4
7

2
4

Offset =10width = 5

x x x x x x x x x x x x x x x x x x x 1 0 0 1 0

4
4
7

X0

2

x x x x x x x x x 1 0 0 1 0 x x x x x x x x x xx x

4
7 0

A

A1 A0

x x x x x x x x
Motorola 13-79

ive
am
ress
e
ctive

d on
Jcc Jump Conditionally Jcc

Instruction Fields

Description Jump to the location in program memory given by the instruction’s effect
address if the specified condition is true. If the specified condition is false, the Progr
Counter (PC) is incremented and the effective address is ignored. However, the add
register specified in the effective address field is always updated independently of th
specified condition. All memory-alterable addressing modes can be used for the effe
address. A Fast Short Jump addressing mode can also be used. The 12-bit data is
zero-extended to form the effective address. The conditions specified by “cc” are liste
Table 12-18 on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc, then 0xxx → PC Jcc xxx
else PC + 1 → PC

If cc, then ea → PC Jcc ea
else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-18 on page 12-28)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
Jcc xxx 0 0 0 0 1 1 1 0 C C C C a a a a a a a a a a a a

23 16 15 8 7 0
Jcc ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 1 0 C C C C

Optional Effective Address Extension
13-80 DSP56300 Family Manual Motorola

o
bit is

dress

 I/O
JCLR Jump if Bit Clear JCLR

Instruction Fields

Description Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is clear. The bit t
be tested is selected by an immediate bit number from 0–23. If the specified memory
not clear, the Program Counter (PC) is incremented and the absolute address in the
extension word is ignored. However, the address register specified in the effective ad
field is always updated independently of the state of the nth bit. All address register
indirect addressing modes can reference the source operand S. Absolute Short and
Short addressing modes can also be used.

Operation Assembler Syntax

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y]:ea,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y],aa,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y]:pp,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,[X or Y]:qq,xxxx
else PC + 1 → PC

If S{n} = 0 then xxxx → PC JCLR #n,S,xxxx
else PC + 1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{X/Y} S Memory Space [X,Y] (seeTable 12-13 on page 12-22)
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (seeTable 12-13

on page 12-22)
Motorola 13-81

JCLR Jump if Bit Clear JCLR
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
JCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JCLR #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 0 0 b b b b

Absolute Address Extension
13-82 DSP56300 Family Manual Motorola

ve
ess. A
ed to
JMP Jump JMP

Instruction Fields

Description Jump to the location in program memory given by the instruction’s effecti
address. All memory-alterable addressing modes can be used for the effective addr
Fast Short Jump addressing mode can also be used. The 12-bit data is zero-extend
form the effective address.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

0xxx → Pc JMP xxx

ea → Pc JMP ea

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
JMP ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 0

Optional Effective Address Extension

23 16 15 8 7 0
JMP xxx 0 0 0 0 1 1 0 0 0 0 0 0 a a a a a a a a a a a a
Motorola 13-83

he
tion
and

e PC

fied
ress.
ed to
JScc Jump to Subroutine Conditionally JScc

Instruction Fields

Description Jump to the subroutine whose location in program memory is given by t
instruction’s effective address if the specified condition is true. If the specified condi
is true, the address of the instruction immediately following the JScc instruction (PC)
the SR are pushed onto the system stack. Program execution then continues at the
specified effective address in program memory. If the specified condition is false, th
is incremented, and any extension word is ignored. However, the address register
specified in the effective address field is always updated independently of the speci
condition. All memory-alterable addressing modes can be used for the effective add
A fast short jump addressing mode can also be used. The 12-bit data is zero-extend
form the effective address. The conditions specified by “cc” are listed onTable 12-18
on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc, then SP + 1 → SP; PC → SSH;SR → SSL;0xxx → PC JScc xxx
else PC + 1 → PC

If cc, then SP + 1 → SP; PC → SSH;SR → SSL;ea → PC JScc ea
else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-18 on page 12-28)
{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
JScc xxx 0 0 0 0 1 1 1 1 C C C C a a a a a a a a a a a a

23 16 15 8 7 0
JScc ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 1 0 C C C C

Optional Effective Address Extension
13-84 DSP56300 Family Manual Motorola

ry

e
cution

word.
rd is
ays

modes
JSCLR Jump to Subroutine if Bit Clear JSCLR

Instruction Fields

Description Jump to the subroutine at the 24-bit absolute address in program memo
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
clear. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit
of source operand S is clear, the address of the instruction immediately following th
JSCLR instruction (PC) and the SR are pushed onto the system stack. Program exe
then continues at the specified absolute address in the instruction’s 24-bit extension
If the specified memory bit is not clear, the PC is incremented and the extension wo
ignored. However, the address register specified in the effective address field is alw
updated independently of the state of the nth bit. All address register indirect addressing
modes can reference the source operand S. Absolute short and I/O short addressing
can also be used.

Operation Assembler Syntax

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:ea,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y],aa,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:pp,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSCLR #n,[X or Y]:qq,xxxx

else PC + 1 → PC

If S{n} = 0 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx fiPC

JSCLR #n,S,xxxx

else PC + 1 → PC

{#n} bbbb Bit number [0–23]

SeeTable 12-13
on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{xxxx} 24-bit absolute Address extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers]
Motorola 13-85

JSCLR Jump to Subroutine if Bit Clear JSCLR
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
JSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 0 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSCLR #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 0 0 b b b b

Absolute Address Extension
13-86 DSP56300 Family Manual Motorola

o
bit is

dress

e short
JSET Jump if Bit Set JSET

Instruction Fields

Description Jump to the 24-bit absolute address in program memory specified in the
instruction’s 24-bit extension word if the nth bit of the source operand S is set. The bit t
be tested is selected by an immediate bit number from 0–23. If the specified memory
not set, the Program Counter (PC) is incremented, and the absolute address in the
extension word is ignored. However, the address register specified in the effective ad
field is always updated independently of the state of the nth bit. All address register
indirect addressing modes can be used to reference the source operand S. Absolut
and I/O short addressing modes can also be used.

Operation Assembler Syntax

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:ea,xxxx
else PC + 1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y],aa,xxxx
else PC + 1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:pp,xxxx
else PC + 1 → PC

If S{n} = 1 then xxxx → PC JSET #n,[X or Y]:qq,xxxx
else PC + 1 → PC

If S{n} = 1 then xxxx → PC JSET #n,S,xxxx
else PC + 1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{X/Y} S Memory Space [X,Y] (seeTable 12-13 on page 12-22)
{xxxx} 24-bit Absolute Address in extension word
{aa} aaaaaa Absolute Address [0 – 63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (seeTable 12-13

on page 12-22)
Motorola 13-87

JSET Jump if Bit Set JSET
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
JSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 0 0 1 M M M R R R 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 0 0 0 a a a a a a 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 0 1 0 p p p p p p 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 0 q q q q q q 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSET #n,S,xxxx 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 0 1 0 b b b b

Absolute Address Extension
13-88 DSP56300 Family Manual Motorola

he
the
stack.

mory.
short
he
JSR Jump to Subroutine JSR

Instruction Fields

Description Jump to the subroutine whose location in program memory is given by t
instruction’s effective address. The address of the instruction immediately following
JSR instruction (PC) and the system Status Register (SR) is pushed onto the system
Program execution then continues at the specified effective address in program me
All memory-alterable addressing modes can be used for the effective address. A fast
jump addressing mode can also be used. The 12-bit data is zero-extended to form t
effective address.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

SP + 1 → SP; PC → SSH; SR → SSL; 0xxx → PC JSR xxx

SP + 1 → SP; PC → SSH; SR → SSL; ea → PC JSR ea

{xxx} aaaaaaaaaaaa Short Jump Address
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
JSR ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 0

Optional Effective Address Extension

23 16 15 8 7 0
JSR xxx 0 0 0 0 1 1 0 1 0 0 0 0 a a a a a a a a a a a a
Motorola 13-89

ry

ystem

m
ess
e

JSSET Jump to Subroutine if Bit Set JSSET

Instruction Fields

Description Jump to the subroutine at the 24-bit absolute address in program memo
specified in the instruction’s 24-bit extension word if the nth bit of the source operand S is
set. The bit to be tested is selected by an immediate bit number from 0–23. If the nth bit of
the source operand S is set, the address of the instruction immediately following the
JSSET instruction (PC) and the system Status Register (SR) are pushed onto the s
stack. Program execution then continues at the specified absolute address in the
instruction’s 24-bit extension word. If the specified memory bit is not set, the Progra
Counter (PC) is incremented, and the extension word is ignored. However, the addr
register specified in the effective address field is always updated independently of th

Operation Assembler Syntax

If S{n} = 1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:ea,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y],aa,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:pp,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,[X or Y]:qq,xxxx

else PC + 1 → PC

If S{n}=1 then SP + 1 → SP;PC → SSH;SR → SSL;
;xxxx → PC

JSSET #n,S,xxxx

else PC + 1 → PC

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{X/Y} S Memory Space [X,Y] (seeTable 12-13 on page 12-22)
{xxxx} 24-bit PC absolute Address extension word
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
{S} DDDDDD Source register [all on-chip registers] (seeTable 12-13

on page 12-22)
13-90 DSP56300 Family Manual Motorola

ence
sed.
JSSET Jump to Subroutine if Bit Set JSSET

state of the nth bit. All address register indirect addressing modes can be used to refer
the source operand S. Absolute short and I/O short addressing modes can also be u

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
JSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 0 1 1 0 1 M M M R R R 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 0 1 1 0 0 a a a a a a 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 0 1 1 1 0 p p p p p p 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 0 0 1 1 1 q q q q q q 1 S 1 0 b b b b

Absolute Address Extension

23 16 15 8 7 0
JSSET #n,S,xxxx 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 0 1 0 b b b b

Absolute Address Extension
Motorola 13-91

n
ts the

, the
LRA Load PC-Relative Address LRA

Instruction Fields

Description The PC is added to the specified displacement and the result is stored i
destination D. The displacement is a two’s-complement 24-bit integer that represen
relative distance from the current PC to the destination PC. Long Displacement and
Address Register PC-Relative addressing modes can be used. Note that if D is SSH
SP is pre-incremented by one.

Condition Codes

Instruction Formats and opcode

Operation Assembler Syntax

PC + Rn → D LRA Rn,D

PC + xxxx → D LRA xxxx,D

{Rn} RRR Address register [R0–R7]
{D} ddddd Destination address register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see
Table 12-16 on page 12-24)

{xxxx} 24-bit PC Long Displacement

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
LRA Rn,D 0 0 0 0 0 1 0 0 1 1 0 0 0 R R R 0 0 0 d d d d d

23 16 15 8 7 0
LRA xxxx,D 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 d d d d d

Long Displacement
13-92 DSP56300 Family Manual Motorola

 to

at
right.

ber
y

LSL Logical Shift Left LSL
Operation

Assembler Syntax

LSL D (parallel move)
LSL #ii,D
LSL S,D

Instruction Fields

Description

■ Single-bit shift: Logically shift Bits 47–24 of the destination operand D one bit
the left and store the result in the destination accumulator. Prior to instruction
execution, Bit 47 of D is shifted into the carry bit C, and a 0 isshifted into Bit 24 of
the destination accumulator D.

■ Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are
shifted left #ii bits. Bits shifted out of position 47 are lost, except for the last bit th
is latched in the Carry bit. Zeros are supplied to the vacated positions on the
The result is placed into bits 47–24 of the destination accumulator D. The num
of bits to shift is determined by the 5-bit immediate field in the instruction, or b
the unsigned integer located in the control register S. If a zero shift count is
specified, the carry bit is cleared.

This is a 24-bit operation. The remaining bits of the destination accumulator are not
affected. The number of shifts should not exceed the value of 24.

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-13

on page 12-22)
{#ii} iiiii 5-bit unsigned integer [0–16] denoting the shift amount

0

16C 31
Motorola 13-93

LSL Logical Shift Left LSL
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if Bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
* C Set if the last bit shifted out of the operand is set, cleared for a shift count of

0, and cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 8 7 0
LSL D Data Bus Move Field 0 0 1 1 D 0 1 1

Optional Effective Address Extension

23 16 15 8 7 0
LSL #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 0 i i i i i D

23 16 15 8 7 0
LSL S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 s s s D

LSL #7, A

A1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

A1 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

4
4
7

2
Shift left 7

0
C

13-94 DSP56300 Family Manual Motorola

to
n
7

it
 left.
ber

y

ted.
LSR Logical Shift Right LSR
Operation

Assembler Syntax

LSR D (parallel move)
LSR #ii,D
LSR S,D

Instruction Fields

Description

■ Single-bit shift: Logically shift bits 47–24 of the destination operand D one bit
the right and store the result in the destination accumulator. Prior to instructio
execution, Bit 24 of D is shifted into the Carry bit (C), and a 0 is shifted into Bit 4
of the destination accumulator D.

■ Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are
shifted right #ii bits. Bits shifted out of position 16 are lost except for the last b
that is latched in the C bit. Zeroes are supplied to the vacated positions on the
The result is placed into bits 47–24 of the destination accumulator D. The num
of bits to shift is determined by the 5-bit immediate field in the instruction, or b
the unsigned integer located in the control register S. If a zero shift count is
specified, the C bit is cleared.

This is a 24-bit operation. The remaining bits of the destination register are not affec
The number of shifts should not exceed the value of 24.

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} sss Control register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-13

on page 12-22)
{#ii} iiiii 5-bit unsigned integer [0–23] denoting the shift amount

0

24

C

47
Motorola 13-95

f

LSR Logical Shift Right LSR
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if Bit 47 of the result is set.
* Z Set if Bits 47–24 of the result are 0.
* V Always cleared.
* C Set if the last bit shifted out of the operand is set, cleared for a shift count o

zero, and cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 8 7 0
LSR D Data Bus Move Field 0 0 1 0 D 0 1 1

Optional Effective Address Extension

23 16 15 8 7 0
LSR #ii,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 i i i i i D

23 16 15 8 7 0
LSR S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 1 s s s D

LSR X0,B

B1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

B1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

x x x x x x x x x x x x x x x x x x x 0 0 0 1 1

0
2
3

SH field

X0

1

c

Shift right 3
13-96 DSP56300 Family Manual Motorola

to a

ource
ified by

+ N,
ective
ted,
LUA Load Updated Address LUA

Instruction Fields

Note: RRR refers to a source address register (R0–R7), while dddd/ddddd refer
destination address register (R0–R7 or N0–N7).

Description Load the updated address into the destination address register D. The s
address register and the update mode used to compute the updated address are spec
the effective address (ea). Only the following addressing modes can be used: Post
Post – N, Post + 1, Post – 1. Note that the source address register specified in the eff
address is not updated. This is the only case where an address register is not upda
although stated otherwise in the effective address mode bits.

Condition Codes

Operation Assembler Syntax

ea → D (No update performed) LUA ea,D

Rn + aa → D LUA (Rn + aa),D

ea → D (No update performed) LEA ea,D

Rn + aa → D LEA (Rn + aa),D

{ea} MMRRR Effective address (seeTable 12-13 on page 12-22)
{D} ddddd Destination address register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see
Table 12-16 on page 12-24)

{D} dddd Destination address register [R0–R7,N0–N7] (seeTable 12-16
on page 12-24)

{aa} aaaaaaa 7-bit sign extended short displacement address
{Rn} RRR Source address register [R0–R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
Motorola 13-97

e

LUA Load Updated Address LUA
Instruction Formats and opcode

Note: LEA is a synonym for LUA. The simulator on-line disassembly translates th
opcodes into LUA.

23 16 15 8 7 0
LUA/LEA ea,D 0 0 0 0 0 1 0 0 0 1 0 M M R R R 0 0 0 d d d d d

23 16 15 8 7 0
LUA/LEA (Rn + aa),D 0 0 0 0 0 1 0 0 0 0 a a a R R R a a a a d d d d
13-98 DSP56300 Family Manual Motorola

“+”.
MAC Signed Multiply Accumulate MAC

Instruction Formats and opcodes 1

Instruction Fields

Instruction Formats and opcode 2

Instruction Fields

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n) and add/subtract the
product to/from the specified 56-bit destination accumulator D. The “–” sign option is
used to negate the specified product prior to accumulation. The default sign option is

Operation Assembler Syntax

D ±S1 ∗ S2 → D (parallel move) MAC (±)S1,S2,D (parallel move)

D ±S1 ∗ S2 → D (parallel move) MAC (±)S2,S1,D (parallel move)

D ±(S1 ∗ 2-n) → D (no parallel move) MAC (±)S,#n,D (no parallel move)

23 16 15 8 7 0

MAC (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 1 0

MAC (±)S2,S1,D Optional Effective Address Extension

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
(seeTable 12-16 on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-16 on page 12-24)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)

23 16 15 8 7 0
MAC (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 s s s s 1 1 Q Q d k 1 0

{S} QQ Source register [Y1,X0,Y0,X1]] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{#n} ssss Immediate operand (seeTable 12-16 on page 12-24)
Motorola 13-99

MAC Signed Multiply Accumulate MAC

Note that when the processor is in the Double Precision Multiply mode, the following
instructions do not execute in the normal way and should only be used as part of the
double precision multiply algorithm:

MAC X1, Y0, AMAC X1, Y0, B

MAC X0, Y1, AMAC X0, Y1, B

MAC Y1, X1, AMAC Y1, X1, B

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
13-100 DSP56300 Family Manual Motorola

ract
n is
s “+”.
MACI MACI
Signed Multiply Accumulate With Immediate Operand

Instruction Fields

Description Multiply the two signed 24-bit source operands #xxxx and S and add/subt
the product to/from the specified 56-bit destination accumulator D. The “–” sign optio
used to negate the specified product prior to accumulation. The default sign option i

Condition Codes

Instruction Formats and opcode

Operation Assembler Syntax

D ±#xxxx∗S → D MACI (±)#xxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
#xxxxxx 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MACI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 0

Immediate Data Extension
Motorola 13-101

urce
uct
MAC(su,uu) MAC(su,uu)
Mixed Multiply Accumulate

Instruction Fields

Description Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D. One or two of the so
operands can be unsigned. The “–” sign option is used to negate the specified prod
prior to accumulation. The default sign option is “+”.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

D ±S1 ∗ S2 → D (S1 unsigned, S2 unsigned) MACuu (±)S1,S2,D (no parallel move)

D ±S1 ∗ S2 → D (S1 signed, S2 unsigned) MACsu (±)S2,S1,D (no parallel move)

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]

 (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{s} [ss,us] (seeTable 12-16 on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

MACsu (±)S1,S2,D 23 16 15 8 7 0

MACuu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 1 s d k Q Q Q Q
13-102 DSP56300 Family Manual Motorola

sing

e
of
MACR Signed Multiply Accumulate and Round MACR

Instruction Formats and opcodes 1

Instruction Fields

Instruction Formats and opcode 2

Instruction Fields

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed
24-bit source operand S by the positive 24-bit immediate operand 2-n), add/subtract the
product to/from the specified 56-bit destination accumulator D, and round the result u
either convergent or two’s-complement rounding. The rounded result is stored in
destination accumulator D. The “–” sign option negates the specified product prior to
accumulation. The default sign option is “+.” The LSB of the result is rounded into th
upper portion of the destination accumulator. Once rounding is complete, the LSBs

Operation Assembler Syntax

D ±S1 ∗ S2 + r → D (parallel move) MACR (±)S1,S2,D (parallel move)

D ±S1 ∗ S2 + r → D (parallel move) MACR (±)S2,S1,D (parallel move)

D ±(S1 ∗ 2-n) + r → D (no parallel move) MACR (±)S,#n,D (no parallel move)

23 16 15 8 7 0

MACR (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 1 1

MACR (±)S2,S1,D Optional Effective Address Extension

{S1,S2} QQQ Source registers S1,S2
[X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]

 (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)

23 16 15 8 7 0
MACR (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 3 s s s 1 1 Q Q d k 1 1

{S} QQ Source register [Y1,X0,Y0,X1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{#n} ssss Immediate operand (seeTable 12-16 on page 12-24)
Motorola 13-103

value
e
for
MACR Signed Multiply Accumulate and Round MACR

destination accumulator D are loaded with 0s to maintain an unbiased accumulator
that the next instruction can reuse. The upper portion of the accumulator contains th
rounded result that can be read out to the data buses. Refer to the RND instruction
details on the rounding process.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
13-104 DSP56300 Family Manual Motorola

ct
he
tored
prior
ult

 an
f the
r to the
MACRI MACRI
Signed MAC and Round With Immediate Operand

Instruction Fields

Description Multiply the two signed 24-bit source operands #xxxx and S, add/subtra
the product to/from the specified 56-bit destination accumulator D, and then round t
result using either convergent or two’s-complement rounding. The rounded result is s
in the destination accumulator D. The “–” sign option negates the specified product
to accumulation. The default sign option is “+”. The contribution of the LSBs of the res
is rounded into the upper portion of the destination accumulator. Once rounding is
complete, the LSBs of the destination accumulator D are loaded with 0s to maintain
unbiased accumulator value that the next instruction can reuse. The upper portion o
accumulator contains the rounded result that can be read out to the data buses. Refe
RND instruction for details on the rounding process.

Condition Codes

Instruction Formats and opcode

Operation Assembler Syntax

D ±#xxxxxx ∗ S → D MACRI (±)#xxxxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,-] (seeTable 12-16 on page 12-24)
#xxxx 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MACRI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 1 1

Immediate Data Extension
Motorola 13-105

e of

ation
been

.

MAX Transfer by Signed Value MAX

Description Subtract the signed value of the source accumulator from the signed valu
the destination accumulator. If the difference is negative or 0, (A≥ B) then transfer the
source accumulator to destination accumulator. Otherwise, do not change the destin
accumulator. This is a 56-bit operation. Note that the Carry bit signifies a transfer has
performed.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If B – A ≤ 0 then A → B MAX A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C This bit is cleared if the conditional transfer is performed, and set otherwise
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MAX A, B Data Bus Move Field 0 0 0 1 1 1 0 1

Optional Effective Address Extension
13-106 DSP56300 Family Manual Motorola

 the

wise,
Carry
MAXM Transfer by Magnitude MAXM

Description Subtract the absolute value (magnitude) of the source accumulator from
absolute value of the destination accumulator. If the difference is negative or 0
(|A| ≥ |B|), then transfer the source accumulator to the destination accumulator. Other
do not change the destination accumulator. This is a 56-bit operation. Note that the
bit (C) signifies a transfer has been performed.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

If |B| – |A| ≤ 0 then A → B MAXM A,B (parallel move)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C This bit is cleared if the conditional transfer was performed, and set
otherwise.

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MAXM A, B Data Bus Move Field 0 0 0 1 0 1 0 1

Optional Effective Address Extension
Motorola 13-107

 the

 are
he
MERGE Merge Two Half Words MERGE

Instruction Fields

Description The contents of bits 11–0 of the source register are concatenated to the
contents of bits 35–24 of the destination accumulator. The result is stored in the
destination accumulator. This instruction is a 24-bit operation. The remaining bits of
destination accumulator D are not affected.

Note:

1. MERGE can be used in conjunction with EXTRACT or INSERT instructions to
concatenate width and offset fields into a control word.

2. In Sixteen-bit Arithmetic mode, the contents of bits 15-8 of the source register
concatenated with the contents of bits 39-32 of the destination accumulator. T
result is placed in bits 47-32 of the destination accumulator.

Condition Codes

Operation Assembler Syntax

{S[7:0],D[35:24]} → D[47:24] MERGE S,D

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} SSS Source register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-16

on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
— Unchanged by the instruction.
13-108 DSP56300 Family Manual Motorola

MERGE Merge Two Half Words MERGE
Example

Instruction Formats and Opcodes

23 16 15 8 7 0
MERGE S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0 S S S D

 MERGE X0,B

X0 x x x x x x x x x x x x 1 0 1 0 1 0 1 0 0 0 1 0

0
2
3

B1 x x x x x x x x x x x x 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2

B1 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 1 1

4
4
7

2

Motorola 13-109

MOVE Move Data MOVE

The DSP56300 (family) core provides a set of MOVE instructions.Table 12-14lists these
instructions, which are fully described in the following pages.

Table 12-14. Move Instructions

Instruction Description Page

MOVE Move Data page 12-110

NO Parallel Data Move page 12-112

I Immediate Short Data Move page 12-113

R Register-to-Register Data Move page 12-116

U Address Register Update page 12-117

X: X Memory Data Move page 12-118

X: R X Memory and Register Data Move page 12-120

Y Y Memory Data Move page 12-122

R: Y Register and Y Memory Data Move page 12-124

L: Long Memory Data Move page 12-126

X: Y X Memory Data Move page 12-128
13-110 DSP56300 Family Manual Motorola

ation

o be
pes
ory

wed
ions
MOVE Move Data MOVE

Description Move the contents of the specified data source S to the specified destin
D. This instruction is equivalent to a Data ALU NOP with a parallel data move.

Condition Codes

Instruction Formats and Opcodes

Instruction Fields/

Parallel Move Description Thirty of the sixty-two instructions allow an optional parallel
data bus movement over the X and/or Y data bus. This allows a Data ALU operation t
executed in parallel with up to two data bus moves during the instruction cycle. Ten ty
of parallel moves are permitted, including register-to-register moves, register-to-mem
moves, and memory-to-register moves. However, not all addressing modes are allo
for each type of memory reference. The following section contains detailed descript
about each type of parallel move operation.

Operation Assembler Syntax

S → D MOVE S,D

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MOVE S,D Data Bus Move Field 0 0 0 0 0 0 0 0

Optional Effective Address Extension
Motorola 13-111

l
ve
NO Parallel Data Move

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Description Many instructions in the instruction set allow parallel moves. The paralle
moves have been divided into ten opcode categories. This category is a parallel mo
NOP and does not involve data bus move activity.

Condition Codes

Instruction Formats and Opcodes

Instruction Format (defined by instruction)

Operation Assembler Syntax

(. . .) (. . .)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
(. . .) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Instruction opcode
13-112 DSP56300 Family Manual Motorola

. If

ion
nation
s a

ta is

n
ot be

A1,
on
on of
I Immediate Short Data Move I

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Move the 8-bit immediate data value (#xx) into the destination operand D
the destination register D is A0, A1, A2, B0, B1, B2, R0–R7, or N0–N7, the 8-bit
immediate short operand is interpreted as anunsigned integerand is stored in the specified
destination register. That is, the 8-bit data is stored in the eight LSBs of the destinat
operand and the remaining bits of the destination operand D are zeroed. If the desti
register D is X0, X1, Y0, Y1, A, or B, the 8-bit immediate short operand is interpreted a
signed fraction and is stored in the specified destination register. That is, the 8-bit da
stored in the eight MSBs of the destination operand and the remaining bits of the
destination operand D are zeroed.

If the arithmetic or logical opcode-operand portion of the instruction specifies a give
destination accumulator, that same accumulator or portion of that accumulator cann
specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify A0,
A2, or A as its destination D. Similarly, if the opcode-operand portion of the instructi
specifies the 56-bit B accumulator as its destination, the parallel data bus move porti
the instruction cannot specify B0, B1, B2, or B as its destination D. That is, duplicate
destinations arenot allowed within the same instruction.

Condition Codes

Operation Assembler Syntax

(. . .), #xx → D (. . .) #xx,D

{#xx} iiiiiiii 8-bit Immediate Short Data
{D} ddddd Destination register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (seeTable
12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
Motorola 13-113

I Immediate Short Data Move I
Instruction Formats and Opcodes

23 16 15 8 7 0
(. . .) #xx,D 0 0 1 d d d d d i i i i i i i i Instruction opcode
13-114 DSP56300 Family Manual Motorola

.

 or

ied as

allel
tion

nnot

on
he
ion in
s are
-bit
R Register-to-Register Data Move R

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Move the source register S to the destination register D. If the arithmetic
logical opcode-operand portion of the instruction specifies a given destination
accumulator, that same accumulator or portion of that accumulator cannot be specif
a destination D in the parallel data bus move operation. Thus, if the opcode-operand
portion of the instruction specifies the 56-bit A accumulator as its destination, the par
data bus move portion of the instruction cannot specify A0, A1, A2, or A as its destina
D. Similarly, if the opcode-operand portion of the instruction specifies the 56-bit B
accumulator as its destination, the parallel data bus move portion of the instruction ca
specify B0, B1, B2, or B as its destination D. That is, duplicate destinations arenot
allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destinati
register, that same register or portion of that register can be used as a source S in t
parallel data bus move operation. This allows data to be moved in the same instruct
which a Data ALU operation is using it as a source operand. That is, duplicate source
allowed within the same instruction. Note that the MOVE A,B operation results in a 24
positive or negative saturation constant being stored in the B1 portion of the B
accumulator if the signed integer portion of the A accumulator is in use.

Operation Assembler Syntax

(. . .); S → D (. . .) S,D

{S} eeeee Source register
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,
B,R0–R7,N0–N7]

SeeTable 12-13 on page 12-22
{D} ddddd Destination register

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,
B,R0–R7,N0–N7]
Motorola 13-115

R Register-to-Register Data Move R
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
(. . .) S,D 0 0 1 0 0 0 e e e e e d d d d d Instruction opcode
13-116 DSP56300 Family Manual Motorola

U Address Register Update U

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Update the specified address register according to the specified effective
addressing mode. All update addressing modes can be used.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

(. . .); eafiRn (. . .) ea

{ea} MMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
(. . .) ea 0 0 1 0 0 0 0 0 0 1 0 M M R R R Instruction opcode
Motorola 13-117

.

X: X Memory Data Move X:

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Formats and Opcodes 1

Instruction Fields

Instruction Formats and Opcodes 2

Operation Assembler Syntax

(. . .); X:ea → D (. . .) X:ea,D

(. . .); X:aa → D (. . .) X:aa,D

(. . .); S → X:ea (. . .) S,X:ea

(. . .); S → X:aa (. . .) S,X:aa

X:(Rn + xxx) → D MOVE X:(Rn + xxx),D

X:(Rn + xxxx) → D MOVE X:(Rn + xxxx),D

D → X:(Rn + xxx) MOVE D,X:(Rn + xxx)

D → X:(Rn + xxxx) MOVE D,X:(Rn + xxxx)

(. . .) X:ea,D 23 16 15 8 7 0
(. . .) S,X:ea 0 1 d d 0 d d d W 1 M M M R R R Instruction opcode
(. . .) #xxxxxx,D Optional Effective Address Extension

(. . .) X:aa,D 23 16 15 8 7 0
(. . .) S,X:aa 0 1 d d 0 d d d W 0 a a a a a a Instruction opcode

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
W Read S / Write D bit (seeTable 12-16 on page 12-24)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see
Table 12-13 on page 12-22)

{aa} aaaaaa 6-bit Absolute Short Address

23 16 15 8 7 0
MOVE X:(Rn + xxxx),D 0 0 0 0 1 0 1 0 0 1 1 1 0 R R R 1 W D D D D D D
MOVE S,X:(Rn + xxxx) Rn Relative Displacement

MOVE X:(Rn + xxx),D 23 16 15 8 7 0
MOVE S,X:(Rn + xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 0 W D D D D
13-118 DSP56300 Family Manual Motorola

ng
lute
n of
rtion
ove

 A
nnot
 of

 bus
That

on
he
ion in
ate

4-bit
X: X Memory Data Move X:
Instruction Fields

Description Move the specified word operand from/to X memory. All memory addressi
modes can be used, including absolute addressing and 24-bit immediate data. Abso
short addressing can also be used. If the arithmetic or logical opcode-operand portio
the instruction specifies a given destination accumulator, that same accumulator or po
of that accumulator cannot be specified as a destination D in the parallel data bus m
operation. Thus, if the opcode-operand portion of the instruction specifies the 56-bit
accumulator as its destination, the parallel data bus move portion of the instruction ca
specify A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion
the instruction specifies the 56-bit B accumulator as its destination, the parallel data
move portion of the instruction cannot specify B0, B1, B2, or B as its destination D.
is, duplicate destinations arenot allowed within the same instruction.

If the opcode-operand portion of the instruction specifies a given source or destinati
register, that same register or portion of that register can be used as a source S in t
parallel data bus move operation. This allows data to be moved in the same instruct
which it is being used as a source operand by a Data ALU operation. That is, duplic
sources are allowed within the same instruction. As a result of the MOVE A,X:ea
operation, a 24-bit positive or negative saturation constant is stored in the specified 2
X memory location if the signed integer portion of the A accumulator is in use.

Condition Codes

W Read S / Write D bit (seeTable 12-16 on page 12-24)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0–R7)
{D} DDDD Source/Destination registers

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (seeTable 12-16
on page 12-24)

{S,D} DDDDDD Source/Destination registers [all on-chip registers] (seeTable
12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
Motorola 13-119

X:R X Memory and Register Data Move X:R

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Class I Instruction Formats and Opcodes

Instruction Fields

Class II Instruction Formats and Opcodes

Instruction Fields

Operation Assembler Syntax

Class I
(. . .); X:ea → D1; S2 → D2 (. . .) X:ea,D1 S2,D2

(. . .); S1 → X:ea; S2 → D2 (. . .) S1,X:ea S2,D2

(. . .); #xxxxxx → D1; S2 → D2 (. . .) #xxxxxx,D1 S2,D2

Class II
(. . .); A → X:ea; X0 → A (. . .) A,X:ea X0,A

(. . .); B → X:ea; X0 → B (. . .) B,X:ea X0,B

(. . .) X:ea,D1 S2,D2 23 16 15 8 7 0
(. . .) S1,X:ea S2, D2 0 0 0 1 f f d F W 0 M M M R R R Instruction opcode
(. . .) #xxxx,D1 S2,D2 Optional Effective Address Extension

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
W Read S1/Write D1 bit (seeTable 12-16 on page 12-24)

{S1,D1} ff S1/D1 register [X0,X1,A,B] (seeTable 12-16
on page 12-24)

{S2} d S2 accumulator [A,B] (seeTable 12-13 on page 12-22)
{D2} F D2 input register [Y0,Y1] (seeTable 12-16 on page 12-24)

23 16 15 8 7 0
(. . .) A → X:ea X0 → A 0 0 0 0 1 0 0 d 0 0 M M M R R R Instruction opcode
(. . .) B → X:ea X0 → B Optional Effective Address Extension

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
d Move opcode (seeTable 12-16 on page 12-24)
13-120 DSP56300 Family Manual Motorola

an be
o be

nd
e
olute

, that
n D1

ove
ly,
s its
B1,

urce
ource

 in the
t is,

he
X:R X Memory and Register Data Move X:R
Description

■ Class I: Move a one-word operand from/to X memory and move another word
operand from an accumulator (S2) to an input register (D2). All memory
addressing modes, including absolute addressing and 24-bit immediate data, c
used. The register-to-register move (S2,D2) allows a Data ALU accumulator t
moved to a Data ALU input register for use as a Data ALU operand in the
following instruction.

■ Class II: Move one-word operand from a Data ALU accumulator to X memory a
one-word operand from Data ALU register X0 to a Data ALU accumulator. On
effective address is specified. All memory addressing modes except long abs
addressing and long immediate data can be used.

For both Class I and Class II X:R parallel data moves, if the arithmetic or logical
opcode-operand portion of the instruction specifies a given destination accumulator
same accumulator or portion of that accumulator cannot be specified as a destinatio
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 40-bit A accumulator as its destination, the parallel data bus m
portion of the instruction cannot specify A0, A1, A2, or A as its destination D1. Similar
if the opcode-operand portion of the instruction specifies the 56-bit B accumulator a
destination, the parallel data bus move portion of the instruction cannot specify B0,
B2, or B as its destination D1. That is, duplicate destinations arenot allowed within the
same instruction. If the opcode-operand portion of the instruction specifies a given so
or destination register, that same register or portion of that register can be used as a s
S1 and/or S2 in the parallel data bus move operation. This allows data to be moved
same instruction in which a Data ALU operation is using it as a source operand. Tha
duplicate sources are allowed within the same instruction—S1 and S2 can specify t
same register.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
Motorola 13-121

Y Y Memory Data Move Y

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Formats and Opcodes 1

Instruction Fields

Instruction Formats and Opcodes 2

Operation Assembler Syntax

(. . .); Y:ea → D (. . .) Y:ea,D

(. . .); Y:aa → D (. . .) Y:aa,D

(. . .); S → Y:ea (. . .) S,Y:ea

(. . .); S → Y:aa (. . .) S,Y:aa

Y:(Rn + xxx) → D MOVE Y:(Rn + xxx),D

Y:(Rn + xxxx) → D MOVE Y:(Rn + xxxx),D

D → Y:(Rn + xxx) MOVE D,Y:(Rn + xxx)

D → Y:(Rn + xxxx) MOVE D,Y:(Rn + xxxx)

(. . .) Y:ea,D 23 16 15 8 7 0
(. . .) S,Y:ea 0 1 d d 1 d d d W 1 M M M R R R Instruction opcode
(. . .) #xxxx,D Optional Effective Address Extension

(. . .) Y:aa,D 23 16 15 8 7 0
(. . .) S,Y:aa 0 1 d d 1 d d d W 0 a a a a a a Instruction opcode

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
W Read S/Write D bit (seeTable 12-16 on page 12-24)

{S,D} ddddd Source/Destination registers
[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see
Table 12-13 on page 12-22)

{aa} aaaaaa Absolute Short Address

23 16 15 8 7 0
MOVE Y:(Rn + xxxx),D 0 0 0 0 1 0 1 1 0 1 1 1 0 R R R 1 W D D D D D D
MOVE D,Y:(Rn + xxxx) Rn Relative Displacement

MOVE Y:(Rn + xxx),D 23 16 15 8 7 0
MOVE D,Y:(Rn + xxx) 0 0 0 0 0 0 1 a a a a a a R R R 1 a 1 W D D D D
13-122 DSP56300 Family Manual Motorola

essing,

on of
e
 A
nnot
 of

 bus
That

ister,
el data
Data
d
tive
 the
Y Y Memory Data Move Y
Instruction Fields

Description Move the specified word operand from/to Y memory. All memory
addressing modes can be used, including absolute addressing, absolute short addr
and 24-bit immediate data. If the arithmetic or logical opcode-operand portion of the
instruction specifies a given destination accumulator, that same accumulator or porti
that accumulator cannot be specified as a destination D in the parallel data bus mov
operation. Thus, if the opcode-operand portion of the instruction specifies the 56-bit
accumulator as its destination, the parallel data bus move portion of the instruction ca
specify A0, A1, A2, or A as its destination D. Similarly, if the opcode-operand portion
the instruction specifies the 56-bit B accumulator as its destination, the parallel data
move portion of the instruction cannot specify B0, B1, B2, or B as its destination D.
is, duplicate destinations arenot allowed within the same instruction. If the
opcode-operand portion of the instruction specifies a given source or destination reg
that same register or portion of that register can be used as a source S in the parall
bus move operation. This allows data to be moved in the same instruction in which a
ALU operation is using it as a source operand. That is, duplicate sources are allowe
within the same instruction. As a result of the MOVE A,Y:ea operation, a 24-bit posi
or negative saturation constant is stored in the specified 24-bit Y memory location if
signed integer portion of the A accumulator is in use.

Condition Codes

W Read S/Write D bit (seeTable 12-16 on page 12-24)
{xxx} aaaaaaa 7-bit sign extended Short Displacement Address
{Rn} RRR Address register (R0–R7)
{D} DDDD Source/Destination registers

[X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (seeTable 12-16
on page 12-24)

{S,D} DDDDDD Source/Destination registers [all on-chip registers] (seeTable
12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
Motorola 13-123

R:Y Register and Y Memory Data Move R:Y

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Class I Instruction Formats and Opcodes

Instruction Fields

Class II Instruction Formats and opcodes

Instruction Fields

Operation Assembler Syntax

Class I
(. . .); S1 → D1; Y:ea → D2 (. . .) S1,D1 Y:ea,D2

(. . .); S1 → D1; S2 → Y:ea (. . .) S1,D1 S2,Y:ea

(. . .); S1 → D1; #xxxxxx → D2 (. . .) S1,D1 #xxxxxx,D2

Class II
(. . .); Y0 → A; A → Y:ea (. . .) Y0,A A,Y:ea

(. . .); Y0 → B; B → Y:ea (. . .) Y0,B B,Y:ea

(. . .) S1,D1 Y:ea,D2 23 16 15 8 7 0
(. . .) S1,D1 S2,Y:ea 0 0 0 1 d e f f W 1 M M M R R R Instruction opcode
(. . .) S1,D1 #xxxx,D2 Optional Effective Address Extension

{ea} MMMRRR Effective Address SeeTable 12-13
on page 12-22

W Read S2/Write D2 bit

Table 12-16 on page 12-24
{S1} d S1 accumulator [A,B]
{D1} e D1 input register [X0,X1]
{S2,D2} ff S2/D2 register [Y0,Y1,A,B]

23 16 15 8 7 0
(. . .) Y0 → A A → Y:ea 0 0 0 0 1 0 0 d 1 0 M M M R R R Instruction opcode
(. . .) Y0 → B B → Y:ea Optional Effective Address Extension

MMMRRR ea = 6-bit Effective Address (seeTable 12-13 on page 12-22)
d Move opcode (seeTable 12-16 on page 12-24)
13-124 DSP56300 Family Manual Motorola

ter
ing
d. The
to a

ry
tor.
long

, that
n D2

ove
ly,
s its
B1,

urce
ource

 in the
tion.
2 can
R:Y Register and Y Memory Data Move R:Y

Description

■ Class I: Move a one-word operand from an accumulator (S1) to an input regis
(D1) and move another word operand from/to Y memory. All memory address
modes, including absolute addressing and 16-bit immediate data, can be use
register to register move (S1,D1) allows a Data ALU accumulator to be moved
Data ALU input register for use as a Data ALU operand in the following
instruction.

■ Class II: Move a one-word operand from a Data ALU accumulator to Y memo
and a one-word operand from Data ALU register Y0 to a Data ALU accumula
One effective address is specified. All memory addressing modes, excluding
absolute addressing and long immediate data, can be used.

For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical
opcode-operand portion of the instruction specifies a given destination accumulator
same accumulator or portion of that accumulator cannot be specified as a destinatio
in the parallel data bus move operation. Thus, if the opcode-operand portion of the
instruction specifies the 56-bit A accumulator as its destination, the parallel data bus m
portion of the instruction cannot specify A0, A1, A2, or A as its destination D2. Similar
if the opcode-operand portion of the instruction specifies the 56-bit B accumulator a
destination, the parallel data bus move portion of the instruction cannot specify B0,
B2, or B as its destination D2. That is, duplicate destinations arenot allowed within the
same instruction. If the opcode-operand portion of the instruction specifies a given so
or destination register, that same register or portion of that register can be used as a s
S1 and/or S2 in the parallel data bus move operation. This allows data to be moved
same instruction in which it is being used as a source operand by a Data ALU opera
That is, duplicate sources are allowed within the same instruction. Note that S1 and S
specify the same register.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.
Motorola 13-125

ta
d for
 that
)

used.

n
ot be

10,
n
on of
te
of

ortion
his

e
ame
L: Long Memory Data Move L:

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Move one 48-bit long-word operand from/to X and Y memory. Two Data
ALU registers are concatenated to form the 48-bit long-word operand. This allows
efficient moving of both double-precision (high:low) and complex (real:imaginary) da
from/to one effective address in L (X:Y) memory. The same effective address is use
both the X and Y memory spaces; thus, only one effective address is required. Note
the A, B, A10, and B10 operands reference a single 48-bit signed (double-precision
quantity while the X, Y, AB, and BA operands reference two separate (i.e., real and
imaginary) 24-bit signed quantities. All memory alterable addressing modes can be
Absolute short addressing can also be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a give
destination accumulator, that same accumulator or portion of that accumulator cann
specified as a destination D in the parallel data bus move operation. Thus, if the
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify A, A
AB, or BA as destination D. Similarly, if the opcode-operand portion of the instructio
specifies the 56-bit B accumulator as its destination, the parallel data bus move porti
the instruction cannot specify B, B10, AB, or BA as its destination D. That is, duplica
destinations arenotallowed within the same instruction. If the opcode-operand portion
the instruction specifies a given source or destination register, that same register or p
of that register can be used as a source S in the parallel data bus move operation. T
allows data to be moved in the same instruction in which it is being used as a sourc
operand by a Data ALU operation. That is, duplicate sources are allowed within the s

Operation Assembler Syntax

(. . .); X:ea → D1; Y:ea → D2 (. . .) L:ea,D

(. . .); X:aa → D1; Y:aa → D2 (. . .) L:aa,D

(. . .); S1 → X:ea; S2 → Y:ea (. . .) S,L:ea

(. . .); S1 → X:aa; S2 → Y:aa (. . .) S,L:aa

{ea} MMMRRR Effective Address Table 12-13 on page 12-22
W Read S/Write D bit

SeeTable 12-16 on page 12-24{L} LLL Two Data ALU registers
{aa} aaaaaa Absolute Short Address
13-126 DSP56300 Family Manual Motorola

r a
in any

ger
her
cified
L: Long Memory Data Move L:

instruction. Note that the operands A10, B10, X, Y, AB, and BA can be used only fo
32-bit long memory move as previously described. These operands cannot be used
other type of instruction or parallel move.

Condition Codes

As a result of the MOVE A,L:ea operation, a 48-bit positive or negative saturation
constant is stored in the specified 24-bit X and Y memory locations if the signed inte
portion of the A accumulator is in use. As a result of the MOVE AB,L:ea operation, eit
one or two 24-bit positive and/or negative saturation constant(s) are stored in the spe
24-bit X and/or Y memory location(s) if the signed integer portion of the A and/or B
accumulator(s) is in use.

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
(. . .) L:ea,D 0 1 0 0 L 0 L L W 1 M M M R R R Instruction opcode
(. . .) S,L:ea Optional Effective Address Extension

(. . .) L:aa,D 23 16 15 8 7 0
(. . .) S,L:aa 0 1 0 0 L 0 L L W 0 a a a a a a Instruction opcode
Motorola 13-127

ified
dress

n
ot be
 the

 its
fies

s are
.

X: Y: XY Memory Data Move X: Y:

where (. . .) refers to any arithmetic or logical instruction that allows parallel moves

Instruction Fields

Description Move a one-word operand from/to X memory and move another word
operand from/to Y memory. Note that two independent effective addresses are spec
(<eax> and <eay>) where one of the effective addresses uses the lower bank of ad
registers (R0–R3) while the other effective address uses the upper bank of address
registers (R4–R7). All parallel addressing modes can be used.

If the arithmetic or logical opcode-operand portion of the instruction specifies a give
destination accumulator, that same accumulator or portion of that accumulator cann
specified as a destination D1 or D2 in the parallel data bus move operation. Thus, if
opcode-operand portion of the instruction specifies the 56-bit A accumulator as its
destination, the parallel data bus move portion of the instruction cannot specify A as
destination D1 or D2. Similarly, if the opcode-operand portion of the instruction speci
the 56-bit B accumulator as its destination, the parallel data bus move portion of the
instruction cannot specify B as its destination D1 or D2. That is, duplicate destination
not allowed within the same instruction. D1 and D2 cannot specify the same register

Operation Assembler Syntax

(. . .); X:<eax> → D1; Y:<eay> → D2 (. . .) X:<eax>,D1 Y:<eay>,D2

(. . .); X:<eax> → D1; S2 → Y:<eay> (. . .) X:<eax>,D1 S2,Y:<eay>

(. . .); S1 → X:<eax>; Y:<eay> → D2 (. . .) S1,X:<eax> Y:<eay>,D2

(. . .); S1 → X:<eax>; S2 → Y:<eay> (. . .) S1,X:<eax> S2,Y:<eay>

{<eax>} MMRRR 5-bit X Effective Address (R0–R3 or R4–R7)
{<eay>} mmrr 4-bit Y Effective Address (R4–R7 or R0–R3)
{S1,D1} ee S1/D1 register [X0,X1,A,B]
{S2,D2} ff S2/D2 register [Y0,Y1,A,B]

MMRRR,mmrr,ee,ff SeeTable 12-13 on page 12-22
W X move Operation Control (SeeTable 12-16 on page 12-24)
w Y move Operation Control (SeeTable 12-16 on page 12-24)
13-128 DSP56300 Family Manual Motorola

he

on
/or S2

at is,
ecify
X: Y: XY Memory Data Move X: Y:

If the instruction specifies an access to an internal X I/O and internal Y I/O modules
(reflected by the address of the X memory and the Y memory), only the access to t
internal X I/O module is executed. The access to the Y I/O module is discarded.

If the opcode-operand portion of the instruction specifies a given source or destinati
register, that same register or portion of that register can be used as a source S1 and
in the parallel data bus move operation. This allows data to be moved in the same
instruction in which it is being used as a source operand by a Data ALU operation. Th
duplicate sources are allowed within the same instruction. Note that S1 and S2 can sp
the same register.

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

(. . .) X:<eax>,D1 Y:<eay>,D2
(. . .) X:<eax>,D1 S2,Y:<eay>
(. . .) S1,X:<eax> Y:<eay>,D2 23 16 15 8 7 0
(. . .) S1,X:<eax> S2,Y:<eay> 1 w m m e e f f W r r M M R R R Instruction opcode
Motorola 13-129

e
ol
gister

e. All
e used.

(SP) is
n
m

MOVEC Move Control Register MOVEC

Instruction Fields

Description Move the contents of the specified source control register S1 or S2 to th
specified destination, or move the specified source to the specified destination contr
register D1 or D2. The control registers S1 and D1 are a subset of the S2 and D2 re
set and consist of the Address ALU modifier registers and the program controller
registers. These registers can be moved to or from any other register or memory spac
memory addressing modes, as well as an Immediate Short Addressing mode, can b

If the System Stack register SSH is specified as a source operand, the Stack Pointer
post-decremented by 1 after SSH has been read. If SSH is specified as a destinatio
operand, the SP is preincremented by 1 before SSH is written. This allows the syste
stack to be efficiently extended using software stack pointer operations.

Operation Assembler Syntax

[X or Y]:ea → D1 MOVE(C) [Xor Y]:ea,D1

[X or Y]:aa → D1 MOVE(C) [Xor Y]:aa,D1

S1 → [X or Y]:ea MOVE(C) S1,[X or Y]:ea

S1 → [X or Y]:aa MOVE(C) S1,[X or Y]:aa

S1 → D2 MOVE(C) S1,D2

S2 → D1 MOVE(C) S2,D1

#xxxx → D1 MOVE(C) #xxxx,D1

#xx → D1 MOVE(C) #xx,D1

{ea} MMMRRR Effective Address SeeTable 12-13
on page 12-22

W Read S/Write D bit

SeeTable 12-16
on page 12-24

{X/Y} S Memory Space [X,Y]
{S1,D1} ddddd Program Controller register

[M0–M7, VBA, SR, OMR, SP,
SSH,SSL,LA,LC]

{aa} aaaaaa aa = 6-bit Absolute Short Address
{S2,D2} eeeeee S2/D2 register [all on-chip registers]
{#xx} iiiiiiii #xx = 8-bit Immediate Short Data
13-130 DSP56300 Family Manual Motorola

MOVEC Move Control Register MOVEC
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For D1 or D2 = SR operand:
* S Set according to bit 7 of the source operand.
* L Set according to bit 6 of the source operand.
* E Set according to bit 5 of the source operand.
* U Set according to bit 4 of the source operand.
* N Set according to bit 3 of the source operand.
* Z Set according to bit 2 of the source operand.
* V Set according to bit 1 of the source operand.
* C Set according to bit 0 of the source operand.

For D1 and D2≠ SR operand:
* S Set if data growth has been detected.
* L Set if data limiting has occurred during the move.

MOVE(C) [X or Y]:ea,D1 23 16 15 8 7 0
MOVE(C) S1,[X or Y]:ea 0 0 0 0 0 1 0 1 W 1 M M M R R R O S 1 d d d d d
MOVE(C) #xxxx,D1 Optional Effective Address Extension

MOVE(C) [X or Y]:aa,D1 23 16 15 8 7 0
MOVE(C) S1,[X or Y]:aa 0 0 0 0 0 1 0 1 W 0 a a a a a a 0 S 1 d d d d d

MOVE(C) S1,D2 23 16 15 8 7 0
MOVE(C) S2,D1 0 0 0 0 0 1 0 0 W 1 e e e e e e 1 0 1 d d d d d

23 16 15 8 7 0
MOVE(C) #xx,D1 0 0 0 0 0 1 0 1 i i i i i i i i 1 0 1 d d d d d
Motorola 13-131

rs S
ell as
s a
 has
SP is

ntly
MOVEM Move Program Memory MOVEM

Instruction Fields

Description Move the specified operand from/to the specified Program (P) memory
location. This is a powerful move instruction in that the source and destination registe
and D can be any register. All memory-alterable addressing modes can be used, as w
the Absolute Short Addressing mode. If the system stack register SSH is specified a
source operand, the system Stack Pointer (SP) is post-decremented by 1 after SSH
been read. If the system stack register SSH is specified as a destination operand, the
pre-incremented by 1 before SSH is written. This allows the system stack to be efficie
extended using software stack pointer operations.

Condition Codes

Operation Assembler Syntax

S → P:ea MOVE(M) S,P:ea

S → P:aa MOVE(M) S,P:aa

P:ea → D MOVE(M) P:ea,D

P:aa → D MOVE(M) P:aa,D

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
W Read S/Write D bit (seeTable 12-16 on page 12-24)

{ S,D} dddddd Source/Destination register [all on-chip registers] (seeTable
12-13 on page 12-22)

{aa} aaaaaa Absolute Short Address

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR
13-132 DSP56300 Family Manual Motorola

MOVEM Move Program Memory MOVEM

Instruction Formats and Opcodes

For D1 or D2 = SR operand:
* S Set according to bit 7 of the source operand.
* L Set according to bit 6 of the source operand.
* E Set according to bit 5 of the source operand.
* U Set according to bit 4 of the source operand.
* N Set according to bit 3 of the source operand.
* Z Set according to bit 2 of the source operand.
* V Set according to bit 1 of the source operand.
* C Set according to bit 0 of the source operand.

For D1 and D2≠ SR operand:
* S Set if data growth has been detected.
* L Set if data limiting has occurred during the move.

Operation Assembler Syntax

S → P:ea MOVE(M) S,P:ea

S → P:aa MOVE(M) S,P:aa

P:ea → D MOVE(M) P:ea,D

P:aa → D MOVE(M) P:aa,D

23 16 15 8 7 0
MOVE(M) S,P:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 1 0 d d d d d d
MOVE(M) P:ea,D Optional Effective Address Extension

MOVE(M) S,P:aa 23 16 15 8 7 0
MOVE(M) P:aa,D 0 0 0 0 0 1 1 1 W 0 a a a a a a 0 0 d d d d d d
Motorola 13-133

l.

ss. All

em
ecified
s
tions.
MOVEP Move Peripheral Data MOVEP

Instruction Fields

Description Move the specified operand to or from the specified X or Y I/O periphera
The I/O Short Addressing mode is used for the I/O peripheral address. All memory
addressing modes can be used for the X or Y memory effective address; all
memory-alterable addressing modes can be used for the P memory effective addre
the I/O space ($FFFF80 – $FFFFFF) can be accessed, except for the P: reference
opcode.If the System Stack register SSH is specified as a source operand, the syst
Stack Pointer (SP) is post-decremented by 1 after SSH has been read. If SSH is sp
as a destination operand, the SP is pre-incremented by 1 before SSH is written. Thi
allows the system stack to be efficiently extended using software stack pointer opera

Operation Assembler Syntax

[X or Y]:pp → D MOVEP [X or Y]:pp,D

[X or Y]:qq → D MOVEP [X or Y]:qq,D

[X or Y]:pp → [X or Y]:ea MOVEP [X or Y]:pp,[X or Y]:ea

[X or Y]:qq → [X or Y]:ea MOVEP [X or Y]:qq,[X or Y]:ea

[X or Y]:pp → P:ea MOVEP [X or Y]:pp,P:ea

[X or Y]:qq → P:ea MOVEP [X or Y]:qq,P:ea

S → [X or Y]:pp MOVEP S,[X or Y]:pp

S → [X or Y]:qq MOVEP S,[X or Y]:qq

[X or Y]:ea → [X or Y]:pp MOVEP [X or Y]:ea,[X or Y]:pp

[X or Y]:ea → [X or Y]:qq MOVEP [X or Y]:ea,[X or Y]:qq

P:ea → [X or Y]:pp MOVEP P:ea,[X or Y]:pp

P:ea → [X or Y]:qq MOVEP P:ea,[X or Y]:qq

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
{X/Y} S Memory space [X,Y] (seeTable 12-13 on page 12-22)
{X/Y} s Peripheral space [X,Y] (seeTable 12-13 on page 12-22)

W Read/write-peripheral (seeTable 12-13 on page 12-22)
{S,D} dddddd Source/Destination register [all on-chip registers] (seeTable

12-13 on page 12-22)
13-134 DSP56300 Family Manual Motorola

MOVEP Move Peripheral Data MOVEP
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For D1 or D2 = SR operand:
* S Set according to bit 7 of the source operand.
* L Set according to bit 6 of the source operand.
* E Set according to bit 5 of the source operand.
* U Set according to bit 4 of the source operand.
* N Set according to bit 3 of the source operand.
* Z Set according to bit 2 of the source operand.
* V Set according to bit 1 of the source operand.
* C Set according to bit 0 of the source operand.

For D1 and D2≠ SR operand:
* S Set if data growth is detected.
* L Set if data limiting occurred during the move.

X: or Y: Reference (high I/O address)
23 16 15 8 7 0

MOVEP [X or Y]:pp,[X or Y]:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 1 S p p p p p p
MOVEP [X or Y]:ea,[X or Y]:pp Optional Effective Address Extension

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP X:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 1 M M M R R R 0 S q q q q q q
MOVEP [X or Y]:ea,X:qq Optional Effective Address Extension

X: or Y: Reference (low I/O address)
23 16 15 8 7 0

MOVEP Y:qq,[X or Y]:ea 0 0 0 0 0 1 1 1 W 0 M M M R R R 1 S q q q q q q
MOVEP [X or Y]:ea,Y:qq Optional Effective Address Extension
Motorola 13-135

MOVEP Move Peripheral Data MOVEP
P: Reference (high I/O address)

MOVEP P:ea,[X or Y]:pp 16 15 8 7 0
MOVEP [X or Y]:pp,P:ea 0 0 0 0 1 0 0 s W 1 M M M R R R 0 1 p p p p p p

P: Reference (low I/O address)

MOVEP P:ea,[X or Y]:qq 16 15 8 7 0
MOVEP [X or Y]:qq,P:ea 0 0 0 0 0 0 0 0 1 W M M M R R R 0 S q q q q q q

Register Reference (high I/O address)

MOVEP S,[X or Y]:pp 23 16 15 8 7 0
MOVEP [X or Y]:pp,D 0 0 0 0 1 0 0 s W 1 d d d d d d 0 0 p p p p p p

Register Reference: (low I/O address)

MOVEP S,X:qq 23 16 15 8 7 0
MOVEP X:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 1 q 0 q q q q q

Register Reference: (low I/O address)

MOVEP S,Y:qq 23 16 15 8 7 0
MOVEP Y:qq,D 0 0 0 0 0 1 0 0 W 1 d d d d d d 0 q 1 q q q q q
13-136 DSP56300 Family Manual Motorola

n is
“+”.
ons
cision
MPY Signed Multiply MPY

Instruction Fields 1

Instruction Fields 2

Description Multiply the two signed 24-bit source operands S1 and S2 and store the
resulting product in the specified 56-bit destination accumulator D. Or, multiply the
signed 24-bit source operand S by the positive 24-bit immediate operand 2-n and store the
resulting product in the specified 56-bit destination accumulator D. The “–” sign optio
used to negate the specified product prior to accumulation. The default sign option is
When the processor is in the Double-Precision Multiply mode, the following instructi
do not execute in the normal way and should be used only as part of the double-pre
multiply algorithm:

MPY Y0,X0,A MPY Y0, X0,B

Operation Assembler Syntax

±S1 ∗ S2 → D (parallel move) MPY (±)S1,S2,D (parallel move)

±S1 ∗ S2 → D (parallel move) MPY (±)S2,S1,D (parallel move)

±(S1 ∗ 2-n) → D (no parallel move) MPY (±)S,#n,D (no parallel move)

{S1,S2} QQQ Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1,
Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±+/-} k Sign [+,–] (seeTable 12-16 on page 12-24)

{S} QQ Source register [Y1,X0,Y0,X1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{#n} sssss Immediate operand (seeTable 12-16 on page 12-24)
Motorola 13-137

MPY Signed Multiply MPY
Condition Codes

Instruction Formats and Opcodes 1

Instruction Formats and Opcode 2

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

MPY (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 0 0

MPY (±)S2,S1,D Optional Effective Address Extension

23 16 15 8 7 0
MPY (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 0 s s s s 1 1 Q Q d k 0 0
13-138 DSP56300 Family Manual Motorola

g

uct
MPY(su,uu) Mixed Multiply MPY(su,uu)

Instruction Fields

Description Multiply the two 24-bit source operands S1 and S2 and store the resultin
product in the specified 56-bit destination accumulator D. One or two of the source
operands can be unsigned. The “–” sign option is used to negate the specified prod
prior to accumulation. The default sign option is “+”.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

±S1 ∗ S2 → D (S1 unsigned, S2 unsigned) MPYuu (±)S1,S2,D (no parallel move)

±S1 ∗ S2 → D (S1 signed, S2 unsigned) MPYsu (±)S2,S1,D (no parallel move)

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see
Table 12-16 on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{s} [ss,us] (seeTable 12-16 on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

MPY su (±)S1,S2,D 23 16 15 8 7 0

MPY uu (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 s d k Q Q Q Q
Motorola 13-139

er
MPYI Signed Multiply With Immediate Operand MPYI

Instruction Fields

Description Multiply the immediate 24-bit source operand #xxxx with the 24-bit regist
source operand S and store the resulting product in the specified 56-bit destination
accumulator D. The “–” sign option is used to negate the specified product prior to
accumulation. The default sign option is “+”.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

±#xxxxxx∗S → D MPYI (±)#xxxxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
#xxxx 16-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
MPYI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 0

Immediate Data Extension
13-140 DSP56300 Family Manual Motorola

6-bit
The
 the
d, the

he
r to the
MPYR Signed Multiply and Round MPYR

Instruction Fields 1

Instruction Fields 2

Description Multiply the two signed 24-bit source operands S1 and S2 (or the signed
16-bit source operand S by the positive 24-bit immediate operand 2-n), round the result
using either convergent or two’s-complement rounding, and store it in the specified 5
destination accumulator D. The “–” sign option negates the product prior to rounding.
default sign option is “+”. The contribution of the LS bits of the result is rounded into
upper portion of the destination accumulator. Once the rounding has been complete
LSBs of the destination accumulator D are loaded with 0s to maintain an unbiased
accumulator value that can be reused by the next instruction. The upper portion of t
accumulator contains the rounded result that can be read out to the data buses. Refe
RND instruction for more complete information on the rounding process.

Operation Assembler Syntax

±S1 ∗ S2 + r → D (parallel move) MPYR (±)S1,S2,D (parallel move)

±S1 ∗ S2 + r → D (parallel move) MPYR (±)S2,S1,D (parallel move)

±(S1 ∗ 2-n) + r → D (no parallel move) MPYR (±)S,#n,D (no parallel move)

{S1,S2} QQQ Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1,
Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)

{S} QQ Source register [Y1,X0,Y0,X1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
{#n} sssss Immediate operand (seeTable 12-16 on page 12-24)
Motorola 13-141

MPYR Signed Multiply and Round MPYR
Condition Codes

Instruction Formats and Opcodes 1

Instruction Formats and Opcode 2

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

MPYR (±)S1,S2,D Data Bus Move Field 1 Q Q Q d k 0 1

MPYR (±)S2,S1,D Optional Effective Address Extension

23 16 15 8 7 0
MPYR (±)S,#n,D 0 0 0 0 0 0 0 1 0 0 0 s s s s s 1 1 Q Q d k 0 1
13-142 DSP56300 Family Manual Motorola

sult
6-bit

s
been

in an
ortion
. Refer
MPYRI MPYRI
 Signed Multiply and Round With Immediate Operand

Instruction Fields

Description Multiply the two signed 24-bit source operands #xxxx and S, round the re
using either convergent or two’s-complement rounding, and store it in the specified 5
destination accumulator D. The “–” sign option is used to negate the product before
rounding. The default sign option is “+”. The contribution of the LS bits of the result i
rounded into the upper portion of the destination accumulator. Once the rounding has
completed, the LS bits of the destination accumulator D are loaded with 0s to mainta
unbiased accumulator value that can be reused by the next instruction. The upper p
of the accumulator contains the rounded result that can be read out to the data buses
to the RND instruction for more complete information on the rounding process.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

±#xxxx ∗ S + r → D MPYRI (±)#xxxx,S,D

{S} qq Source register [X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{±} k Sign [+,–] (seeTable 12-16 on page 12-24)
#xxxx 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ This bit is changed according to the standard definition.
— This bit is unchanged by the instruction.

23 16 15 8 7 0
MPYRI (±)#xxxx,S,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 1 q q d k 0 1

Immediate Data Extension
Motorola 13-143

NEG Negate Accumulator NEG

Instruction Fields

Description Negate the destination operand D and store the result in the destination
accumulator. This is a 56-bit, two’s-complement operation.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

0 – D → D (parallel move) NEG D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
NEG D Data Bus Move Field 0 0 1 1 d 1 1 0

Optional Effective Address Extension
13-144 DSP56300 Family Manual Motorola

re
NOP No Operation NOP

Instruction Fields

None

Description Increment the Program Counter (PC). Pending pipeline actions, if any, a
completed. Execution continues with the instruction following the NOP.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

PC+1 → PC NOP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction.

23 16 15 8 7 0
NOP 0
Motorola 13-145

 D,
d store

ulator
e
r is in
ified
P is
e

must
e

NORM Norm Accumulator Iterations NORM

whereE denotes the logical complement of E and• denotes the logical AND operator

Instruction Fields

Description Perform one normalization iteration on the specified destination operand
update the specified address register Rn based upon the results of that iteration, an
the result back in the destination accumulator. This is a 56-bit operation. If the
accumulator extension is not in use, the accumulator is unnormalized, and the accum
is not zero, the destination operand is arithmetically shifted one bit to the left, and th
specified address register is decremented by 1. If the accumulator extension registe
use, the destination operand is arithmetically shifted one bit to the right, and the spec
address register is incremented by 1. If the accumulator is normalized or zero, a NO
executed and the specified address register is not affected. Since the operation of th
NORM instruction depends on the E, U, and Z condition code register bits, these bits
correctly reflect the current state of the destination accumulator prior to executing th
NORM instruction.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

If E • U • Z=1, then ASL D and Rn–1fiRn
else ifE=1, then ASR D and Rn+1fiR
else NOP

NORM Rn,D

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{Rn} RRR Address register [R0-R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ * —

CCR

* V Set if bit 55 is changed as a result of a left shift
√ This bit is changed according to the standard definition
— This bit is unchanged by the instruction

23 16 15 8 7 0
NORM Rn,D 0 0 0 0 0 0 0 1 1 1 0 1 1 R R R 0 0 0 1 d 1 0 1
13-146 DSP56300 Family Manual Motorola

en the
The
t

t
mber

tic

ise.
NORMF Fast Accumulator Normalization NORMF

Instruction Fields

Description Arithmetically shift the destination accumulator either left or right as
specified by the source operand sign and value. If the source operand is negative th
accumulator is left shifted, and if the source operand is positive then it is right shifted.
source accumulator value should be between +56 to -55 (or +40 to -39 in sixteen bi
mode). This instruction can be used to normalize the specified accumulator D, by
arithmetically shifting it either left or right so as to bring the leading one or zero to bi
location 46. The number of needed shifts is specified by the source operand. This nu
could be calculated by a previous CLB instruction. For normalization the source
accumulator value should be between +8 to -47 (or +8 to -31 in Sixteen- bit Arithme
mode). NORMF is a 56 bit operation.

Condition Codes

Example

CLB A,B ;Count leading bits
NORMF B1,A ;Normalize A.

If the base exponent is stored in R1 it can be updated by the following commands:

MOVE B1,N1 ;Update N1 with shift amount
MOVE (R1)+N1 ;Increment or decrement exponent

Operation Assembler Syntax

If S[23] = 0 then ASR S,D
else ASL -S,D

NORMF S,D

{S} sss Source register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-13
on page 12-22)

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ * —

CCR

* V Set if bit 39 is changed any time during the shift operation, and cleared otherw
√ Changed according to the standard definition.
— Unchanged by the instruction.
Motorola 13-147

 CLB

or,
e

NORMF Fast Accumulator Normalization NORMF

Prior to execution, the 56-bit A accumulator contains the value $20:0000:0000. The
instruction updates the B accumulator to the number of needed shifts, seven in this
example. The NORMF instruction performs seven shifts to the right on A accumulat
and normalization of A is achieved. The exponent register is updated according to th
number of shifts.

Instruction Formats and Opcode

23 16 15 8 7 0
NORMF S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 s s s D

$20:0000:0000

B: $00:0007:0000

A:

Before execution

$20:0000:0000

After execution

A: $00:4000:0000

A:CLB A,B

NORMF B1,A
13-148 DSP56300 Family Manual Motorola

nd
NOT Logical Complement NOT

where “—” denotes the logical NOT operator.

Instruction Fields

Description Take the one’s complement of bits 47–24 of the destination operand D a
store the result back in bits 47–24 of the destination accumulator. This is a 24-bit
operation. The remaining bits of D are not affected.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

D[31:16] fi D[31:16] (parallel move) NOT D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
NOT D Data Bus Move Field 0 0 0 1 d 1 1 1

Optional Effective Address Extension
Motorola 13-149

 This
 not
teger.

-bit
OR Logical Inclusive OR OR

where⊕ denotes the logical inclusive OR operator.

Instruction Fields

Description Logically inclusive OR the source operand S with bits47–24 of the
destination operand D and store the result in bits47–24 of the destination accumulator.
The source can be a 24-bit register, 6-bit short immediate, or 24-bit long immediate.
instruction is a 24-bit operation. The remaining bits of the destination operand D are
affected. When using 6-bit immediate data, the data is interpreted as an unsigned in
That is, the six bits are right aligned, and the remaining bits are zeroed to form a 16
source operand.

Condition Codes

Operation Assembler Syntax

S ⊕ D[47:24] → D[47:24] (parallel move) OR S,D (parallel move)

#xx ⊕ D[47:24] → D[47:24] OR #xx,D

#xxxx ⊕ D[47:24] → D[47:24] OR #xxxx,D

{S} JJ Source input register [X0,X1,Y0,Y1] (seeTable 12-13
on page 12-22)

{D} d Destination accumulator [A/B] (seeTable 12-13 on page 12-22)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.
13-150 DSP56300 Family Manual Motorola

OR Logical Inclusive OR OR
Instruction Formats and Opcodes

23 16 15 8 7 0
OR S,D Data Bus Move Field 0 1 J J d 0 1 0

Optional Effective Address Extension

23 16 15 8 7 0
OR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 0

23 16 15 8 7 0
OR #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 0

Immediate Data Extension
Motorola 13-151

The
d as
ORI OR Immediate With Control Register ORI

where + denotes the logical inclusive OR operator.

Instruction Fields

Description Logically OR the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register.
condition codes are affected only when the Condition Code Register (CCR) is specifie
the destination operand.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

#xx + D → D OR(I) #xx,D

{D} EE Program Controller register [MR,CCR,COM,EOM] (seeTable 12-13
on page 12-22)

{#xx} iiiiiiii Immediate Short Data

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For CCR Operand:
* S Set if bit 7 of the immediate operand is set.
* L Set if bit 6 of the immediate operand is set.
* E Set if bit 5 of the immediate operand is set.
* U Set if bit 4 of the immediate operand is set.
* N Set if bit 3 of the immediate operand is set.
* Z Set if bit 2 of the immediate operand is set.
* V Set if bit 1 of the immediate operand is set.
* C Set if bit 0 of the immediate operand is set.
For MR and OMR Operands:
The condition codes are not affected using these operands.

23 16 15 8 7 0
OR(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 1 1 1 1 0 E E
13-152 DSP56300 Family Manual Motorola

nly in
egal
PFLUSH Program Cache Flush PFLUSH

Instruction Fields

None

Description Flush the whole instruction cache, unlock all cache sectors, set the LRU
stack and tag registers to their default values. The PFLUSH instruction is enabled o
Cache Mode. When the cache is disabled, execution of this instruction causes an ill
instruction trap.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Flush instruction cache PFLUSH

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction

23 16 15 8 7 0
PFLUSH 0 1 1
Motorola 13-153

to its
UN
f this
PFLUSHUN PFLUSHUN
Program Cache Flush Unlocked Sections

Instruction Fields

None

Description Flush the instruction cache sectors that are unlocked, set the LRU stack
default value and set the unlocked tag registers to their default values. The PFLUSH
instruction is enabled only in Cache mode. When the cache is disabled, execution o
instruction causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Flush Unlocked instruction cache sectors PFLUSHUN

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— This bit is unchanged by the instruction

23 16 15 8 7 0
PFLUSHUN 0 1
13-154 DSP56300 Family Manual Motorola

f this
PFREE Program Cache Global Unlock PFREE

Instruction Fields

None

Description Unlock all the locked cache sectors in the instruction cache. The PFREE
instruction is enabled only in Cache Mode. When the cache is disabled, execution o
instruction causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Unlock all locked sectors PFREE

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PFREE 0 1 0
Motorola 13-155

f the
finitely

ory
bsolute
uses
PLOCK PLOCK
Lock Instruction Cache Sector

Instruction Fields

Description Lock the cache sector to which the specified effective address belongs. I
specified effective address does not belong to any cache sector and is therefore de
locked, nevertheless, load the least recently used cache sector tag with the17 most
significant bits of the specified address. Update the LRU stack accordingly. All mem
alterable addressing modes can be used for the effective address, but not a short a
address. The PLOCK instruction is enabled only in Cache mode. In PRAM mode it ca
an illegal instruction trap.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Lock sector by effective address PLOCK ea

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PUNLOCK ea 0 0 0 0 1 0 1 1 1 1 M M M R R R 1 0 0 0 0 0 0 1

Address Extension Word
13-156 DSP56300 Family Manual Motorola

ificant
e
4-bit

e

PLOCKR PLOCKR
Lock Instruction Cache Relative Sector

Instruction Fields

None

Description Lock the cache sector to which the sum PC + specified displacement
belongs. If the sum does not belong to any cache sector, then load the 17 most sign
bits of the sum into the least recently used cache sector tag, and then lock that cach
sector. Update the LRU stack accordingly. The displacement is a twos-complement 2
integer that represents the relative distance from the current PC to the address to b
locked. The PLOCKR instruction is enabled only in Cache Mode. When the cache is
disabled, execution of this instruction causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Lock sector by PC+xxxx PLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PLOCKR xxxx 0 1 1 1 1

ADDRESS EXTENSION WORD
Motorola 13-157

s. If
e
 the17

short
AM
PUNLOCK PUNLOCK
Unlock Instruction Cache Sector

Instruction Fields

Description Unlock the cache sector to which the specified effective address belong
the specified effective address does not belong to any cache sector, and is therefor
definitely unlocked, nevertheless, load the least recently used cache sector tag with
most significant bits of the specified address. Update the LRU stack accordingly. All
memory alterable addressing modes may be used for the effective address, but not a
absolute address. The PUNLOCK instruction is enabled only in Cache mode. In PR
mode it causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Unlock sector by effective address PUNLOCK ea

{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PUNLOCK ea 0 0 0 0 1 0 1 0 1 1 M M M R R R 1 0 0 0 0 0 0 1

Address Extension Word
13-158 DSP56300 Family Manual Motorola

ost

t PC
ode.
PUNLOCKR PUNLOCKR
Unlock Instruction Cache Relative Sector

Instruction Fields

None

Description Unlock the cache sector to which the sum PC + specified displacement
belongs. If the sum does not belong to any cache sector, and is therefore definitely
unlocked, nevertheless, load the least recently used cache sector tag with the 17 m
significant bits of the sum. Update the LRU stack accordingly. The displacement is a
twos-complement 24-bit integer that represents the relative distance from the curren
to the address to be locked. The PUNLOCKR instruction is enabled only in Cache m
In PRAM mode it causes an illegal instruction trap.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

Unlock sector by PC+xxxx PUNLOCKR xxxx

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
PUNLOCKR xxxx 0 1 1 1 0

Address Extension Word
Motorola 13-159

the
The
g the
ect,
gister

he

sing
 to

k

REP Repeat Next Instruction REP

Instruction Fields

Description Repeat the single-word instruction immediately following the REP
instruction the specified number of times. The value specifying the number of times
given instruction is to be repeated is loaded into the 24-bit loop counter (LC) register.
single-word instruction is then executed the specified number of times, decrementin
loop counter (LC) after each execution until LC = 1. When the REP instruction is in eff
the repeated instruction is fetched only one time, and it remains in the instruction re
for the duration of the loop count. Thus, the REP instruction is not interruptible
(sequential repeats are also not interruptible). The current loop counter (LC) value is
stored in an internal temporary register. If LC is set equal to zero, the instruction is
repeated 65,536 times. The instruction’s effective address specifies the address of t
value which is to be loaded into the loop counter (LC). All address register indirect
addressing modes can be used. The absolute short and the immediate short addres
modes may also be used. The four MS bits of the 12-bit immediate value are zeroed
form the 24-bit value that is to be loaded into the loop counter (LC).

If the System Stack register SSH is specified as a source operand, the system Stac
Pointer (SP) is post-decremented by 1 after SSH has been read.

Operation Assembler Syntax

LC → TEMP; [X or y]:ea → LC REP [X or Y]:ea
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP; [X or Y]:aa → LC REP [X or Y]:aa
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP;S → LC REP S
Repeat next instruction until LC = 1
TEMP → LC

LC → TEMP;#xxx → LC REP #xxx
Repeat next instruction until LC = 1
TEMP → LC

{ea} MMMRRR Effective Address

SeeTable 12-13
on page 12-22

{X/Y} S Memory Space [X,Y]
{aa} aaaaaa Absolute Short Address
{#xxx} hhhhiiiiiiii Immediate Short Data
{S} dddddd Source register [all on-chip registers]
13-160 DSP56300 Family Manual Motorola

REP Repeat Next Instruction REP
Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
REP [X or Y]:ea 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 1 0 0 0 0 0

23 16 15 8 7 0
REP [X or Y]:aa 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 1 0 0 0 0 0

23 16 15 8 7 0
REP #xxx 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 1 0 h h h h

23 16 15 8 7 0
REP S 0 0 0 0 0 1 1 0 1 1 d d d d d d 0 0 1 0 0 0 0 0
Motorola 13-161

cution
stack
RESET Reset On-Chip Peripheral Devices RESET

Instruction Fields

None.

Description Reset the interrupt priority register and all on-chip peripherals. This is a
software reset, which isnotequivalent to a hardwareRESET since only on-chip peripherals
and the interrupt structure are affected. The processor state is not affected, and exe
continues with the next instruction. All interrupt sources are disabled except for the
error, NMI, illegal instruction, Trap, Debug request, and hardware reset interrupts.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Reset the interrupt priority register and all
on-chip peripherals

RESET

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
13-162 DSP56300 Family Manual Motorola

 the

ant to
 the

est
ding
ant

nt
le
de

f the
 the
t

ared.
ister
ult.

is
RND Round Accumulator RND

Instruction Fields

Description Round the 56-bit value in the specified destination operand D and store
result in the destination accumulator (A or B). The contribution of the LSBs of the
operand is rounded into the upper portion of the operand by adding a rounding const
the LSBs of the operand. The upper portion of the destination accumulator contains
rounded result. The boundary between the lower portion and the upper portion is
determined by the scaling mode bits S0 and S1 in the Status Register (SR).

Two types of rounding can be used: convergent rounding (also called round to near
(even)) or twos-complement rounding. The type of rounding is selected by the Roun
Mode bit (RM) in the MR portion of the SR. In both rounding modes a rounding const
is first added to the unrounded result. The value of the rounding constant added is
determined by the scaling mode bits S0 and S1 in the SR. A 1 ispositioned in the rounding
constant aligned with the MSB of the current LS portion, that is, the rounding consta
weight is actually equal to half the weight of the upper portion’s LSB. The following tab
shows the rounding position and rounding constant as determined by the scaling mo
bits:

If convergent rounding is used, the result of this addition is tested and if all the bits o
result to the right of, and including, the rounding position are cleared, then the bit to
left of the rounding position is cleared in the result. This ensures that the result is no
biased. In both rounding modes, the Least Significant Bits (LSBs) of the result are cle
The number of LSBs cleared is determined by the Scaling Mode bits in the Status Reg
(SR). All bits to the right of and including the rounding position are cleared in the res

In Sixteen-bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D)
rounded and stored in the destination accumulator (A or B). This implies that the

Operation Assembler Syntax

D + r → D (parallel move) RND D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55 - 25 24 23 22 21 - 0

0 0 No Scaling 23 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 24 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 22 0. . . .0 0 0 1 0. . . .0
Motorola 13-163

n 24
RND Round Accumulator RND

boundary between the lower portion and upper portion is in a different position then i
bit mode. The following table shows the rounding position and rounding constant in
sixteen bit arithmetic mode, as determined by the scaling mode bits:

Condition Codes

Instruction Formats and Opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
RND D Data Bus Move Field 0 0 0 1 d 0 0 1

Optional Effective Address Extension

Rounding Rounding Constant

S1 S0 Scaling Mode Position 55 - 33 32 23 22 21 - 8

0 0 No Scaling 31 0. . . .0 0 1 0 0. . . .0

0 1 Scale Down 32 0. . . .0 1 0 0 0. . . .0

1 0 Scale Up 30 0. . . .0 0 0 1 0. . . .0
13-164 DSP56300 Family Manual Motorola

the
f bit
This
ROL Rotate Left ROL
Operation

Assembler Syntax

ROL D (parallel move)

Instruction Fields

Description Rotate bits 47–24 of the destination operand D one bit to the left and store
result in the destination accumulator.The Carry bit (C) receives the previous value o
47 of the operand.The previous value of the C bit is shifted into bit 24 of the operand.
instruction is a 24-bit operation. The remaining bits of destination operand D are not
affected.

Condition Codes

Instruction Formats and Opcodes

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V This bit is always cleared.
* C Set if bit 47 of the destination operand is set, and cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
ROL D Data Bus Move Field 0 0 1 1 d 1 1 1

Optional Effective Address Extension

C

47 24
Motorola 13-165

tore
e of

and.
not
ROR Rotate Right ROR
Operation

Assembler Syntax

ROR D (parallel move)

Instruction Fields

Description Rotate bits 47–24 of the destination operand D one bit to the right and s
the result in the destination accumulator.The Carry bit (C) receives the previous valu
bit 24 of the operand.The previous value of the C bit is shifted into bit 47 of the oper
This instruction is a 24-bit operation. The remaining bits of destination operand D are
affected.

Condition Codes

Instruction Formats and Opcodes

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * *

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
* C Set if bit 47 of the destination operand is set, and cleared otherwise.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
ROR D Data Bus Move Field 0 0 1 0 d 1 1 1

Optional Effective Address Extension

C

47

(parallel move)

24
13-166 DSP56300 Family Manual Motorola

tem
RTI Return From Interrupt RTI

Instruction Fields

None.

Description Pull the Program Counter (PC) and the Status Register (SR) from the sys
stack. The previous PC and SR values are lost.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

SSH → PC; SSL → SR; SP – 1 → SP RTI

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

* S Set according to the value pulled from the stack.
* L Set according to the value pulled from the stack.
* E Set according to the value pulled from the stack.
* U Set according to the value pulled from the stack.
* N Set according to the value pulled from the stack.
* Z Set according to the value pulled from the stack.
* V Set according to the value pulled from the stack.
* C Set according to the value pulled from the stack.

23 16 15 8 7 0
RTI 0 1 0 0
Motorola 13-167

alue
RTS Return From Subroutine RTS

Instruction Fields

None.

Description Pull the Program Counter (PC) from the system stack. The previous PC v
is lost. The Status Register (SR) is not affected.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

SSH → PC; SP – 1 → SP RTS

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
RTS 0 1 1 0 0
13-168 DSP56300 Family Manual Motorola

ords)
rectly
the
SBC Subtract Long With Carry SBC

Instruction Fields

Description Subtract the source operand S and the Carry bit(C) from the destination
operand D and store the result in the destination accumulator. Long words (48-bit w
are subtracted from the 56-bit destination accumulator. Note that the C bit is set cor
for multiple-precision arithmetic using long-word operands if the extension register of
destination accumulator (A2 or B2) is the sign extension of bit 47 of the destination
accumulator (A or B).

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

D – S – C → D (parallel move) SBC S,D (parallel move)

{S} J Source register [X,Y] (seeTable 12-13 on page 12-22)
{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

23 16 15 8 7 0
SBC S,D Data Bus Move Field 0 0 1 J d 1 0 1

Optional Effective Address Extension
Motorola 13-169

d
ted.

ntrol

low
from

n at
te.
r

nal
STOP Stop Instruction Processing STOP

Instruction Fields

None

Description Enter the Stop processing state. All activity in the processor is suspende
until theRESET or IRQA pin is asserted or the Debug Request JTAG command is detec
The clock oscillator is gated off internally. The Stop processing state is a low-power
standby state. During the Stop state, the destination port is in an idle state with the co
signals held inactive, the data pins are high impedance, and the address pins are
unchanged from the previous instruction. If the exit from the Stop state is caused by a
level on theRESET pin, then the processor enters the reset processing state. If the exit
the Stop state was caused by a low level on theIRQA pin, then the processor will service
the highest priority pending interrupt and will not service theIRQA interrupt unless it is
highest priority. If no interrupt is pending, the processor will resume program executio
the instruction following the STOP instruction that caused the entry into the Stop sta
Program execution (interrupt or normal flow) resumes after an internal delay counte
counts:

■ If the Stop Delay (SD, OMR[6]) bit is cleared—131,070 clock cycles

■ If the Stop Delay (SD, OMR[6]) bit is set—24 clock cycles

■ If the Stop Processing State (PSTP, PCTL1[5]) is set—8.5 clock cycles

During the clock stabilization count delay, all peripherals and external interrupts are
cleared and re-enabled/arbitrated at the end of the count interval. If theIRQA pin is asserted
when the STOP instruction is executed, the clock is not gated off, and only the inter
delay counter is started.

Condition Codes

Operation Assembler Syntax

Enter the stop processing state and stop the
clock oscillator

STOP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
13-170 DSP56300 Family Manual Motorola

STOP Stop Instruction Processing STOP
Instruction Formats and Opcode

23 16 15 8 7 0
STOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1
Motorola 13-171

he
t long

he six
and.
the

it 47
SUB Subtract SUB

Instruction Fields

Description Subtract the source operand from the destination operand D and store t
result in the destination operand D. The source can be a register (24-bit word, 48-bi
word, or 56-bit accumulator), 6-bit short immediate, or 24-bit long immediate. When
using 6-bit immediate data, the data is interpreted as an unsigned integer. That is, t
bits are right-aligned and the remaining bits are zeroed to form a 16-bit source oper
Note that the Carry bit (C) is set correctly using word or long-word source operands if
extension register of the destination accumulator (A2 or B2) is the sign extension of b
of the destination accumulator (A or B). The C bit is always set correctly using
accumulator source operands.

Condition Codes

Operation Assembler Syntax

D–S → D (parallel move) SUB S, D (parallel move)

D – #xx → D SUB #xx, D

D – #xxxx → D SUB #xxxx,D

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (seeTable 12-13
on page 12-22)

{D} d Destination accumulator [A/B] (seeTable 12-13 on page 12-22)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
13-172 DSP56300 Family Manual Motorola

SUB Subtract SUB
Instruction Formats and Opcodes

23 16 15 8 7 0
SUB S,D Data Bus Move Field 0 J J J d 1 0 0

Optional Effective Address Extension

23 16 15 8 7 0

SUB #xx,D
0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 0

23 16 15 8 7 0
SUB #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 0

Immediate Data Extension
Motorola 13-173

and
ically

as a
 the
e

SUBL Shift Left and Subtract Accumulators SUBL

Instruction Fields

Description Subtract the source operand S from two times the destination operand D
store the result in the destination accumulator. The destination operand D is arithmet
shifted one bit to the left, and a 0 is shifted into the LSB of D prior to the subtraction
operation. The Carry bit (C) is set correctly if the source operand does not overflow
result of the left shift operation. The Overflow bit (V) may be set as a result of either
shifting or subtraction operation (or both). This instruction is useful for efficient divid
and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

2 ∗ D – S → D (parallel move) SUBL S,D ((parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} The source accumulator is B if the destination accumulator (selected by

thed bit in the opcode) is A, or A if the destination accumulator is B

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * √

CCR

* V Set if overflow has occurred in the result or if the MS bit of the destination
operand is changed as a result of the instruction’s left shift

√ Changed according to the standard definition

23 16 15 8 7 0
SUBL S,D Data Bus Move Field 0 0 0 1 d 1 1 0

Optional Effective Address Extension
13-174 DSP56300 Family Manual Motorola

and
ically
ion
ly,

e

y

SUBR Shift Right and Subtract Accumulators SUBR

Instruction Fields

Description Subtract the source operand S from one-half the destination operand D
store the result in the destination accumulator. The destination operand D is arithmet
shifted one bit to the right while the MS bit of D is held constant prior to the subtract
operation. In contrast to the SUBL instruction, the Carry bit (C) is always set correct
and the Overflow bit (V) can only be set by the subtraction operation, and not by an
overflow due to the initial shifting operation. This instruction is useful for efficient divid
and Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

D / 2 – S → D (parallel move) SUBR S,D parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S} The source accumulator is B if the destination accumulator (selected b

thed bit in the opcode) is A, or A if the destination accumulator is B

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

23 16 15 8 7 0
SUBR S,D Data Bus Move Field 0 0 0 0 d 1 1 0

Optional Effective Address Extension
Motorola 13-175

r S2
egister
is

 can

 is
ss
s

nt
ths
Tcc Transfer Conditionally Tcc

Instruction Fields

Description Transfer data from the specified source register S1 to the specified
destination accumulator D1 if the specified condition is true. If a second source registe
and a second destination register D2 are also specified, transfer data from address r
S2 to address register D2 if the specified condition is true. If the specified condition
false, a NOP is executed. The conditions that “cc” can specify are listed onTable 12-16
on page 12-24. When used after the CMP or CMPM instructions, the Tcc instruction
perform many useful functions, such as a “maximum value,” “minimum value,”
“maximum absolute value,” or “minimum absolute value” function. The desired value
stored in the destination accumulator D1. If address register S2 is used as an addre
pointer into an array of data, the address of the desired value is stored in the addres
register D2. The Tcc instruction may be used after any instruction and allows efficie
searching and sorting algorithms. The Tcc instruction uses the internal Data ALU pa
and internal Address ALU paths. It does not affect the condition code bits.

Condition Codes

Operation Assembler Syntax

If cc, then S1 → D1 Tcc S1,D1

If cc, then S1 → D1 and S2 → D2 Tcc S1,D1 S2,D2

If cc, then S2 → D2 Tcc S2,D2

{cc} CCCC Condition code (seeTable 12-16 on page 12-24)
{S1} JJJ Source register [B/A,X0,Y0,X1,Y1] (seeTable 12-16

on page 12-24)
{D1} d Destination accumulator [A/B] (seeTable 12-13 on page 12-22)
{S2} ttt Source address register [R0–R7]
{D2} TTT Destination Address register [R0–R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
13-176 DSP56300 Family Manual Motorola

Tcc Transfer Conditionally Tcc
Instruction Formats and Opcode

23 16 15 8 7 0
Tcc S1,D1 0 0 0 0 0 0 1 0 C C C C 0 0 0 0 0 J J J d 0 0 0

23 16 15 8 7 0
Tcc S1,D1 S2,D2 0 0 0 0 0 0 1 1 C C C C 0 t t t 0 J J J d T T T

23 16 15 8 7 0
Tcc S2,D2 0 0 0 0 0 0 1 0 C C C C 1 t t t 0 0 0 0 0 T T T
Motorola 13-177

fied
us,
ts of

l

TFR Transfer Data ALU Register TFR

Instruction Fields

Description Transfer data from the specified source Data ALU register S to the speci
destination Data ALU accumulator D. TFR uses the internal Data ALU data paths; th
data does not pass through the data shifter/limiters. This allows the full 56-bit conten
one of the accumulators to be transferred into the other accumulatorwithout data shifting
and/or limiting. Moreover, since TFR uses the internal Data ALU data paths, paralle
moves are possible.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

S → D (parallel move) TFR S,D (parallel move)

{S} JJJ Source register [B/A,X0,Y0,X1,Y1] (seeTable 12-16 on page 12-24)
{D} d Destination accumulator [A/B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
TFR S,D Data Bus Move Field 0 J J J d 0 0 1

Optional Effective Address Extension
13-178 DSP56300 Family Manual Motorola

 if a
TRAP Software Interrupt TRAP

Instruction Fields

None

Description Suspend normal instruction execution and begin TRAP exception
processing. The Interrupt Priority Level (I1,I0) is set to 3 in the Status Register (SR)
long interrupt service routine is used.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Begin trap exception process TRAP

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
TRAP 0 1 1 0
Motorola 13-179

ed
t to
d

TRAPcc Conditional Software Interrupt TRAPcc

Instruction Fields

Description If the specified condition is true, normal instruction execution is suspend
and software exception processing is initiated. The Interrupt Priority Level (I1,I0) is se
3 in the Status Register (SR) if a long interrupt service routine is used. If the specifie
condition is false, instruction execution continues with the next instruction. The
conditions that the term “cc” can specify are listed onTable 12-18 on page 12-28.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

If cc then begin software exception processing TRAPcc

{cc} CCCC Condition code (seeTable 12-18 on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
TRAPcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C C C C
13-180 DSP56300 Family Manual Motorola

n

TST Test Accumulator TST

Instruction Fields

Description Compare the specified source accumulator S with 0 and set the conditio
codes accordingly. No result is stored although the condition codes are updated.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

S – 0 (parallel move) TST S (parallel move)

{S} d Source accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * —

CCR

* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
TST S Data Bus Move Field 0 0 0 0 d 0 1 1

Optional Effective Address Extension
Motorola 13-181

f the
it,
VSL Viterbi Shift Left VSL

Instruction Fields

Description Store the most significant part (24 bits) of the source accumulator at X
memory (at effective address location), while for the least significant part (24 bits) o
source accumulator shift one bit to the left and insert 0 or 1 at the Least Significant B
according to operand i, and store the result at Y memory at the same address. This
instruction enhances Viterbi algorithm performance.

Condition Codes

Instruction Formats and Opcodes

Operation Assembler Syntax

S[47:24] → X:ea; {S[23:0],i} → Y:ea VSL S,i,L:ea

{S} S Source register A,B (seeTable 12-13 on page 12-22)
{i} i Bit value, 0 or 1 to be placed in the least significant bit of

Y:<ea>
{ea} MMMRRR Effective address (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
VSL S,i,L:ea 0 0 0 0 1 0 1 S 1 1 M M M R R R 1 1 0 i 0 0 0 0

Optional Effective Address Extension
13-182 DSP56300 Family Manual Motorola

to

I/O
t is
ntered
ccurs,
ed
ebug
WAIT Wait for Interrupt or DMA Request WAIT

Instruction Fields

None

Description Enter the low-power standby Wait processing state. The internal clocks
the processor core and memories are gated off, and all activity in the processor is
suspended until an unmasked interrupt occurs. The clock oscillator and the internal
peripheral clocks remain active. If the WAIT instruction is executed when an interrup
pending, the interrupt is processed. The effect is the same as if the processor never e
the Wait state. When an unmasked interrupt or external (hardware) processor reset o
the processor leaves the Wait state and begins exception processing of the unmask
interrupt or reset condition. The processor also exits from the Wait state when the D
Request (DE) pin is asserted or when a Debug Request JTAG command is detected.

Condition Codes

Instruction Formats and Opcode

Operation Assembler Syntax

Disable clocks to the processor core and
enter the Wait processing state

WAIT

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
WAIT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0
Motorola 13-183

13-184 DSP56300 Family Manual Motorola

	INSERT Insert Bit Field INSERT
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	q
	q
	q
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	q
	q
	q
	0
	0
	0
	D
	Control Word Extension

	Jcc Jump Conditionally Jcc
	Condition code (see Table 12-18 on�page�12�28)
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the location in program memory given by the instruction’s effective address i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	1
	0
	C
	C
	C
	C
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	1
	0
	C
	C
	C
	C
	Optional Effective Address Extension

	JCLR Jump if Bit Clear JCLR
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	24-bit absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the 24-bit absolute address in program memory specified in the instruction’s ...

	JCLR Jump if Bit Clear JCLR
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	b
	b
	b
	b
	Absolute Address Extension

	JMP Jump JMP
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the location in program memory given by the instruction’s effective address. ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a

	JScc Jump to Subroutine Conditionally JScc
	Condition code (see Table 12-18 on�page�12�28)
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine whose location in program memory is given by the instruction’s...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	1
	1
	C
	C
	C
	C
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	1
	0
	C
	C
	C
	C

	JSCLR Jump to Subroutine if Bit Clear JSCLR
	Bit number [0–23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	24-bit absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
	Source register [all on-chip registers]
	Description�Jump to the subroutine at the 24-bit absolute address in program memory specified in ...

	JSCLR Jump to Subroutine if Bit Clear JSCLR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	q
	q
	q
	q
	1
	S
	0
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	b
	b
	b
	b
	Absolute Address Extension

	JSET Jump if Bit Set JSET
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	24-bit Absolute Address in extension word
	Absolute Address [0 – 63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the 24-bit absolute address in program memory specified in the instruction’s ...

	JSET Jump if Bit Set JSET
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	1
	0
	b
	b
	b
	b
	Absolute Address Extension

	JSR Jump to Subroutine JSR
	Short Jump Address
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine whose location in program memory is given by the instruction’s...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	0
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a
	a

	JSSET Jump to Subroutine if Bit Set JSSET
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	24-bit PC absolute Address extension word
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0–$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80–$FFFFBF]
	Source register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Jump to the subroutine at the 24-bit absolute address in program memory specified in ...

	JSSET Jump to Subroutine if Bit Set JSSET
	state of the nth bit. All address register indirect addressing modes can be used to reference the...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	q
	q
	q
	q
	1
	S
	1
	0
	b
	b
	b
	b
	Absolute Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	1
	0
	b
	b
	b
	b
	Absolute Address Extension

	LRA Load PC-Relative Address LRA
	Address register [R0–R7]
	Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-16 on�...
	24-bit PC Long Displacement
	Description�The PC is added to the specified displacement and the result is stored in destination...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	1
	0
	0
	0
	R
	R
	R
	0
	0
	0
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	d
	d
	d
	d
	d
	Long Displacement

	LSL Logical Shift Left LSL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	5-bit unsigned integer [0–16] denoting the shift amount
	Single-bit shift: Logically shift Bits 47–24 of the destination operand D one bit to the left and...
	Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted left #ii...

	This is a 24-bit operation. The remaining bits of the destination accumulator are not affected. T...

	LSL Logical Shift Left LSL
	Set if Bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and cleare...
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	D
	0
	1
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	1
	0
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	1
	s
	s
	s
	D

	LSR Logical Shift Right LSR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	5-bit unsigned integer [0–23] denoting the shift amount
	Description�
	Single-bit shift: Logically shift bits 47–24 of the destination operand D one bit to the right an...
	Multi-bit shift: The contents of bits 47–24 of the destination accumulator D are shifted right #i...

	This is a 24-bit operation. The remaining bits of the destination register are not affected. The ...

	LSR Logical Shift Right LSR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	Set if Bit 47 of the result is set.
	Set if Bits 47–24 of the result are 0.
	Always cleared.
	Set if the last bit shifted out of the operand is set, cleared for a shift count of zero, and cle...
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	1
	s
	s
	s
	D

	LUA Load Updated Address LUA
	Effective address (see Table 12-13 on�page�12�22)
	Destination address register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-16 on�...
	Destination address register [R0–R7,N0–N7] (see Table 12-16 on�page�12�24)
	7-bit sign extended short displacement address
	Source address register [R0–R7]
	Note: RRR refers to a source address register (R0–R7), while dddd/ddddd refer to a destination ad...

	Description�Load the updated address into the destination address register D. The source address ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	LUA Load Updated Address LUA
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	0
	M
	M
	R
	R
	R
	0
	0
	0
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	a
	a
	a
	R
	R
	R
	a
	a
	a
	a
	d
	d
	d
	d
	Note: LEA is a synonym for LUA. The simulator on-line disassembly translates the opcodes into LUA.

	MAC Signed Multiply Accumulate MAC
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	1
	0
	Optional Effective Address Extension
	Source registers S1,S2 [X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1] (see Table 12-16 on�page...
	Destination accumulator [A,B] (see Table 12-16 on�page�12�24)
	Sign [+,–] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	s
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	1
	0
	Source register [Y1,X0,Y0,X1]] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit source...

	MAC Signed Multiply Accumulate MAC
	Note that when the processor is in the Double Precision Multiply mode, the following instructions...
	MAC X1, Y0, A MAC X1, Y0, B
	MAC X0, Y1, A MAC X0, Y1, B
	MAC Y1, X1, A MAC Y1, X1, B
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	MACI MACI Signed Multiply Accumulate With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S and add/subtract the produ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	1
	0
	Immediate Data Extension

	MAC(su,uu) MAC(su,uu) Mixed Multiply Accumulate
	Source registers S1,S2 [all combinations of X0,X1,Y0 and Y1]
	(see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	[ss,us] (see Table 12-16 on�page�12�24)
	Description�Multiply the two 24-bit source operands S1 and S2 and add/subtract the product to/fro...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	0
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	MACR Signed Multiply Accumulate and Round MACR
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	1
	1
	Optional Effective Address Extension
	Source registers S1,S2 [X0*X0,Y0*Y0,X1*X0,Y1*Y0,X0*Y1,Y0*X0,X1*Y0,Y1*X1]
	(see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	3
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	1
	1
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 24-bit source...

	MACR Signed Multiply Accumulate and Round MACR
	destination accumulator D are loaded with 0s to maintain an unbiased accumulator value that the n...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	MACRI MACRI Signed MAC and Round With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,-] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S, add/subtract the product ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	1
	1
	Immediate Data Extension

	MAX Transfer by Signed Value MAX
	Description�Subtract the signed value of the source accumulator from the signed value of the dest...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	*
	CCR
	*
	C
	This bit is cleared if the conditional transfer is performed, and set otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	1
	1
	0
	1
	Optional Effective Address Extension

	MAXM Transfer by Magnitude MAXM
	Description�Subtract the absolute value (magnitude) of the source accumulator from the absolute v...
	This bit is cleared if the conditional transfer was performed, and set otherwise.
	Changed according to the standard definition.
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	0
	1
	0
	1
	Optional Effective Address Extension

	MERGE Merge Two Half Words MERGE
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on�page�12�24)
	Description�The contents of bits 11–0 of the source register are concatenated to the contents of ...
	Note:

	1. MERGE can be used in conjunction with EXTRACT or INSERT instructions to concatenate width and ...
	2. In Sixteen-bit Arithmetic mode, the contents of bits 15-8 of the source register are concatena...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	*
	*
	*
	—
	CCR
	Set if bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Unchanged by the instruction.

	MERGE Merge Two Half Words MERGE
	MOVE Move Data MOVE
	The DSP56300 (family) core provides a set of MOVE instructions. Table 12-14 lists these instructi...
	Table 12-14. Move Instructions

	MOVE
	Move Data
	page�12-110
	NO Parallel Data Move
	page�12-112
	I
	Immediate Short Data Move
	page�12-113
	R
	Register-to-Register Data Move
	page�12-116
	U
	Address Register Update
	page�12-117
	X:
	X Memory Data Move
	page�12-118
	X: R
	X Memory and Register Data Move
	page�12-120
	Y
	Y Memory Data Move
	page�12-122
	R: Y
	Register and Y Memory Data Move
	page�12-124
	L:
	Long Memory Data Move
	page�12-126
	X: Y
	X Memory Data Move
	page�12-128

	MOVE Move Data MOVE
	Description�Move the contents of the specified data source S to the specified destination D. This...
	Changed according to the standard definition.
	Unchanged by the instruction.
	Instruction Fields/ Parallel Move Description�Thirty of the sixty-two instructions allow an optio...

	NO Parallel Data Move
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	Description�Many instructions in the instruction set allow parallel moves. The parallel moves hav...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	(. . .)
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	Instruction opcode
	Instruction Format � (defined by instruction)

	I Immediate Short Data Move I
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	8-bit Immediate Short Data
	Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�page�12�22)
	Description�Move the 8-bit immediate data value (#xx) into the destination operand D. If the dest...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	I Immediate Short Data Move I
	23
	16
	15
	8
	7
	0
	0
	0
	1
	d
	d
	d
	d
	d
	i
	i
	i
	i
	i
	i
	i
	i
	Instruction opcode

	R Register-to-Register Data Move R
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves.
	Source register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A, B,R0–R7,N0–N7]
	See Table 12-13 on�page�12�22
	Destination register [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A, B,R0–R7,N0–N7]
	Description�Move the source register S to the destination register D. If the arithmetic or logica...
	If the opcode-operand portion of the instruction specifies a given source or destination register...

	R Register-to-Register Data Move R
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	e
	e
	e
	e
	e
	d
	d
	d
	d
	d
	Instruction opcode

	U Address Register Update U
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Update the specified address register according to the specified effective addressing...
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	1
	0
	M
	M
	R
	R
	R
	Instruction opcode

	X: X Memory Data Move X:
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves.
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	0
	d
	d
	d
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	0
	d
	d
	d
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode
	Effective Address (see Table 12-13 on�page�12�22)
	Read S / Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�...
	6-bit Absolute Short Address

	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	1
	1
	0
	R
	R
	R
	1
	W
	D
	D
	D
	D
	D
	D
	Rn Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	1
	a
	a
	a
	a
	a
	a
	R
	R
	R
	1
	a
	0
	W
	D
	D
	D
	D

	X: X Memory Data Move X:
	Read S / Write D bit (see Table 12-16 on�page�12�24)
	7-bit sign extended Short Displacement Address
	Address register (R0–R7)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (see Table 12-16 on�page�12�24)
	Source/Destination registers [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified word operand from/to X memory. All memory addressing modes can be ...
	If the opcode-operand portion of the instruction specifies a given source or destination register...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	X:R X Memory and Register Data Move X:R
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	0
	0
	1
	f
	f
	d
	F
	W
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address (see Table 12-13 on�page�12�22)
	Read S1/Write D1 bit (see Table 12-16 on�page�12�24)
	S1/D1 register [X0,X1,A,B] (see Table 12-16 on�page�12�24)
	S2 accumulator [A,B] (see Table 12-13 on�page�12�22)
	D2 input register [Y0,Y1] (see Table 12-16 on�page�12�24)

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	d
	0
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address (see Table 12-13 on�page�12�22)
	Move opcode (see Table 12-16 on�page�12�24)

	X:R X Memory and Register Data Move X:R
	Class I: Move a one-word operand from/to X memory and move another word operand from an accumulat...
	Class II: Move one-word operand from a Data ALU accumulator to X memory and one-word operand from...
	For both Class I and Class II X:R parallel data moves, if the arithmetic or logical opcode-operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	Y Y Memory Data Move Y
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	1
	d
	d
	d
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	d
	d
	1
	d
	d
	d
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode
	Effective Address (see Table 12-13 on�page�12�22)
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B,R0–R7,N0–N7] (see Table 12-13 on�...
	Absolute Short Address

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	1
	1
	0
	R
	R
	R
	1
	W
	D
	D
	D
	D
	D
	D
	Rn Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	1
	a
	a
	a
	a
	a
	a
	R
	R
	R
	1
	a
	1
	W
	D
	D
	D
	D

	Y Y Memory Data Move Y
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	7-bit sign extended Short Displacement Address
	Address register (R0–R7)
	Source/Destination registers [X0,X1,Y0,Y1,A0,B0,A2,B2,A1,B1,A,B] (see Table 12-16 on�page�12�24)
	Source/Destination registers [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified word operand from/to Y memory. All memory addressing modes can be ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	R:Y Register and Y Memory Data Move R:Y
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	23
	16
	15
	8
	7
	0
	0
	0
	0
	1
	d
	e
	f
	f
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	Effective Address
	See Table 12-13 on�page�12�22
	Read S2/Write D2 bit
	Table 12-16 on�page�12�24
	S1 accumulator [A,B]
	D1 input register [X0,X1]
	S2/D2 register [Y0,Y1,A,B]

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	d
	1
	0
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	ea = 6-bit Effective Address (see Table 12-13 on�page�12�22)
	Move opcode (see Table 12-16 on�page�12�24)

	R:Y Register and Y Memory Data Move R:Y
	Description�
	Class I: Move a one-word operand from an accumulator (S1) to an input register (D1) and move anot...
	Class II: Move a one-word operand from a Data ALU accumulator to Y memory and a one-word operand ...

	For both Class I and Class II R:Y parallel data moves, if the arithmetic or logical opcode-operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	L: Long Memory Data Move L:
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	Effective Address
	Table 12-13 on�page�12�22
	Read S/Write D bit
	See Table 12-16 on�page�12�24
	Two Data ALU registers
	Absolute Short Address
	Description�Move one 48-bit long-word operand from/to X and Y memory. Two Data ALU registers are ...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...

	L: Long Memory Data Move L:
	instruction. Note that the operands A10, B10, X, Y, AB, and BA can be used only for a 32-bit long...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	As a result of the MOVE A,L:ea operation, a 48-bit positive or negative saturation constant is st...

	23
	16
	15
	8
	7
	0
	0
	1
	0
	0
	L
	0
	L
	L
	W
	1
	M
	M
	M
	R
	R
	R
	Instruction opcode
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	1
	0
	0
	L
	0
	L
	L
	W
	0
	a
	a
	a
	a
	a
	a
	Instruction opcode

	X: Y: XY Memory Data Move X: Y:
	where (. . .) refers to any arithmetic or logical instruction that allows parallel moves
	5-bit X Effective Address (R0–R3 or R4–R7)
	4-bit Y Effective Address (R4–R7 or R0–R3)
	S1/D1 register [X0,X1,A,B]
	S2/D2 register [Y0,Y1,A,B]
	See Table 12-13 on�page�12�22
	X move Operation Control (See Table 12-16 on�page�12�24)
	Y move Operation Control (See Table 12-16 on�page�12�24)
	Description�Move a one-word operand from/to X memory and move another word operand from/to Y memo...
	If the arithmetic or logical opcode-operand portion of the instruction specifies a given destinat...

	X: Y: XY Memory Data Move X: Y:
	If the instruction specifies an access to an internal X I/O and internal Y I/O modules (reflected...
	If the opcode-operand portion of the instruction specifies a given source or destination register...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	1
	w
	m
	m
	e
	e
	f
	f
	W
	r
	r
	M
	M
	R
	R
	R
	Instruction opcode

	MOVEC Move Control Register MOVEC
	Effective Address
	See Table 12-13 on�page�12�22
	Read S/Write D bit
	See Table 12-16 on�page�12�24
	Memory Space [X,Y]
	Program Controller register [M0–M7, VBA, SR, OMR, SP, SSH,SSL,LA,LC]
	aa = 6-bit Absolute Short Address
	S2/D2 register [all on-chip registers]
	#xx = 8-bit Immediate Short Data
	Description�Move the contents of the specified source control register S1 or S2 to the specified ...
	If the System Stack register SSH is specified as a source operand, the Stack Pointer (SP) is post...

	MOVEC Move Control Register MOVEC
	For D1 or D2 = SR operand:
	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth has been detected.

	*
	L
	Set if data limiting has occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	W
	1
	M
	M
	M
	R
	R
	R
	O
	S
	1
	d
	d
	d
	d
	d
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	W
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	e
	e
	e
	e
	e
	e
	1
	0
	1
	d
	d
	d
	d
	d
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	1
	d
	d
	d
	d
	d

	MOVEM Move Program Memory MOVEM
	Effective Address (see Table 12-13 on�page�12�22)
	Read S/Write D bit (see Table 12-16 on�page�12�24)
	Source/Destination register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Absolute Short Address
	Description�Move the specified operand from/to the specified Program (P) memory location. This is...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR

	MOVEM Move Program Memory MOVEM
	For D1 or D2 = SR operand:
	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth has been detected.

	*
	L
	Set if data limiting has occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	1
	M
	M
	M
	R
	R
	R
	1
	0
	d
	d
	d
	d
	d
	d
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	0
	a
	a
	a
	a
	a
	a
	0
	0
	d
	d
	d
	d
	d
	d

	MOVEP Move Peripheral Data MOVEP
	Effective Address (see Table 12-13 on�page�12�22)
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Memory space [X,Y] (see Table 12-13 on�page�12�22)
	Peripheral space [X,Y] (see Table 12-13 on�page�12�22)
	Read/write-peripheral (see Table 12-13 on�page�12�22)
	Source/Destination register [all on-chip registers] (see Table 12-13 on�page�12�22)
	Description�Move the specified operand to or from the specified X or Y I/O peripheral. The I/O Sh...

	MOVEP Move Peripheral Data MOVEP
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	For D1 or D2 = SR operand:

	*
	S
	Set according to bit 7 of the source operand.

	*
	L
	Set according to bit 6 of the source operand.

	*
	E
	Set according to bit 5 of the source operand.

	*
	U
	Set according to bit 4 of the source operand.

	*
	N
	Set according to bit 3 of the source operand.

	*
	Z
	Set according to bit 2 of the source operand.

	*
	V
	Set according to bit 1 of the source operand.

	*
	C
	Set according to bit 0 of the source operand.
	For D1 and D2 ¹ SR operand:

	*
	S
	Set if data growth is detected.

	*
	L
	Set if data limiting occurred during the move.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	M
	M
	M
	R
	R
	R
	1
	S
	p
	p
	p
	p
	p
	p
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	1
	M
	M
	M
	R
	R
	R
	0
	S
	q
	q
	q
	q
	q
	q
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	1
	W
	0
	M
	M
	M
	R
	R
	R
	1
	S
	q
	q
	q
	q
	q
	q
	Optional Effective Address Extension

	MOVEP Move Peripheral Data MOVEP
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	M
	M
	M
	R
	R
	R
	0
	1
	p
	p
	p
	p
	p
	p
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	W
	M
	M
	M
	R
	R
	R
	0
	S
	q
	q
	q
	q
	q
	q
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	0
	s
	W
	1
	d
	d
	d
	d
	d
	d
	0
	0
	p
	p
	p
	p
	p
	p
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	d
	d
	d
	d
	d
	d
	1
	q
	0
	q
	q
	q
	q
	q
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	W
	1
	d
	d
	d
	d
	d
	d
	0
	q
	1
	q
	q
	q
	q
	q

	MPY Signed Multiply MPY
	Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 ...
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 and store the resulting prod...
	MPY Y0,X0,A MPY Y0, X0,B

	MPY Signed Multiply MPY
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	MPY(su,uu) Mixed Multiply MPY(su,uu)
	Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	[ss,us] (see Table 12-16 on�page�12�24)
	Description�Multiply the two 24-bit source operands S1 and S2 and store the resulting product in ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	1
	1
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	MPYI Signed Multiply With Immediate Operand MPYI
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	16-bit Immediate Long Data extension word
	Description�Multiply the immediate 24-bit source operand #xxxx with the 24-bit register source op...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	1
	1
	1
	q
	q
	d
	k
	0
	0
	Immediate Data Extension

	MPYR Signed Multiply and Round MPYR
	Source registers S1,S2 [X0*X0, Y0*Y0, X1*X0, Y1*Y0, X0*Y1, Y0*X0, X1*Y0, Y1*X1] (see Table 12-16 ...
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Source register [Y1,X0,Y0,X1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	Immediate operand (see Table 12-16 on�page�12�24)
	Description�Multiply the two signed 24-bit source operands S1 and S2 (or the signed 16-bit source...

	MPYR Signed Multiply and Round MPYR
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	1
	Q
	Q
	Q
	d
	k
	0
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	s
	s
	s
	s
	s
	1
	1
	Q
	Q
	d
	k
	0
	1

	MPYRI MPYRI Signed Multiply and Round With Immediate Operand
	Source register [X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Sign [+,–] (see Table 12-16 on�page�12�24)
	24-bit Immediate Long Data extension word
	Description�Multiply the two signed 24-bit source operands #xxxx and S, round the result using ei...
	÷
	This bit is changed according to the standard definition.

	—
	This bit is unchanged by the instruction.

	NEG Negate Accumulator NEG
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Negate the destination operand D and store the result in the destination accumulator....
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	NEG
	D
	Data Bus Move Field
	0
	0
	1
	1
	d
	1
	1
	0
	Optional Effective Address Extension

	NOP No Operation NOP
	None
	Description�Increment the Program Counter (PC). Pending pipeline actions, if any, are completed. ...
	This bit is unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	NORM Norm Accumulator Iterations NORM
	where E denotes the logical complement of E and · denotes the logical AND operator
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Address register [R0-R7]
	Description�Perform one normalization iteration on the specified destination operand D, update th...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	Set if bit 55 is changed as a result of a left shift

	÷
	This bit is changed according to the standard definition

	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	1
	1
	R
	R
	R
	0
	0
	0
	1
	d
	1
	0
	1

	NORMF Fast Accumulator Normalization NORMF
	Source register [X0,X1,Y0,Y1,A1,B1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Arithmetically shift the destination accumulator either left or right as specified by...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	V
	Set if bit 39 is changed any time during the shift operation, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	If the base exponent is stored in R1 it can be updated by the following commands:

	NORMF Fast Accumulator Normalization NORMF
	Prior to execution, the 56-bit A accumulator contains the value $20:0000:0000. The CLB instructio...
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	1
	0
	s
	s
	s
	D

	NOT Logical Complement NOT
	where “—” denotes the logical NOT operator.
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Take the one’s complement of bits 47–24 of the destination operand D and store the re...
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	1
	1
	1
	Optional Effective Address Extension

	OR Logical Inclusive OR OR
	where Å denotes the logical inclusive OR operator.
	Source input register [X0,X1,Y0,Y1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically inclusive OR the source operand S with bits 47–24 of the destination operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	—
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	OR Logical Inclusive OR OR
	ORI OR Immediate With Control Register ORI
	where + denotes the logical inclusive OR operator.
	Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 on�page�12�22)
	Immediate Short Data
	Description�Logically OR the 8-bit immediate operand (#xx) with the contents of the destination c...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	For CCR Operand:
	Set if bit 7 of the immediate operand is set.
	Set if bit 6 of the immediate operand is set.
	Set if bit 5 of the immediate operand is set.
	Set if bit 4 of the immediate operand is set.
	Set if bit 3 of the immediate operand is set.
	Set if bit 2 of the immediate operand is set.
	Set if bit 1 of the immediate operand is set.
	Set if bit 0 of the immediate operand is set.
	For MR and OMR Operands: The condition codes are not affected using these operands.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	1
	1
	1
	1
	0
	E
	E

	PFLUSH Program Cache Flush PFLUSH
	None
	Description�Flush the whole instruction cache, unlock all cache sectors, set the LRU stack and ta...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1

	PFLUSHUN PFLUSHUN Program Cache Flush Unlocked Sections
	None
	Description�Flush the instruction cache sectors that are unlocked, set the LRU stack to its defau...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	This bit is unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	PFREE Program Cache Global Unlock PFREE
	None
	Description�Unlock all the locked cache sectors in the instruction cache. The PFREE instruction i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0

	PLOCK PLOCK Lock Instruction Cache Sector
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Lock the cache sector to which the specified effective address belongs. If the specif...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	1
	Address Extension Word

	PLOCKR PLOCKR Lock Instruction Cache Relative Sector
	None
	Description�Lock the cache sector to which the sum PC + specified displacement belongs. If the su...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	ADDRESS EXTENSION WORD

	PUNLOCK PUNLOCK Unlock Instruction Cache Sector
	Effective Address (see Table 12-13 on�page�12�22)
	Description�Unlock the cache sector to which the specified effective address belongs. If the spec...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	M
	M
	M
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	1
	Address Extension Word

	PUNLOCKR PUNLOCKR Unlock Instruction Cache Relative Sector
	None
	Description�Unlock the cache sector to which the sum PC + specified displacement belongs. If the ...
	Condition Codes
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction
	Instruction Formats and Opcodes

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	0
	Address Extension Word

	REP Repeat Next Instruction REP
	Effective Address
	See Table 12-13 on�page�12�22
	Memory Space [X,Y]
	Absolute Short Address
	Immediate Short Data
	Source register [all on-chip registers]
	Description�Repeat the single-word instruction immediately following the REP instruction the spec...
	If the System Stack register SSH is specified as a source operand, the system Stack Pointer (SP) ...

	REP Repeat Next Instruction REP
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	1
	0
	0
	0
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	0
	0
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	1
	0
	h
	h
	h
	h
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	d
	d
	d
	d
	d
	d
	0
	0
	1
	0
	0
	0
	0
	0

	RESET Reset On-Chip Peripheral Devices RESET
	None.
	Description�Reset the interrupt priority register and all on-chip peripherals. This is a software...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0

	RND Round Accumulator RND
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Round the 56-bit value in the specified destination operand D and store the result in...
	Two types of rounding can be used: convergent rounding (also called round to nearest (even)) or t...
	0
	0
	No Scaling
	23
	0. . . .0
	0
	1
	0
	0. . . .0
	0
	1
	Scale Down
	24
	0. . . .0
	1
	0
	0
	0. . . .0
	1
	0
	Scale Up
	22
	0. . . .0
	0
	0
	1
	0. . . .0
	If convergent rounding is used, the result of this addition is tested and if all the bits of the ...
	In Sixteen-bit Arithmetic mode the 40-bit value (in the 56-bit destination operand D) is rounded ...

	RND Round Accumulator RND
	boundary between the lower portion and upper portion is in a different position then in 24 bit mo...
	0
	0
	No Scaling
	31
	0. . . .0
	0
	1
	0
	0. . . .0
	0
	1
	Scale Down
	32
	0. . . .0
	1
	0
	0
	0. . . .0
	1
	0
	Scale Up
	30
	0. . . .0
	0
	0
	1
	0. . . .0
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	0
	0
	1
	Optional Effective Address Extension

	ROL Rotate Left ROL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Rotate bits 47–24 of the destination operand D one bit to the left and store the resu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	This bit is always cleared.

	*
	C
	Set if bit 47 of the destination operand is set, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	d
	1
	1
	1
	Optional Effective Address Extension

	ROR Rotate Right ROR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Rotate bits 47–24 of the destination operand D one bit to the right and store the res...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	*
	CCR
	*
	N
	Set if bit 47 of the result is set.

	*
	Z
	Set if bits 47–24 of the result are 0.

	*
	V
	Always cleared.

	*
	C
	Set if bit 47 of the destination operand is set, and cleared otherwise.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	1
	1
	1
	Optional Effective Address Extension

	RTI Return From Interrupt RTI
	None.
	Description�Pull the Program Counter (PC) and the Status Register (SR) from the system stack. The...
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	Set according to the value pulled from the stack.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0

	RTS Return From Subroutine RTS
	None.
	Description�Pull the Program Counter (PC) from the system stack. The previous PC value is lost. T...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0

	SBC Subtract Long With Carry SBC
	Source register [X,Y] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Subtract the source operand S and the Carry bit(C) from the destination operand D and...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	J
	d
	1
	0
	1
	Optional Effective Address Extension

	STOP Stop Instruction Processing STOP
	None
	Description�Enter the Stop processing state. All activity in the processor is suspended until the...
	If the Stop Delay (SD, OMR[6]) bit is cleared—131,070 clock cycles
	If the Stop Delay (SD, OMR[6]) bit is set—24 clock cycles
	If the Stop Processing State (PSTP, PCTL1[5]) is set—8.5 clock cycles

	During the clock stabilization count delay, all peripherals and external interrupts are cleared a...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	STOP Stop Instruction Processing STOP
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	1

	SUB Subtract SUB
	Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on�page�12�22)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Subtract the source operand from the destination operand D and store the result in th...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	SUB Subtract SUB
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	0
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	1
	0
	0
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	d
	1
	0
	0
	Immediate Data Extension

	SUBL Shift Left and Subtract Accumulators SUBL
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Subtract the source operand S from two times the destination operand D and store the ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	*
	÷
	CCR
	*
	V
	Set if overflow has occurred in the result or if the MS bit of the destination operand is changed...

	÷
	Changed according to the standard definition

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	1
	1
	0
	Optional Effective Address Extension

	SUBR Shift Right and Subtract Accumulators SUBR
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Subtract the source operand S from one-half the destination operand D and store the r...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	0
	d
	1
	1
	0
	Optional Effective Address Extension

	Tcc Transfer Conditionally Tcc
	Condition code (see Table 12-16 on�page�12�24)
	Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	Source address register [R0–R7]
	Destination Address register [R0–R7]
	Description�Transfer data from the specified source register S1 to the specified destination accu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	Tcc Transfer Conditionally Tcc
	TFR Transfer Data ALU Register TFR
	Source register [B/A,X0,Y0,X1,Y1] (see Table 12-16 on�page�12�24)
	Destination accumulator [A/B] (see Table 12-13 on�page�12�22)
	Description�Transfer data from the specified source Data ALU register S to the specified destinat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	0
	0
	1
	Optional Effective Address Extension

	TRAP Software Interrupt TRAP
	None
	Description�Suspend normal instruction execution and begin TRAP exception processing. The Interru...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0

	TRAPcc Conditional Software Interrupt TRAPcc
	Condition code (see Table 12-18 on�page�12�28)
	Description�If the specified condition is true, normal instruction execution is suspended and sof...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	C
	C
	C
	C

	TST Test Accumulator TST
	Source accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Compare the specified source accumulator S with 0 and set the condition codes accordi...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	*
	—
	CCR
	*
	V
	Always cleared.

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	0
	d
	0
	1
	1
	Optional Effective Address Extension

	VSL Viterbi Shift Left VSL
	Source register A,B (see Table 12-13 on�page�12�22)
	Bit value, 0 or 1 to be placed in the least significant bit of Y:<ea>
	Effective address (see Table 12-13 on�page�12�22)
	Description� Store the most significant part (24 bits) of the source accumulator at X memory (at ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	S
	1
	1
	M
	M
	M
	R
	R
	R
	1
	1
	0
	i
	0
	0
	0
	0
	Optional Effective Address Extension

	WAIT Wait for Interrupt or DMA Request WAIT
	None
	Description�Enter the low-power standby Wait processing state. The internal clocks to the process...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0

