
t in

tails.
U

es the
Chapter 13
Instruction Set
This chapter describes each instruction in the DSP56300 (family) core instruction se
detail. Instructions that allow parallel moves are so noted in both theOperation and the
Assembler Syntax fields. The MOVE instruction is equivalent to a NOP with parallel
moves, so a description of each parallel move accompanies the MOVE instruction de
When an instruction uses an accumulator as both a destination operand for Data AL
operation and a source for a parallel move operation, the parallel move operation us
value in the accumulator before any Data ALU operation executes. UseTable 13-1 to
locate the page number of an instruction.

Table 13-1. DSP56300 Instruction Summary

Instruction Page Instruction Page

ABS
Absolute Value

page 13-5 ADC
Add Long With Carry

page 13-6

ADD
Add

page 13-7 ADDL
Shift Left and Add Accumulators

page 13-9

ADDR
Shift Right and Add Accumulators

page 13-10 AND
Logical AND

page 13-11

ANDI
AND Immediate With Control Register

page 13-13 ASL
Arithmetic Shift Accumulator Left

page 13-14

ASR
Arithmetic Shift Accumulator Right

page 13-16 Bcc
Branch Conditionally

page 13-18

BCHG
Bit Test and Change

page 13-19 BCLR
Bit Test and Clear

page 13-22

BRA
Branch Always

page 13-25 BRCLR
Branch if Bit Clear

page 13-26

BRKcc
Exit Current DO Loop Conditionally

page 13-28 BRSET
Branch if Bit Set

page 13-29

BScc
Branch to Subroutine Conditionally

page 13-31 BSCLR
Branch to Subroutine if Bit Clear

page 13-33

BSET
Bit Test and Set

page 13-35 BSR
Branch to Subroutine

page 13-38

BSSET
Branch to Subroutine if Bit Set

page 13-39 BTST
Bit Test

page 13-41

CLB
Count Leading Bits

page 13-43 CLR
Clear Accumulator

page 13-45
Motorola Instruction Set 13-1

CMP
Compare

page 13-46 CMPM
Compare Magnitude

page 13-48

CMPU
Compare Unsigned

page 13-49 DEBUG
Enter Debug Mode

page 13-50

DEBUGcc
Enter Debug Mode Conditionally

page 13-51 DEC
Decrement by One

page 13-52

DIV
Divide Iteration

page 13-53 DO
Start Hardware Loop

page 13-57

DMAC
Double (Multi) Precision Multiply
Accumulate With Right Shift

page 13-56 DOR
Start PC-Relative Hardware Loop

page 13-62

DO FOREVER
Start Infinite Loop

page 13-60 ENDDO
End Current DO Loop

page 13-67

DOR FOREVER
Start PC-Relative Infinite Loop

page 13-65 EXTRACT
Extract Bit Field

page 13-70

EOR
Logical Exclusive OR

page 13-68 IFcc.U
Execute Conditionally With CCR Update

page 13-74

EXTRACTU
Extract Unsigned Bit Field

page 13-72 INC
Increment by One

page 13-77

ILLEGAL
Illegal Instruction Interrupt

page 13-76 Jcc
JumpConditionally

page 13-80

INSERT
Insert Bit Field

page 13-78 JMP
Jump

page 13-83

JCLR
Jump if Bit Clear

page 13-81 JSCLR
Jump to Subroutine if Bit Clear

page 13-85

JScc
Jump to Subroutine Conditionally

page 13-84 JSR
Jump to Subroutine

page 13-89

JSET
Jump if Bit Set

page 13-87 LRA
Load PC-Relative Address

page 13-92

JSSET
Jump to Subroutine if Bit Set

page 13-90 LSR
Logical Shift Right

page 13-96

LSL
Logical Shift Left

page 13-93 MAC
Signed Multiply Accumulate

page 13-99

LUA
Load Updated Address

page 13-98 MAC (su, uu)
Mixed Multiply Accumulate

page 13-102

MACI
Signed Multiply Accumulate With
Immediate Operand

page 13-101 MACRI
Signed Multiply Accumulate and Round
With Immediate Operand

page 13-105

MACR
Signed Multiply Accumulate and Round

page 13-103 MAXM
Transfer by Magniture

page 13-107

MAX
Transfer by Signed Value

page 13-106 MOVE
Move Data

page 13-110

MERGE
Merge Two Half Words

page 13-108 No Parallel Data Move page 13-112

Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
13-2 DSP56300 Family Manual Motorola

R
Register-to-Register Data Move

page 13-115 Immediate Short Data Move page 13-113

X:
X Memory Data Move

page 13-118 U
Address Register Update

page 13-117

Y:
Y Memory Data Move

page 13-122 X:R
X Memory and Register Data Move

page 13-120

L:
Long Memory Data Move

page 13-126 R:Y
Register and Y Memory Data Move

page 13-124

MOVEC
Move Control Register

page 13-130 X:Y:
XY Memory Data Move

page 13-128

MOVEP
Move Peripheral Data

page 13-134 MOVEM
Move Program Memory

page 13-132

MPY (su, uu)
Mixed Multiply

page 13-139 MPY
Signed Multiply

page 13-137

MPYR
Signed Multiply and Round

page 13-141 MPYI
Signed Multiply With Immediate Operand

page 13-140

NEG
Negate Accumulator

page 13-144 MPYRI
Signed Multiply and Round With
Immediate Operand

page 13-143

NORM
Norm Accumulator Iteration

page 13-147 NOP
No Operation

page 13-145

NOT
Logical Complement

page 13-149 NORMF
Fast Accumulator Normalization

page 13-147

ORI
OR Immediate With Control Register

page 13-152 OR
Logical Inclusive OR

page 13-150

PFLUSHUN
Program cache Flush Unlocked Sectors

page 13-154 PFLUSH
Program Cache Flush

page 13-153

PLOCKR
Lock Instruction Cache Relative Sector

page 13-157 PFREE
Program Cache Global Unlock

page 13-155

PUNLOCKR
Unlock Instruction Cache Relative Sector

page 13-159 PUNLOCK
Unlock Instruction Cache Sector

page 13-158

RESET
Reset On-Chip Peripherals Devices

page 13-162 REP
Repeat Next Instruction

page 13-160

ROL
Rotate Left

page 13-165 RND
Round Accumulator

page 13-163

RTI
Return From Interrupt

page 13-168 ROR
Rotate Right

page 13-166

SBC
Subtract Long With Carry

page 13-169 RTS
Return From Subroutine

page 13-168

SUB
Subtract

page 13-172 STOP
Stop Instruction Processing

page 13-170

SUBR
Shift Right and Subtract Accumulators

page 13-175 SUBL
Shift Left and Subtract Accumulators

page 13-174

Tcc
Transfer Conditionally

page 13-176 TFR
Transfer Data ALU Register

page 13-178

Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
Motorola Instruction Set 13-3

TRAP
Software Interrupt

page 13-179 TRAPcc
Conditional Software Interrupt

page 13-180

TST
Test Accumulator

page 13-181 VSL
Viterbi Shift Left

page 13-182

WAIT
Wait for Interrupt or DMA Request

page 13-183

Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
13-4 DSP56300 Family Manual Motorola

lt in
ABS Absolute Value ABS

Instruction Fields

Description Take the absolute value of the destination operand D and store the resu
the destination accumulator.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

| D | → D (parallel move) ABS D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.

— Unchanged by the instruction.

23 16 15 8 7 0

ABS D Data Bus Move Field 0 0 1 0 d 1 1 0

Optinal Effective Address Extension
Motorola Instruction Set 13-5

lator.
he
the
it 47
ADC Add Long With Carry ADC

Instruction Fields

Description Add the source operand S and the Carry bit (C) of the Condition Code
Register to the destination operand D and store the result in the destination accumu
Long words (48 bits) can be added to the 56-bit destination accumulator. Note that t
Carry bit is set correctly for multiple-precision arithmetic using long-word operands if
extension register of the destination accumulator (A2 or B2) is the sign extension of B
of the destination accumulator (A or B).

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

S + C + D → D (parallel move) ADC S,D (parallel move)

{S} J Source register [X,Y] (seeTable 12-13 on page 12-22)

{D} d Destination accumulator [A,B] (seeTable 12-13 on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

— Unchanged by the instruction.

23 16 15 8 7 0

ADC S,D Data Bus Move Field 0 0 1 J d 0 0 1

Optional Effective Address Extension
13-6 DSP56300 Family Manual Motorola

ult in
ord,

ix bits
 Note

it 47

 Bit 47.
ADD Add ADD

Instruction Fields

Description Add the source operand S to the destination operand D and store the res
the destination accumulator. The source can be a register (24-bit word, 48-bit long w
or 56-bit accumulator), 6-bit short immediate, or 24-bit long immediate. When 6-bit
immediate data is used, the data is interpreted as an unsigned integer. That is, the s
are right-aligned and the remaining bits are zeroed to form a 24-bit source operand.
that the Carry bit(C) is set correctly using word or long-word source operands if the
extension register of the destination accumulator (A2 or B2) is the sign extension of B
of the destination accumulator (A or B). Thus, the C bit is always set correctly using
accumulator source operands, but it can be set incorrectly if A1, B1, A10, B10 or
immediate operand are used as source operands and A2 and B2 are not replicas of

Condition Codes

Operation Assembler Syntax

S + D → D (parallel move) ADD S,D (parallel move)

#xx + D → D ADD #xx,D

#xxxx + D → D ADD #xxxx,D

{S} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (seeTable 12-13
on page 12-22)

{D} d Destination accumulator [A/B] (seeTable 12-13on page 12-22)

{#xx} iiiiii 6-bit Immediate Short Data

{#xxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

— Unchanged by the instruction.
Motorola Instruction Set 13-7

ADD Add ADD
Instruction Formats and opcodes

23 16 15 8 7 0

ADD S,D Data Bus Move Field 0 J J J d 0 0 0

Optional Effective Address Extension

23 16 15 8 7 0

ADD #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 0 0

23 16 15 8 7 0

ADD #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 0 0

Immediate Data Extension
13-8 DSP56300 Family Manual Motorola

ore

as a
 the
nd
ADDL Shift Left and Add Accumulators ADDL

Instruction Fields

Description Add the source operand S to two times the destination operand D and st
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the left, and a 0 is shifted into the LSB of D prior to the addition
operation. The Carry bit (C) is set correctly if the source operand does not overflow
result of the left shift operation. The Overflow bit (V) may be set as a result of either
shifting or addition operation (or both). This instruction is useful for efficient divide a
Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

S + 2 ∗ D → D (parallel move) ADDL S,D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)
{S} The source accumulator is B if the destination accumulator (selected

by thed bit in the opcode) is A, or A if the destination accumulator is
B.

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * √

CCR

V Set if overflow has occurred in A or B result or the MSB of the destination
operand is changed as a result of the instruction’s left shift.
Changed according to the standard definition.

— Unchanged by the instruction.

23 16 15 8 7 0

ADDL S,D Data Bus Move Field 0 0 0 1 d 0 1 0
Optional Effective Address Extension
Motorola Instruction Set 13-9

e the
ifted
. In

e to
ADDR Shift Right and Add Accumulators ADDR

Instruction Fields

Description Add the source operand S to one-half the destination operand D and stor
result in the destination accumulator. The destination operand D is arithmetically sh
one bit to the right while the MS bit of D is held constant prior to the addition operation
contrast to the ADDL instruction, the Carry bit (C) is always set correctly, and the
Overflow bit (V) can only be set by the addition operation and not by an overflow du
the initial shifting operation. This instruction is useful for efficient divide and
Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

S + D / 2 → D (parallel move) ADDR S,D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)
{S} The source accumulator is B if the destination accumulator (selected

by thed bit in the opcode) is A, or A if the destination accumulator is
B.

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

ADDR S,D Data Bus Move Field 0 0 0 0 d 0 1 0
Optional Effective Address Extension
13-10 DSP56300 Family Manual Motorola

rce
tion
d.
hat is,
e

AND Logical AND AND

where • denotes the logical AND operator

Instruction Fields

Description Logically AND the source operand S with bits 47–24 of the destination
operand D and store the result in bits 47–24 of the destination accumulator. The sou
can be a 24-bit register, 6-bit short immediate, or 24-bit long immediate. This instruc
is a 24-bit operation. The remaining bits of the destination operand D are not affecte
When 6-bit immediate data is used, the data is interpreted as an unsigned integer. T
the six bits are right aligned and the remaining bits are zeroed to form a 24-bit sourc
operand.

Condition Codes

Operation Assembler Syntax

S • D[47:24] → D[47:24] (parallel move) AND S,D (parallel move)

#xx • D[47:24] → D[47:24] AND #xx,D

#xxxx • D[47:24] → D[47:24] AND #xxxx,D

{S} JJ Source input register [X0,X1,Y0,Y1] (seeTable 12-13on page
12-22)

{D} d Destination accumulator [A/B] (seeTable 12-13on page 12-22)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ — — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47-24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.
Motorola Instruction Set 13-11

AND Logical AND AND
Instruction Formats and opcodes

23 16 15 8 7 0

AND S,D Data Bus Move Field 0 1 J J d 1 1 0
Optional Effective Address Extension

23 16 15 8 7 0

AND #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 1 0

23 16 15 8 7 0

AND #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 1 0
Immediate Data Extension
13-12 DSP56300 Family Manual Motorola

The
d as
ANDI AND Immediate With Control Register ANDI

Instruction Fields

Description Logically AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register.
condition codes are affected only when the Condition Code Register (CCR) is specifie
the destination operand.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax
#xx • D → D AND(I) #xx,D
where • denotes the logical AND operator

{D} EE Program Controller register [MR,CCR,COM,EOM] (seeTable 12-13
on page 12-22)

{#xx} iiiiiiii Immediate Short Data

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

For CCR Operand
* S Cleared if Bit 7 of the immediate operand is cleared.
* L Cleared if Bit 6 of the immediate operand is cleared.
* E Cleared if Bit 5 of the immediate operand is cleared.
* U Cleared if Bit 4 of the immediate operand is cleared.
* N Cleared if Bit 3 of the immediate operand is cleared.
* Z Cleared if Bit 2 of the immediate operand is cleared.
* V Cleared if Bit 1 of the immediate operand is cleared.
* C Cleared if Bit 0 of the immediate operand is cleared.

For MR and OMR Operands

The condition codes are not affected using these operands.

23 16 15 8 7 0

AND(I) #xx,D 0 0 0 0 0 0 0 0 i i i i i i i i 1 0 1 1 1 0 E E
Motorola Instruction Set 13-13

ts.
the
to
bit
six

e 56
ASL Arithmetic Shift Accumulator Left ASL
Operation

Assembler Syntax

ASL D (parallel move)
ASL D #ii,S2,D
ASL S1,S2,D

Instruction Fields

In the control register S1: bits 5–0 (LSB) are used as the #ii field, and the rest of the
register is ignored.

Description

■ Single bit shift: Arithmetically shift the destination accumulator D one bit to the
left and store the result in the destination accumulator. The MSB of D prior to
instruction execution is shifted into the Carry bit (C) and a 0 isshifted into the LSB
of the destination accumulator D.

■ Multi-bit shift: The contents of the source accumulator S2 are shifted left #ii bi
Bits shifted out of position 55 are lost except for the last bit, which is latched in
C bit. The vacated positions on the right are zero-filled. The result is placed in
destination accumulator D. The number of bits to shift is determined by the 6-
immediate field in the instruction, or by the 6-bit unsigned integer located in the
LSBs of the control register S1. If a zero shift count is specified, the C bit is
cleared. The difference between ASL and LSL is that ASL operates on the entir
bits of the accumulator, and therefore, sets the Overflow bit (V) if the number
overflows.

This is a 56-bit operation.

{S2} S Source accumulator [A,B] ()

SeeTable 12-13 on page 12-22
{D} D Destination accumulator [A,B] ()
{S1} sss Control register

[X0,X1,Y0,Y1,A1,B1]
{#ii} iiiiii 6-bit unsigned integer [0–40]

denoting the shift amount

C

0

55 47 23 048 24
13-14 DSP56300 Family Manual Motorola

ASL Arithmetic Shift Accumulator Left ASL
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * *

CCR

V Set if Bit 55 is changed any time during the shift operation, cleared
otherwise.

C Set if the last bit shifted out of the operand is set, cleared for a shift count of
0, and cleared otherwise.
Changed according to the standard definition.

23 8 7 0
ASL D Data Bus Move Field 0 0 1 1 d 0 1 0

Optional Effective Address Extension

23 16 15 8 7 0
ASL #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 1 S i i i i i i D

23 16 15 8 7 0
ASL S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 0 S s s s D

6
3
1

1

Shift left 7

0

0

C

1 0 1 0 1 0 0 0A

B

1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1

6
3
1

1
0

0 1 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0

ASL #7,A, B
Motorola Instruction Set 13-15

t

its.
 the

ed
t is

 the
),
ASR Arithmetic Shift Accumulator Right ASR

Assembler Syntax

ASR D (parallel move)
ASR D #ii, S2,D
ASR S1,S2,D

Instruction Fields

In the control register S1: bits 5-0 (LSB) are used as the #ii field, and the rest of the
register is ignored.

Description

■ Single bit shift: Arithmetically shift the destination operand D one bit to the righ
and store the result in the destination accumulator. The LSB of D prior to
instruction execution is shifted into the Carry bit (C), and the MSB of D is held
constant.

■ Multi-bit shift: The contents of the source accumulator S2 are shifted right #ii b
Bits shifted out of position 0 are lost except for the last bit, which is latched in
C bit. Copies of the MSB are supplied to the vacated positions on the left. The
result is placed into destination accumulator D. The number of bits to shift is
determined by the 6-bit immediate field in the instruction, or by the 6-bit unsign
integer located in the six 6 LSBs of the control register S1. If a zero shift coun
specified, the C bit is cleared.

This is a 56- or 40-bit operation, depending on the SA bit value in the SR.

Note: If the number of shifts indicated by the 6 LSBs of the control register or by
immediate field exceeds the value of 55 (40 in Sixteen Bit Arithmetic mode
then the result is undefined.

{S2} S Source accumulator [A,B]
SeeTable 12-13 on page 12-22{D} D Destination accumulator [A,B]

{S1} sss Control register [X0,X1,Y0,Y1,A1,B1]
{#ii} iiiiii 6-bit unsigned integer [0-40] denoting

the shift amount

C

Operation:

55 47 23 048 24
13-16 DSP56300 Family Manual Motorola

ASR Arithmetic Shift Accumulator Right ASR
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ * *

CCR

V This bit is always cleared.
C This bit is set if the last bit shifted out of the operand is set, cleared for a shift

count of 0, and cleared otherwise.
Changed according to the standard definition.

23 8 7 0
ASR D Data Bus Move Field 0 0 1 0 d 0 1 0

Optional Effective Address Extension

23 16 15 8 7 0
ASR #ii,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0 0 S i i i i i i D

23 16 15 8 7 0
ASR S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 S s s s D

ASR X0,A,B

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

4
4
7

2

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

4
4
7

2

shift = 3

X0

1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 0 1 1

0

1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1

0

Shift right 3 Shift right 3

A

B 0

c

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

5
5

5
5

x x x x x x x x x x x x x x x x x x 0 0 0 0 1 1

0
2
3

Motorola Instruction Set 13-17

PC
m
teger
rt
e Short
Bcc Branch Conditionally Bcc

Instruction Fields

Description If the specified condition is true, program execution continues at location
+ displacement. If the specified condition is false, the PC is incremented and progra
execution continues sequentially. The displacement is a two’s-complement 24-bit in
that represents the relative distance from the current PC to the destination PC. Sho
Displacement and Address Register PC Relative addressing modes can be used. Th
Displacement 9-bit data is sign-extended to form the PC relative displacement. The
conditions that the term “cc” can specify are listed onTable 12-17 on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc, then PC + xxxx → PC Bcc xxxx
else PC + 1 → PC

If cc, then PC + xxx → PC Bcc xxx
else PC + 1 → PC

If cc, then PC + Rn → PC Bcc Rn
else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-13on page 12-22)
(xxxx) 24-bit PC Relative Long Displacement
{xxx} aaaaaaaaa Signed PC Relative Short Displacement
{Rn} RRR Address register [R0 – R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
Bcc xxxx 0 0 0 0 0 1 0 1 C C C C 0 1 a a a a 0 a a a a a

PC Relative Placement
23 16 15 8 7 0

Bcc xxx 0 0 0 0 0 1 0 1 C C C C 0 1 a a a a 0 a a a a a
23 16 15 8 7 0

Bcc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 1 0 0 C C C C
13-18 DSP56300 Family Manual Motorola

23.
sing

ing a
BCHG Bit Test and Change BCHG

Instruction Fields

Description Test the nth bit of the destination operand D, complement it, and store the
result in the destination location. The state of the nth bit is stored in the Carry bit (C) of the
CCR register. The bit to be tested is selected by an immediate bit number from 0 –
This instruction performs a read-modify-write operation on the destination location u
two destination accesses before releasing the bus. This instruction provides a
test-and-change capability, which is useful for synchronizing multiple processors us
shared memory. This instruction can use all memory alterable addressing modes.

Condition Codes

Operation Assembler Syntax

D[n] → C D[n] → D[n] BCHG #n,[XorY]:ea

D[n] fi C D[n] → D[n] BCHG #n,[XorY]:aa

D[n] → C D[n] → D[n] BCHG #n,[XorY]:pp

D[n] → C D[n] → D[n] BCHG #n,[XorY]:qq

D[n] → C D[n] → D[n] BCHG #n,D

{#n} bbbb Bit number [0–23]
{ea} MMMRRR Effective Address (seeTable 12-13 on page 12-22)
{X /Y} S Memory Space [X,Y] (seeTable 12-13 on page 12-22)
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
{D} DDDDDD Destination register [all on-chip registers] (seeTable 12-13on

page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR
Motorola Instruction Set 13-19

BCHG Bit Test and Change BCHG
CCR Condition Codes

For destination operand SR:

* C Complemented if bit 0 is specified, unaffected otherwise.
* V Complemented if bit 1 is specified, unaffected otherwise.
* Z Complemented if bit 2 is specified, unaffected otherwise.
* N Complemented if bit 3 is specified, unaffected otherwise.
* U Complemented if bit 4 is specified, unaffected otherwise.
* E Complemented if bit 5 is specified, unaffected otherwise.
* L Complemented if bit 6 is specified, unaffected otherwise.
* S Complemented if bit 7 is specified, unaffected otherwise.

For other destination operands:
* C Set if bit tested is set, and cleared otherwise.
* V Not affected.
* Z Not affected.
* N Not affected.
* U Not affected.
* E Not affected.
* L Set according to the standard definition.
* S Set according to the standard definition.

MR Status Bits

For destination operand SR:
* I0 Changed if bit 8 is specified, unaffected otherwise.
* I1 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* S1 Changed if bit 11 is specified, unaffected otherwise.
* FV Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.

For other destination operands: MR status bits are not affected.
13-20 DSP56300 Family Manual Motorola

BCHG Bit Test and Change BCHG
Instruction Formats and opcodes

23 16 15 8 7 0
BCHG #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 0 0 b b b b

Optional Effective Address Extension

23 16 15 8 7 0
BCHG #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 0 0 b b b b

23 16 15 8 7 0
BCHG #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 0 0 b b b b

23 16 15 8 7 0
BCHG #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 0 b b b b b

23 16 15 8 7 0
BCHG #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 0 b b b b b
Motorola Instruction Set 13-21

he

s
two
lear
ory.
BCLR Bit Test and Clear BCLR

Instruction Fields

Description Test the nth bit of the destination operand D, clear it and store the result in t
destination location. The state of the nth bit is stored in the Carry bit (C) of the CCR
register. The bit to be tested is selected by an immediate bit number from 0–23. Thi
instruction performs a read-modify-write operation on the destination location using
destination accesses before releasing the bus. This instruction provides a test-and-c
capability, which is useful for synchronizing multiple processors using a shared mem
This instruction can use all memory alterable addressing modes.

Condition Codes

Operation Assembler Syntax

D[n] → C 0 → D[n] BCLR #n,[XorY]:ea

D[n] → C 0 → D[n] BCLR #n,[XorY]:aa

D[n] → C 0 → D[n] BCLR #n,[XorY]:pp

D[n] → C 0 → D[n] BCLR #n,[XorY]:qq

D[n] → C 0 → D[n] BCLR #n,D

{#n} bbbb Bit number [0-23]

SeeTable 12-13 on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{D} DDDDDD Destination register [all on-chip

registers]

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR
13-22 DSP56300 Family Manual Motorola

BCLR Bit Test and Clear BCLR
CCR Condition Codes

For destination operand SR:
* C Cleared if bit 0 is specified, unaffected otherwise.
* V Cleared if bit 1 is specified, unaffected otherwise.
* Z Cleared if bit 2 is specified, unaffected otherwise.
* N Cleared if bit 3 is specified, unaffected otherwise.
* U Cleared if bit 4 is specified, unaffected otherwise.
* E Cleared if bit 5 is specified, unaffected otherwise.
* L Cleared if bit 6 is specified, unaffected otherwise.
* S Cleared if bit 7 is specified, unaffected otherwise.

For other destination operands:
* C This bit is set if bit tested is set, and cleared otherwise.
* V Unaffected.
* Z Unaffected.
* N Unaffected.
* U Unaffected.
* E Unaffected.
* L This bit is set according to the standard definition.
* S This bit is set according to the standard definition.

MR Status Bits

For destination operand SR:
* I0 Changed if bit 8 is specified, unaffected otherwise.
* I1 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* S1 Changed if bit 11 is specified, unaffected otherwise.
* FV Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.
Motorola Instruction Set 13-23

BCLR Bit Test and Clear BCLR
Instruction Formats and opcodes

23 16 15 8 7 0
BCLR #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 0 0 b b b b

Optional Effective Address Extension

23 16 15 8 7 0
BCLR #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 0 0 b b b b

23 16 15 8 7 0
BCLR #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 0 0 b b b b

23 16 15 8 7 0
BCLR #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 0 0 b b b b

23 16 15 8 7 0
BCLR #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 0 0 b b b b
13-24 DSP56300 Family Manual Motorola

ce
r PC
BRA Branch Always BRA

Instruction Fields

Description Program execution continues at location PC + displacement. The
displacement is a two’s-complement 24-bit integer that represents the relative distan
from the current PC to the destination PC. Short Displacement and Address Registe
Relative addressing modes may be used. The Short Displacement 9-bit data is
sign-extended to form the PC relative displacement.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

PC + xxxx → Pc BRA xxxx

PC + xxx → Pc BRA xxx

PC + Rn → Pc BRA Rn

{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R0–R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
BRA xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0
BRA xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 1 a a a a 0 a a a a a

23 16 15 8 7 0
BRA Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 1 0 0 0 0 0 0
Motorola Instruction Set 13-25

ram

gister
tion.
tance
he
ed to
sing
e stack
BRCLR Branch if Bit Clear BRCLR

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is cleared, prog
execution continues at location PC+displacement. If the tested bit is set, the PC is
incremented and program execution continues sequentially. However, the address re
specified in the effective address field is always updated independently of the condi
The displacement is a 2’s complement 24-bit integer that represents the relative dis
from the current PC to the destination PC. The 24-bit displacement is contained in t
extension word of the instruction. All memory alterable addressing modes may be us
reference the source operand. Absolute Short, I/O Short and Register Direct addres
modes may also be used. Note that if the specified source operand S is the SSH, th
pointer register will be decremented by one. The bit to be tested is selected by an
immediate bit number 0-23.

Operation Assembler Syntax

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,[X or Y]:ea,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,[X or Y],aa,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,[X or Y]:pp,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,[X or Y]:qq,xxxx
else PC+ 1 ➞ PC

If S{n}=0 then PC+xxxx ➞ PC BRCLR #n,S,xxxx
else PC+ 1 ➞ PC

{#n} bbbbb Bit number [0-23]

SeeTable 12-13 on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0-$FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80-$FFFFBF]
{S} DDDDDD Source register [all on-chip

registers])
13-26 DSP56300 Family Manual Motorola

BRCLR Branch if Bit Clear BRCLR
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition
— Unchanged by the instruction

23 16 15 8 7 0
BRCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRCLR #n,S,xxxx 0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 0 b b b b b

PC-Relative Displacement
Motorola Instruction Set 13-27

tion.
re
stem
m

BRKcc Exit Current DO Loop Conditionally BRKcc

Instruction Fields

Description Exits conditionally the current hardware DO loop before the current Loop
Counter (LC) equals 1. It also terminates the DO FOREVER loop. If the value of the
current DO LC is needed, it must be read before the execution of the BRKcc instruc
Initially, the PC is updated from the LA, the Loop Flag (LF) and the Forever flag (FV) a
restored and the remaining portion of the Status Register (SR) is purged from the sy
stack. The Loop Address (LA) and the LC registers are then restored from the syste
stack. The conditions that the term “cc” can specify are listed inTable 12-18
on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc LA + 1→ PC; SSL(LF,FV) → SR; SP – 1 → SP BRKcc
SSH → LA; SSL → LC; SP – 1 → SP

else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-18on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
BRKcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 C C C C
13-28 DSP56300 Family Manual Motorola

 is
gister

tion.
tance
he
ed to
sing
e stack
BRSET Branch if Bit Set BRSET

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is set, program
execution continues at location PC+displacement. If the tested bit is cleared, the PC
incremented and program execution continues sequentially. However, the address re
specified in the effective address field is always updated independently of the condi
The displacement is a 2’s complement 24-bit integer that represents the relative dis
from the current PC to the destination PC. The 24-bit displacement is contained in t
extension word of the instruction. All memory alterable addressing modes may be us
reference the source operand. Absolute Short, I/O Short and Register Direct addres
modes may also be used. Note that if the specified source operand S is the SSH, th
pointer register will be decremented by one. The bit to be tested is selected by an
immediate bit number 0-23.

Operation Assembler Syntax

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,[X or Y]:ea,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,[X or Y],aa,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,[X or Y]:pp,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,[X or Y]:qq,xxxx
else PC+ 1 ➞ PC

If S{n}=1 then PC+xxxx ➞ PC BRSET #n,S,xxxx
else PC+ 1 ➞ PC

{#n} bbbbb Bit number [0-23]

SeeTable 12-13on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y])
{xxxx} 24-bit PC relative displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip

registers]
Motorola Instruction Set 13-29

BRSET Branch if Bit Set BRSET
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition
— Unchanged by the instruction

23 16 15 8 7 0
BRSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 0 1 0 M M M R R R 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 0 1 0 a a a a a a 1 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 0 1 1 p p p p p p 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BRSET #n,S,xxxx 0 0 0 0 1 1 0 0 1 1 D D D D D D 1 0 1 b b b b b

PC-Relative Displacement
13-30 DSP56300 Family Manual Motorola

ly
ution
C is
’s

to the
odes

lative
BScc Branch to Subroutine Conditionally BScc

Instruction Fields

Description If the specified condition is true, the address of the instruction immediate
following the BScc instruction and the SR are pushed onto the stack. Program exec
then continues at location PC + displacement. If the specified condition is false, the P
incremented and program execution continues sequentially. The displacement is a 2
complement 24-bit integer that represents the relative distance from the current PC
destination PC. Short Displacement and Address Register PC Relative addressing m
may be used. The Short Displacement 9-bit data is sign extended to form the PC re
displacement. The conditions that the term “cc” can specify are listed onTable 12-18on
page 12-28.

Condition Codes

Operation Assembler Syntax

If cc, then PC fiSSH;SR fiSSL;PC+xxxx fiPC BScc xxxx
else PC+1fiPC

If cc, then PC → SSH;SR → SSL;PC + xxx → PC BScc xxx
else PC + 1 → PC

If cc, then PC → SSH;SR → SSL;PC + Rn → PC BScc Rn
else PC + 1 → PC

{cc} CCCC Condition code (seeTable 12-18 on page 12-28)
{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R0 – R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.
Motorola Instruction Set 13-31

BScc Branch to Subroutine Conditionally BScc
Instruction Formats and opcodes

23 16 15 8 7 0
BScc xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 C C C C

PC-Relative Displacement

23 16 15 8 7 0
BScc xxx 0 0 0 0 0 1 0 1 C C C C 0 0 a a a a 0 a a a a a

23 16 15 8 7 0
BScc Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 0 0 0 0 C C C C
13-32 DSP56300 Family Manual Motorola

s

tion
ess

to the

nd.
Note
nts by
BSCLR Branch to Subroutine if Bit Clear BSCLR

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is cleared, the
address of the instruction immediately following the BSCLR instruction and the statu
register are pushed onto the stack. Program execution then continues at location
PC+displacement. If the tested bit is set, the PC is incremented and program execu
continues sequentially. However, the address register specified in the effective addr
field is always updated independently of the condition. The displacement is a two’s
complement 24-bit integer that represents the relative distance from the current PC
destination PC. The 24-bit displacement is contained in the extension word of the
instruction. All memory alterable addressing modes can reference the source opera
Absolute Short, I/O Short and Register Direct addressing modes can also be used.
that if the specified source operand S is the SSH, the stack pointer register decreme

Operation Assembler Syntax

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y]:ea,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y],aa,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y]:pp,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y]:qq,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,S,xxxx
else PC+1fiPC

{#n} bbbbb Bit number [0-23]

SeeTable 12-13on page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{xxxx} 24-bit Relative Long

Displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip

registers]
Motorola Instruction Set 13-33

 SSH
BSCLR Branch to Subroutine if Bit Clear BSCLR

one; if the condition is true, the push operation writes over the stack level where the
value is taken. The bit to be tested is selected by an immediate bit number 0-23.

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition
— Unchanged by the instruction

23 16 15 8 7 0
BSCLR #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 0 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 0 b b b b b

PC-Relative Displacement
13-34 DSP56300 Family Manual Motorola

the

s
two
et
y.

ion

tatus
BSET Bit Set and Test BSET

Instruction Fields

Description Test the nth bit of the destination operand D, set it, and store the result in
destination location. The state of the nth bit is stored in the Carry bit (C) of the CCR
register. The bit to be tested is selected by an immediate bit number from 0–23. Thi
instruction performs a read-modify-write operation on the destination location using
destination accesses before releasing the bus. This instruction provides a test-and-s
capability that is useful for synchronizing multiple processors using a shared memor
This instruction can use all memory alterable addressing modes. When this instruct
performs a bit manipulation/test on either the A or B 56-bit accumulator, it optionally
shifts the accumulator value according to scaling mode bits S0 and S1 in the system S
Register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use, the instruction acts on the limited value (limited on the maximum
positive or negative saturation constant). The “L” flag in the SR is set accordingly.

Condition Codes

Operation Assembler Syntax

D[n] → C 1→ D[n] BSET #n,[XorY]:ea

D[n] → C 1 → D[n] BSET #n,[XorY]:aa

D[n] → C 1 → D[n] BSET #n,[XorY]:pp

D[n] → C 1 → D[n] BSET #n,[XorY]:qq

D[n] → C 1 → D[n] BSET #n,D

{#n} bbbb Bit number [0–23] SeeTable 12-13on page
12-22{ea} MMMRRR Effective Address

{X/Y} S Memory Space [X,Y]
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{D} DDDDDD Destination register [all on-chip registers]

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR
Motorola Instruction Set 13-35

BSET Bit Set and Test BSET
CCR Condition Codes

For destination operand SR:
* C Set if bit 0 is specified, unaffected otherwise.
* V Set if bit 1 is specified, unaffected otherwise.
* Z Set if bit 2 is specified, unaffected otherwise.
* N Set if bit 3 is specified, unaffected otherwise.
* U Set if bit 4 is specified, unaffected otherwise.
* E Set if bit 5 is specified, unaffected otherwise.
* L Set if bit 6 is specified, unaffected otherwise.
* S Set if bit 7 is specified, unaffected otherwise.

For other destination operands:
* C Set if bit tested is set, and cleared otherwise.
* V Unaffected.
* Z Unaffected.
* N Unaffected.
* U Unaffected.
* E Unaffected.
* L Set according to the standard definition.
* S Set according to the standard definition.

MR Status Bits

For destination operand SR:
* I0 Changed if bit 8 is specified, unaffected otherwise.
* I1 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* S1 Changed if bit 11 is specified, unaffected otherwise.
* FV Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.

For other destination operands: MR status bits are not affected.
13-36 DSP56300 Family Manual Motorola

BSET Bit Set and Test BSET
Instruction Formats and opcodes

23 16 15 8 7 0
BSET #n,[X or Y]:ea 0 0 0 0 1 0 1 0 0 1 M M M R R R 0 S 1 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0
BSET #n,[X or Y]:aa 0 0 0 0 1 0 1 0 0 0 a a a a a a 0 S 1 0 b b b b

23 16 15 8 7 0
BSET #n,[X or Y]:pp 0 0 0 0 1 0 1 0 1 0 p p p p p p 0 S 1 0 b b b b

23 16 15 8 7 0
BSET #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 0 q q q q q q 0 S 1 0 b b b b

23 16 15 8 7 0
BSET #n,D 0 0 0 0 1 0 1 0 1 1 D D D D D D 0 1 1 0 b b b b
Motorola Instruction Set 13-37

n PC +
s the

ent
BSR Branch to Subroutine BSR

Instruction Fields

Description The address of the instruction immediately following the BSR instruction
and the SR are pushed onto the stack. Program execution then continues at locatio
displacement. The displacement is a twos-complement 24-bit integer that represent
relative distance from the current PC to the destination PC. Short Displacement and
Address Register PC-Relative addressing modes can be used. The Short Displacem
9-bit data is sign-extended to form the PC-Relative displacement.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

PC fiSSH;SR fiSSL;PC+xxxxfiPC BSR xxxx

PC → SSH;SR →SSL;PC + xxx → PC BSR xxx

PC → SSH;SR → SSL;PC + Rn → PC BSR Rn

{xxxx} 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [R0–R7]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
BSR xxxx 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0
BSR xxx 0 0 0 0 0 1 0 1 0 0 0 0 1 0 a a a a 0 a a a a a

23 16 15 8 7 0
BSR Rn 0 0 0 0 1 1 0 1 0 0 0 1 1 R R R 1 0 0 0 0 0 0 0
13-38 DSP56300 Family Manual Motorola

ress
r is
ent. If

ment
tion

ll
ort, I/O
ified
e
 is
BSSET Branch to Subroutine if Bit Set BSSET

Instruction Fields

Description The nth bit in the source operand is tested. If the tested bit is set, the add
of the instruction immediately following the BSSET instruction and the status registe
pushed onto the stack. Program execution then continues at location PC+displacem
the tested bit is cleared, the PC is incremented and program execution continues
sequentially. However, the address register specified in the effective address field is
always updated independently of the condition. The displacement is a two’s comple
24-bit integer that represents the relative distance from the current PC to the destina
PC. The 24-bit displacement is contained in the extension word of the instruction. A
memory alterable addressing modes can reference the source operand. Absolute Sh
Short and Register Direct addressing modes can also be used. Note that if the spec
source operand S is the SSH, the stack pointer register is decremented by one; if th
condition is true, the push operation writes over the stack level where the SSH value
taken. The bit to be tested is selected by an immediate bit number 0-23.

Operation Assembler Syntax

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y]:ea,xxxx
else PC+1⇒PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y],aa,xxxx
else PC+1⇒PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y]:pp,xxxx
else PC+1⇒PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y]:qq,xxxx
else PC+1⇒PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,S,xxxx
else PC+1⇒PC

{#n} bbbbb Bit number [0-23]

SeeTable 12-13on page
12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{xxxx} 24-bit Relative Long Displacement
{aa} aaaaaa Absolute Address [0-63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{S} DDDDDD Source register [all on-chip registers]
Motorola Instruction Set 13-39

BSSET Branch to Subroutine if Bit Set BSSET
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
BSSET #n,[X or Y]:ea,xxxx 0 0 0 0 1 1 0 1 1 0 M M M R R R 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSSET #n,[X or Y]:aa,xxxx 0 0 0 0 1 1 0 1 1 0 a a a a a a 1 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSSET #n,[X or Y]:pp,xxxx 0 0 0 0 1 1 0 1 1 1 p p p p p p 0 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSSET #n,[X or Y]:qq,xxxx 0 0 0 0 0 1 0 0 1 0 q q q q q q 1 S 1 b b b b b

PC-Relative Displacement

23 16 15 8 7 0
BSSET #n,S,xxxx 0 0 0 0 1 1 0 1 1 1 D D D D D D 1 0 1 b b b b b

PC-Relative Displacement
13-40 DSP56300 Family Manual Motorola

er
te
BTST Bit Test BTST

Instruction Fields

Description Test the nth bit of the destination operand D. The state of the nth bit is stored
in the Carry bit (C) of the CCR. The bit to test is selected by an immediate bit numb
from 0–23. BTST is useful for performing serial-to-parallel conversion with appropria
rotate instructions. This instruction can use all memory alterable addressing modes.

Condition Codes

Operation Assembler Syntax

D[n] → C BTST #n,[XorY]:ea

D[n] → C BTST #n,[XorY]:aa

D[n] → C BTST #n,[XorY]:pp

D[n] → C BTST #n,[XorY]:qq

D[n] → C BTST #n,D

{#n} bbbb Bit number [0 – 23]

SeeTable 12-13on
page 12-22

{ea} MMMRRR Effective Address
{X/Y} S Memory Space [X,Y]
{aa} aaaaaa Absolute Address [0–63]
{pp} pppppp I/O Short Address [64 addresses:

$FFFFC0 – $FFFFFF]
{qq} qqqqqq I/O Short Address [64 addresses:

$FFFF80 – $FFFFBF]
{D} DDDDDD Destination register [all on-chip registers]

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — — — — *

CCR

* C Set if bit tested is set, and cleared otherwise.
Changed according to the standard definition.

— Unchanged by the instruction.
SP—Stack Pointer

For destination operand SSH:SP, decrement the SP by 1.
For other destination operands, the SPis not affected.
Motorola Instruction Set 13-41

BTST Bit Test BTST
Instruction Formats and opcodes

23 16 15 8 7 0
BTST #n,[X or Y]:ea 0 0 0 0 1 0 1 1 0 1 M M M R R R O S 1 0 b b b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0
BTST #n,[X or Y]:aa 0 0 0 0 1 0 1 1 0 0 a a a a a a 0 S 1 0 b b b b

23 16 15 8 7 0
BTST #n,[X or Y]:pp 0 0 0 0 1 0 1 1 1 0 p p p p p p 0 S 1 0 b b b b

23 16 15 8 7 0
BTST #n,[X or Y]:qq 0 0 0 0 0 0 0 1 0 1 q q q q q q 0 S 1 0 b b b b

23 16 15 8 7 0
BTST #n,D 0 0 0 0 1 0 1 1 1 1 D D D D D D 0 1 1 0 b b b b
13-42 DSP56300 Family Manual Motorola

can

ound.
47.
he

ant
CLB Count Leading Bits CLB

Instruction Fields

Description Count leading 0s or 1s according to Bit 55 of the source accumulator. S
bits 55–0 of the source accumulator starting from Bit 55. The MSP of the destination
accumulator is loaded with nine minus the number of consecutive leading 1s or 0s f
The result is a signed integer in MSP whose range of possible values is from +8 to –
This is a 56-bit operation. The LSP of the destination accumulator D is filled with 0s. T
EXP of the destination accumulator D is sign-extended.

Note:

1. If the source accumulator is all 0s, the result is 0.

2. In Sixteen-Bit Arithmetic mode, the count ignores the unused 8 Least Signific
Bits of the MSP and LSP of the source accumulator. Therefore, the result is a
signed integer whose range of possible values is from +8 to –31.

3. CLB can be used in conjunction with NORMF instruction to specify the shift
direction and amount needed for normalization.

Condition Codes

Operation Assembler Syntax

If S[39] = 0 then
9 – (Number of consecutive leading zeros in S[55:0]) → D[47:24]

CLB S,D

else
 9 – (Number of consecutive leading ones in S[55:0]) → D[47:24]

{D} D Destination accumulator [A,B]
SeeTable 12-13on page 12-22

{S} S Source accumulator [A,B]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — * * * —

CCR

* N Set if bit 47 of the result is set, and cleared otherwise.
* Z Set if bits 47–24 of the result are all 0.
* V Always cleared.

— Unchanged by the instruction.
Motorola Instruction Set 13-43

CLB Count Leading Bits CLB
Example

Instruction Formats and opcode

23 16 15 8 7 0
CLB S,D 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 S D

CLB B,A

5 Leading ones

Result in A is 9 - 5 = 4

0 1 0 0

4
4
7

2

1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

4
4
7

2

1 0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 1

0

B

A

1 1 1 1 1 0 1 1

0 0

0

0 0 0 0 0 0 0 0
13-44 DSP56300 Family Manual Motorola

CLR Clear Accumulator CLR

Instruction Fields

Description Clear the destination accumulator. This is a 56-bit clear instruction.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

0 → D (parallel move) CLR D (parallel move)

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ * * * * * —

CCR

* E Always cleared.
* U Always set.
* N Always cleared.
* Z Always set.
* V Always cleared.
* √ Changed according to the standard definition.

— Unchanged by the instruction.

23 16 15 8 7 0
CLR D Data Bus Move Field 0 0 0 1 d 0 1 1

Optional Effective Address Extension
Motorola Instruction Set 13-45

nd
e

, or
n

 be

ne
ry to
2 can

. This
ch as
CMP Compare CMP

Instruction Fields

Description Subtract the source one operand from the source two accumulator, S2, a
update the CCR. The result of the subtraction operation is not stored. The source on
operand can be a register (24-bit word or 56-bit accumulator), 6-bit short immediate
24-bit long immediate. When using 6-bit immediate data, the data is interpreted as a
unsigned integer. That is, the six bits will be right-aligned and the remaining bits will
zeroed to form a 24-bit source operand.

This instruction subtracts 56-bit operands. When a word is specified as the source o
operand, it is sign-extended and zero-filled to form a valid 56-bit operand. For the car
be set correctly as a result of the subtraction, S2 must be properly sign-extended. S
be improperly sign-extended by writing A1 or B1 explicitly prior to executing the
compare so that A2 or B2, respectively, may not represent the correct sign extension
particularly applies to the case where it is extended to compare 24-bit operands, su
X0 with A1.

Condition Codes

Operation Assembler Syntax

S2 – S1 (parallel move) CMP S1, S2 (parallel move)

S2 – #xx CMP #xx, S2

S2 – #xxxxxx CMP #xxxxxx, S2

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (seeTable 12-16on page
12-24)

{S2} d Source two accumulator [A/B] (seeTable 12-13on page 12-22)
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxxxx} 24-bit Immediate Long Data extension word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
13-46 DSP56300 Family Manual Motorola

CMP Compare CMP
Instruction Formats and opcodes

23 16 15 8 7 0
CMP S1, S2 Data Bus Move Field 0 J J J d 1 0 1

Optional Effective Address Extension

23 16 15 8 7 0
CMP #xx, S2 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 1 0 1

23 16 15 8 7 0
CMP #xxxx,S2 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 1 0 1

Immediate Data Extension
Motorola Instruction Set 13-47

 from
ult of

ands.
-bit
perly

r to
t sign
ch as
CMPM Compare Magnitude CMPM

Instruction Fields

Description Subtract the absolute value (magnitude) of the source one operand, S1,
the absolute value of the source two accumulator, S2, and update the CCR. The res
the subtraction operation is not stored. Note that this instruction subtracts 56-bit oper
When a word is specified as S1, it is sign-extended and zero-filled to form a valid 56
operand. For the carry to be set correctly as a result of the subtraction, S2 must be pro
sign-extended. S2 can be improperly sign-extended by writing A1 or B1 explicitly prio
executing the compare so that A2 or B2, respectively, may not represent the correc
extension. This applies especially when it is extended to compare 24-bit operands, su
X0 with A1.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

|S2| – |S1| (parallel move) CMPM S1, S2 (parallel move)

{S1} JJJ Source one register [B/A,X0,Y0,X1,Y1] (seeTable 12-16on page
12-24)

{S2} d Source two accumulator [A,B] (seeTable 12-13on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.

23 16 15 8 7 0
CMPM S1, S2 Data Bus Move Field 0 J J J d 1 1 1

Optional Effective Address Extension
13-48 DSP56300 Family Manual Motorola

S2,
 this
nd.
a
XP
CMPU Compare Unsigned CMPU

Instruction Fields

Description Subtract the source one operand, S1, from the source two accumulator,
and update the CCR. The result of the subtraction operation is not stored. Note that
instruction subtracts a 24- or 48-bit unsigned operand from a 48-bit unsigned opera
When a 24-bit word is specified as S1, it is aligned to the left and zero-filled to form
valid 48-bit operand. If an accumulator is specified as an operand, the value in the E
does not affect the operation.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

S2 – S1 CMPU S1, S2

{S1} ggg Source one register [A,B,X0,Y0,X1,Y1] SeeTable 12-13on page
12-22{S2} d Source two accumulator [A,B]

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — √ * * √

CCR

* V Always cleared.
* Z Set if bits 47–0 of the result are 0.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0
CMPU S1, S2 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 g g g d
Motorola Instruction Set 13-49

DEBUG Enter Debug Mode DEBUG

Instruction Fields None

Description Enter the Debug mode and wait for OnCE commands.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

Enter the Debug mode DEBUG

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
DEBUG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
13-50 DSP56300 Family Manual Motorola

E

DEBUGcc DEBUGcc
Enter Debug Mode Conditionally

Instruction Fields

Description If the specified condition is true, enter the Debug mode and wait for OnC
commands. If the specified condition is false, continue with the next instruction. The
conditions that the term “cc” can specify are listed onTable 12-18on page 12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

If cc, then enter the Debug mode DEBUGcc

{cc} CCCC Condition code (seeTable 12-18on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
DEBUGcc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 C C C C
Motorola Instruction Set 13-51

ation
DEC Decrement by One DEC

Instruction Fields

Description Decrement by one the specified operand and store the result in the destin
accumulator. One is subtracted from the LSB of D.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

D – 1 → D DEC D

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
DEC D 0 1 0 1 d
13-52 DSP56300 Family Manual Motorola

esult
t is
4-bit
ates

e
ation

it of
t of
ive.
re
dition
nd

der.

 N)
inder
e it
t DIV
DIV Divide Iteration DIV

Instruction Fields

Description Divide the destination operand D by the source operand S and store the r
in the destination accumulator D. The 48-bit dividend must be a positive fraction tha
sign-extended to 56 bits and stored in the full 56-bit destination accumulator D. The 2
divisor is a signed fraction stored in the source operand S. Each DIV iteration calcul
one quotient bit using a nonrestoring fractional division algorithm. After the first DIV
instruction executes, the destination operand holds both the partial remainder and th
formed quotient. The partial remainder occupies the high-order portion of the destin
accumulator D and is a signed fraction. The formed quotient occupies the low-order
portion of the destination accumulator D (A0 or B0) and is a positive fraction. One b
the formed quotient is shifted into the LSB of the destination accumulator at the star
each DIV iteration. The formed quotient is the true quotient if the true quotient is posit
If the true quotient is negative, the formed quotient must be negated. Valid results a
obtained only when |D| < |S| and the operands are interpreted as fractions. This con
ensures that the magnitude of the quotient is less than 1 (i.e., a fractional quotient) a
precludes division by 0.

DIV calculates one quotient bit based on the divisor and the previous partial remain
To produce an N-bit quotient, the DIV instruction executes N times, where N is the
number of bits of precision desired in the quotient, 1≤ N ≤ 24. Thus, for a full-precision
(24-bit) quotient, sixteen DIV iterations are required. In general, executing the DIV
instruction N times produces an N-bit quotient and a 48-bit remainder that has (48 –
bits of precision and whose N MSBs are 0s. The partial remainder is not a true rema
and must be corrected due to the nonrestoring nature of the division algorithm befor
can be used. Therefore, once the divide is complete, it is necessary to reverse the las
operation and restore the remainder to obtain the true remainder.

Operation Assembler Syntax

IF D[39]⊕S[15] = 1 DIV S,D

then 2 ∗ D + C + S → D

else 2 ∗ D + C – S → D

where⊕ denotes the logical exclusive OR operator.

{S} JJ Source input register [X0,X1,Y0,Y1]
SeeTable 12-13on page 12-22

{D} d Destination accumulator [A,B]
Motorola Instruction Set 13-53

e

f

ost
sult

e
erand
n of
e C

tion
re

of
DIV Divide Iteration DIV

DIV uses a nonrestoring fractional division algorithm that consists of the following
operations:

1. Compare the source and destination operand sign bits: An exclusive OR
operation is performed on Bit 55 of the destination operand D and Bit 23 of th
source operand S.

2. Shift the partial remainder and the quotient: The 39-bit destination accumulator
D is shifted one bit to the left. The Carry bit (C) is moved into the LSB (Bit 0) o
the accumulator.

3. Calculate the next quotient bit and the new partial remainder: The 24-bit
source operand S (signed divisor) is either added to or subtracted from the M
Significant Portion (MSP) of the destination accumulator (A1 or B1), and the re
is stored back into the MSP of that destination accumulator. If the result of the
exclusive OR operation previously described was 1 (i.e., the sign bits were
different), the source operand S is added to the accumulator. If the result of th
exclusive OR operation was 0 (i.e., the sign bits were the same), the source op
S is subtracted from the accumulator. Because of the automatic sign extensio
the 24-bit signed divisor, the addition or subtraction operation correctly sets th
bit with the next quotient bit.

For extended precision division (e.g., N-bit quotients where N > 24), the DIV instruc
is no longer applicable, and a user-defined N-bit division routine is required. For mo
information on division algorithms, see pages 524–530 ofTheory and Application of
Digital Signal Processing by Rabiner and Gold (Prentice-Hall, 1975), pages 190–199
Computer Architecture and Organization by John Hayes (McGraw-Hill, 1978), pages
213–223 ofComputer Arithmetic: Principles, Architecture, and Design by Kai Hwang
(John Wiley and Sons, 1979), or other references as required.
13-54 DSP56300 Family Manual Motorola

DIV Divide Iteration DIV
Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— * — — — — * *

CCR

* L Set if the Overflow bit (V) is set.
* V Set if the MSB of the destination operand is changed as a result of the

instruction’s left shift operation.
* C Set if Bit 55 of the result is cleared.
— Unchanged by the instruction

23 16 15 8 7 0
DIV S,D 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 J J d 0 0 0
Motorola Instruction Set 13-55

usly
ss),

is
DMAC DMAC
Double-Precision Multiply-Accumulate With Right Shift

Instruction Fields

Description Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D, which has been previo
shifted 24 bits to the right. The multiplication can be performed on signed numbers (
unsigned numbers (uu), or mixed (unsigned∗ signed, (su)). The “–” sign option is used to
negate the specified product prior to accumulation. The default sign option is “+”. Th
instruction is optimized for multi-precision multiplication support.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

[D >> 16] ±S1 ∗ S2 → D
(S1 signed, S2 signed)

DMACss (±)S1,S2,D (no parallel move)

[D >> 16] ±S1 ∗ S2 → D
(S1 signed, S2 unsigned)

DMACsu (±)S1,S2,D (no parallel move)

[D >> 16] ±S1 ∗ S2 → D
(S1 unsigned, S2 unsigned)

DMACuu (±)S1,S2,D (no parallel move)

{S1,S2} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1]
(seeTable 12-16on page 12-24)

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)
{±±} k Sign [+,–] (seeTable 12-16on page 12-24)
{ss,su,uu} ss [ss,su,uu] (seeTable 12-16on page 12-24)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ —

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0

DMAC (±)S1,S2,D 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 s 1 s d k Q Q Q Q
13-56 DSP56300 Family Manual Motorola

(LC)
ed by
alue
ich

ated
e
ted
DO Start Hardware Loop DO

Instruction Fields

For the DO SP, expr instruction, the actual value that is loaded into the Loop Counter
is the value of the Stack Pointer (SP) before the DO instruction executes, increment
1. Thus, if SP = 3, the execution of the DO SP,expr instruction loads the LC with the v
LC = 4. For the DO SSL, expr instruction, the LC is loaded with its previous value, wh
was saved on the stack by the DO instruction itself.

Description Begin a hardware DO loop that is to be repeated the number of times
specified in the instruction’s source operand and whose range of execution is termin
by the destination operand (previously shown as “expr”). No overhead other than th
execution of this DO instruction is required to set up this loop. DO loops can be nes
and the loop count can be passed as a parameter.

Operation Assembler Syntax

SP + 1 → SP;LA → SSH;LC → SSL;[X or Y]:ea → LC DO [X or Y]:ea,expr
SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;[X or Y]:aa → LC DO [X or Y]:aa,expr
SP+1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;#xxx → LC DO #xxx,expr
SP+1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

SP + 1 → SP;LA → SSH;LC → SSL;S → LC DO S,expr
SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF

End of Loop:
SSL(LF) → SR;SP – 1 → SP
SSH → LA;SSL → LC;SP – 1 → SP

{ea} MMMRRR Effective Address

SeeTable 12-13on page
12-22

{X/Y} S Memory Space [X,Y]
{expr} 24-bit Absolute Address in 16-bit

extension word
{aa} aaaaaa Absolute Address [0–63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0–4095]
{S} DDDDDD Source register [all on-chip registers,

except SSH]
Motorola Instruction Set 13-57

the
rand

O
tions.
e

essing
ediate

C)
ing of
oops.
his
, as
tack is

 the

een
 is

e PC
ing

the
 DO
d to be
ested.

of
from

ches
.

ited.
DO Start Hardware Loop DO

During the first instruction cycle, the current contents of the Loop Address (LA) and
Loop Counter (LC) registers are pushed onto the System Stack. The DO source ope
then loads into the LC register, which contains the remaining number of times the D
loop is to execute and can be accessed from inside the DO loop under certain restric
If the initial value of LC is 0 and the Sixteen-Bit Compatibility mode bit (bit 13, SC, in th
Chip Status Register) is cleared, the DO loop does not execute.If LC initial value is zero
but SC is set, the DO loop executes 65,536 times. All address register indirect addr
modes can be used to generate the effective address of the source operand. If imm
short data is specified, the twelve LSBs of the LC register are loaded with the 12-bit
immediate value, and the twelve MSBs of the LC register are cleared.

During the second instruction cycle, the current contents of the Program Counter (P
register and the Status Register (SR) are pushed onto the System Stack. The stack
the LA, LC, PC, and SR registers is the mechanism that permits the nesting of DO l
The DO destination operand (shown as “expr”) is then loaded into the LA register. T
24-bit operand is located in the instruction’s 24-bit absolute address extension word
shown in the opcode section. The value in the PC register pushed onto the system s
the address of the first instruction following the DO instruction (i.e., the first actual
instruction in the DO loop). This value is read (copied but not pulled) from the top of
system stack to return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) is set, resulting in a repeated
comparison of PC with LA to determine whether the last instruction in the loop has b
fetched. If LA equals PC, the last instruction in the loop has been fetched and the LC
tested. If the LC is not equal to 1, it is decremented by one and SSH is loaded into th
to fetch the first instruction in the loop again. When LC = 1, the “end-of-loop” process
begins.

When a DO loop executes , the instructions are actually fetched each time through
loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When
loops are nested, the end-of-loop addresses must also be nested and are not allowe
equal. The assembler generates an error message when DO loops are improperly n

During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion (SSL)
the Stack Pointer is written into the SR, the contents of the LA register are restored
the upper portion (SSH) of (SP – 1), the contents of LC are restored from the lower
portion (SSL) of (SP – 1), and the Stack Pointer is decremented by two. Instruction fet
continue at the address of the instruction following the last instruction in the DO loop
Note that LF is the only bit in the SR that is restored after a hardware DO loop is ex
13-58 DSP56300 Family Manual Motorola

xpr”
in the
the
DO Start Hardware Loop DO

Note:

1. The assembler calculates the end-of-loop address to be loaded into LA (the
absolute address extension word) by evaluating the end-of-loop expression “e
and subtracting 1. This is done to accommodate the case where the last word
DO loop is a two-word instruction. Thus, the end-of-loop expression “expr” in
source code must represent the address of the instruction AFTER the last
instruction in the loop.

2. The Loop Flag (LF) is cleared by a hardware reset.

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * — — — — — —

CCR

* S Set if the instruction sends A/B accumulator contents to XDB or YDB.
* L Set if data limiting occurred [see Note].
— Unchanged by the instruction.

23 16 15 8 7 0
DO [X or Y]:ea, expr 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 0 0 0 0 0

Absolute Address Extension Word

23 16 15 8 7 0
DO [X or Y]:aa, expr 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 0 0 0 0 0

Absolute Address Extension Word

23 16 15 8 7 0
DO #xxx, expr 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 0 h h h h

Absolute Address Extension Word

23 16 15 8 7 0
DO S, expr 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 0 0 0 0 0

Absolute Address Extension Word
Motorola Instruction Set 13-59

tion
on of
an
f the

.

ter
, PC,

tion
ides

f the
n
the

hus,
he
n
 The
ter to

 loop
loops
e equal.
erly
DO FOREVER DO FOREVER
Start Infinite Loop

Instruction Fields

Description Begin a hardware DO loop that is to repeat forever with a range of execu
terminated by the destination operand (“expr”). No overhead other than the executi
this DO FOREVER instruction is required to set up this loop. DO FOREVER loops c
nest with other types of instructions. During the first instruction cycle, the contents o
Loop Address (LA) and the Loop Counter (LC) registers are pushed onto the system
stack. The LC register is pushed onto the stack but is not updated by this instruction

During the second instruction cycle, the contents of the Program Counter (PC) regis
and the Status Register (SR) are pushed onto the system stack. Stacking the LA, LC
and SR registers permits nesting DO FOREVER loops. The DO FOREVER destina
operand (shown as “expr”) is then loaded into the LA register. This 24-bit operand res
in the instruction’s 24-bit absolute address extension word, as shown in the opcode
section. The value in the PC register pushed onto the system stack is the address o
first instruction following the DO FOREVER instruction (i.e., the first actual instructio
in the DO FOREVER loop). This value is read (copied, but not pulled) from the top of
system stack to return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set. T
the PC is repeatedly compared with LA to determine whether the last instruction in t
loop has been fetched. When LA equals PC, the last instruction in the loop has bee
fetched and SSH is loaded into the PC to fetch the first instruction in the loop again.
LC register is then decremented by one without being tested. You can use this regis
count the number of loops already executed.

Because the instructions are fetched each time through the DO FOREVER loop, the
can be interrupted. DO FOREVER loops can also be nested. When DO FOREVER
are nested, the end of loop addresses must also be nested and are not allowed to b
The assembler generates an error message when DO FOREVER loops are improp
nested.

Operation Assembler Syntax

SP + 1 → SP;LA → SSH;LC → SSL DO FOREVER,expr
SP + 1 → SP;PC → SSH;SR → SSL;expr – 1 → LA
1 → LF; 1 →FV

None
13-60 DSP56300 Family Manual Motorola

xpr”
ord in
” in
t

ay
ns.
er to
. If

so,
R

DO FOREVER DO FOREVER
Start Infinite Loop

Note:

1. The assembler calculates the end-of-loop address to be loaded into LA (the
absolute address extension word) by evaluating the end-of-loop expression “e
and subtracting one. This is done to accommodate the case where the last w
the DO loop is a two-word instruction. Thus, the end-of-loop expression “expr
the source code must represent the address of the instruction AFTER the las
instruction in the loop.

2. The LC register is never tested by the DO FOREVER instruction, and the only w
of terminating the loop process is to use either the ENDDO or BRKcc instructio
LC is decremented every time PC = LA so that it can be used by the programm
keep track of the number of times the DO FOREVER loop has been executed
the programer wants to initialize LC to a particular value before the DO
FOREVER, care should be taken to save it before if the DO loop is nested. If
LC should also be restored immediately after exiting the nested DO FOREVE
loop.

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
DO FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

Absolute Address Extension Word
Motorola Instruction Set 13-61

roper
C and
cement
). The

loop
6
 be

and
e first
DOR Start PC-Relative Hardware Loop DOR

Instruction Fields

Description Initiates the beginning of a PC-relative hardware program loop. The loop
address (LA) and loop counter (LC) values are pushed onto the system stack. With p
system stack management, this allows unlimited nested hardware DO loops. The P
SR are pushed onto the system stack. The PC is added to the 24-bit address displa
extension word and the resulting address is loaded into the loop address register (LA
effective address specifies the address of the loop count that is loaded into the loop
counter (LC). The DO loop executes LC times. If the LC initial value is zero and the
16-Bit Compatibility mode bit (bit 13, SC, in the Status Register) is cleared, the DO
is not executed. If LC initial value is zero but SC is set, the DO loop executes 65,53
times. All address register indirect addressing modes (less Long Displacement) can
used. Register Direct addressing mode can also be used. If immediate short data is
specified, the LC is loaded with the zero extended 12-bit immediate data.

During hardware loop operation, each instruction is fetched each time through the
program loop. Therefore, instructions executing in a hardware loop are interruptible
can be nested. The value of the PC pushed onto the system stack is the location of th

Operation Assembler Syntax

SP+1 fi SP;LA fi SSH;LC fi SSL;[X or Y]:ea fi LC DOR [Xor Y]:ea,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF

SP+1 fi SP;LA fi SSH;LC fi SSL;[X or Y]:ea fi LC DOR [Xor Y]:aa,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF

SP+1 fi SP;LA fi SSH;LC fi SSL;#xxx fi LC DOR #xxx,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF

SP+1 fi SP;LA fi SSH;LC fi SSL;S fi LC DOR S,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF

{ea} MMMRRR Effective Address (seeTable 12-13on page 12-22)
{X/Y} S Memory Space [X,Y] (seeTable 12-13on page 12-22)
{label} 24-bit Address Displacement in 24-bit extension word
{aa} aaaaaa Absolute Address [0-63]
{#xxx} hhhhiiiiiiii Immediate Short Data [0-4095]
{S} DDDDDD Source register [all on-chip registersexcept SSH] (seeTable 12-13

on page 12-22)
13-62 DSP56300 Family Manual Motorola

tack
d of

word
f the
loop.

on in

tion,
end of
no
ters
 a
 the
s are

e the

OR
DOR Start PC-Relative Hardware Loop DOR

instruction after the DOR instruction. This value is read from the top of the system s
to return to the start of the program loop. When DOR instructions are nested, the en
loop addresses must also be nested and are not allowed to be equal.

The assembler calculates the end of loop address LA (PC-relative address extension
xxxx) by evaluating the end of loop expression and subtracting one. Thus, the end o
loop expression in the source code represents the “next address” after the end of the
If a simple end of loop address label is used, it should be placed after the last instructi
the loop.

Since the end of loop comparison occurs at fetch time ahead of the end of loop execu
instructions that change program flow or the system stack cannot be used near the
the loop without some restrictions. Proper hardware loop operation is guaranteed if
instruction starting at address LA-2, LA-1 or LA specifies the program controller regis
SR, SP, SSL, LA, LC or (implicitly) PC as a destination register; or specifies SSH as
source or destination register. Also, SSH cannot be specified as a source register in
DOR instruction itself. The assembler generates a warning if the restricted instruction
found within their restricted boundaries.

Implementation Notes

DOR SP,xxxx The actual value to be loaded into the LC is the value of the SP befor
DOR instruction incremented by one.

DOR SSL,xxxx The LC is loaded with its previous value saved in the stack by the D
instruction itself.

Condition Codes

7 6 5 4 3 2 1 0

S L E U N Z V C

* * — — — — — —

CCR

* S Set if the instruction sends A/B accumulator contents to XDB or YDB.
* L Set if data limiting occurred

— Unchanged by the instruction
Motorola Instruction Set 13-63

DOR Start PC-Relative Hardware Loop DOR
Instruction Formats and opcodes

23 16 15 8 7 0
DOR [X or Y]:ea,label 0 0 0 0 0 1 1 0 0 1 M M M R R R 0 S 0 1 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0
DOR [X or Y]:aa,label 0 0 0 0 0 1 1 0 0 0 a a a a a a 0 S 0 1 0 0 0 0

PC-Relative Displacement

23 16 15 8 7 0
DOR #xxx, label 0 0 0 0 0 1 1 0 i i i i i i i i 1 0 0 1 h h h h

PC-Relative Displacement

23 16 15 8 7 0
DOR S, label 0 0 0 0 0 1 1 0 1 1 D D D D D D 0 0 0 1 0 0 0 0

PC-Relative Displacement
13-64 DSP56300 Family Manual Motorola

tion
n of
s
A)
unter

ter
, PC,

ister
tive
ounter
wing
R
 to

s a
n in

tion
t
ed.

h the
can
 must
en DOR
DOR FOREVER DOR FOREVER
Start PC-Relative Infinite Loops

Instruction Fields None.

Description Begin a hardware DO loop that is to repeat forever with a range of execu
terminated by the destination operand (“label”). No overhead other than the executio
this DOR FOREVER instruction is required to set up this loop. DOR FOREVER loop
can be nested. During the first instruction cycle, the contents of the Loop Address (L
and the Loop Counter (LC) registers are pushed onto the system stack. The loop co
(LC) register is pushed onto the stack but is not updated.

During the second instruction cycle, the contents of the Program Counter (PC) regis
and the Status Register (SR) are pushed onto the system stack. Stacking the LA, LC
and SR registers permits nesting DOR FOREVER loops. The DOR FOREVER
destination operand (shown as label) is then loaded into the Loop Address (LA) reg
after it is added to the PC. This 24-bit operand resides in the instruction’s 24-bit rela
address extension word as shown in the opcode section. The value in the Program C
(PC) register pushed onto the system stack is the address of the first instruction follo
the DOR FOREVER instruction (i.e., the first actual instruction in the DOR FOREVE
loop). This value is read (i.e., copied but not pulled) from the top of the system stack
return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. A
result, the PC is repeatedly compared with LA to determine whether the last instructio
the loop has been fetched. If LA equals PC, the last instruction in the loop has been
fetched and SSH is read (i.e copied but not pulled) into the PC to fetch the first instruc
in the loop again. The loop counter (LC) register is then decremented by one withou
being tested. You can use this register to count the number of loops already execut

When a DOR FOREVER loop executes, the instructions are fetched each time throug
loop. Therefore, a DOR FOREVER loop can be interrupted. DOR FOREVER loops
also be nested. When DOR FOREVER loops are nested, the end of loop addresses
also be nested and cannot be equal. The assembler generates an error message wh
FOREVER loops are improperly nested.

Operation Assembler Syntax

SP+1 fi SP;LA fi SSH;LC fi SSL DOR FOREVER,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1 fi LF; 1 fiFV
Motorola Instruction Set 13-65

ting
ext
used,

way
s
s the

, LC
DOR FOREVER DOR FOREVER
Start PC-Relative Infinite Loops

Note: The assembler calculates the end of loop address LA (PC-relative address
extension word xxxx) by evaluating the end of loop expression and subtrac
one. Thus the end of loop expression in the source code represents the “n
address” after the end of the loop. If a simple end of loop address label is
it should be placed after the last instruction in the loop.

The DOR FOREVER instruction never tests the loop counter (LC) register . The only
to terminate the loop process is to use either the ENDDO or BRKcc instruction. LC i
decremented every time PC=LA, so you can use it to keep track of the number of time
DOR FOREVER loop has executed. If you want to initialize LC to a particular value
before the DOR FOREVER, take care to save it before if the DO loop is nested. If so
should also be restored immediately after exiting the nested DOR FOREVER loop.

Condition Codes

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction

23 16 15 8 7 0
DOR FOREVER 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

PC-Relative Displacement
13-66 DSP56300 Family Manual Motorola

r
 the
ENDDO End Current DO Loop ENDDO

Instruction Fields

Description Terminate the current hardware DO loop before the current Loop Counte
(LC) equals one. If the value of the current DO LC is needed, it must be read before
execution of the ENDDO instruction. Initially, the Loop Flag (LF) is restored from the
system stack and the remaining portion of the Status Register (SR) and the Program
Counter (PC) are purged from the system stack. The Loop Address (LA) and the LC
registers are then restored from the system stack.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

SSL(LF) → SR;SP – 1 → SP ENDDO
SSH → LA; SSL → LC;SP – 1 → SP

None

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
ENDDO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0
Motorola Instruction Set 13-67

tor.
This
 not
teger.
it
EOR Logical Exclusive OR EOR

Instruction Fields

Description Logically exclusive OR the source operand S with bits 47:24 of the
destination operand D and store the result in bits 47–24 of the destination accumula
The source can be a 24-bit register, 6-bit short immediate or 24-bit long immediate.
instruction is a 24-bit operation. The remaining bits of the destination operand D are
affected. When 6-bit immediate datais used, the data is interpreted as an unsigned in
That is, the 6 bits are right-aligned, and the remaining bits are zeroed to form a 24-b
source operand.

Condition Codes

Operation Assembler Syntax

S ⊕ D[47:24] → D[47:24] (parallel move) EOR S,D (parallel move)

#xx ⊕ D[47:24] → D[47:24] EOR #xx,D

#xxxx ⊕ D[47:24] → D[47:24] EOR #xxxx,D

where⊕ denotes the logical XOR operator.

{S} JJ Source register [X0,X1,Y0,Y1]

SeeTable 12-13on page
12-22

{D} d Destination accumulator [A/B]
{#xx} iiiiii 6-bit Immediate Short Data
{#xxxx} 24-bit Immediate Long Data extension

word

7 6 5 4 3 2 1 0

S L E U N Z V C

√ √ — — * * * —

CCR

* N Set if bit 47 of the result is set.
* Z Set if bits 47–24 of the result are 0.
* V Always cleared.
√ Changed according to the standard definition.
— Unchanged by the instruction.
13-68 DSP56300 Family Manual Motorola

EOR Logical Exclusive OR EOR
Instruction Formats and opcodes

23 16 15 8 7 0
EOR S,D Data Bus Move Field 0 1 J J d 0 1 1

Optional Effective Address Extension

23 16 15 8 7 0
EOR #xx,D 0 0 0 0 0 0 0 1 0 1 i i i i i i 1 0 0 0 d 0 1 1

23 16 15 8 7 0
EOR #xxxx,D 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 d 0 1 1

Immediate Data Extension
Motorola Instruction Set 13-69

e
tor

tion.

rol
e

ill
EXTRACT Extract Bit Field EXTRACT

Instruction Fields

Description Extract a bit-field from source accumulator S2. The bit-field width is
specified by bits 17–12 in the S1 register or in the immediate control word #CO. The
offset from the Least Significant Bit is specified by bits 5–0 in the S1 register or in th
immediate control word #CO. The extracted field is placed into destination accumula
D, aligned to the right. The control register can be constructed by the MERGE instruc
EXTRACT is a 56-bit operation. Bits outside the field are filled with sign extension
according to the Most Significant Bit of the extracted bit field.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the cont
register and the width field is located in bits 21-16 of the control register. Thes
fields corresponds to the definition of the fields in the MERGE instruction.

2. In Sixteen-bit Arithmetic mode, when the width value is zero, then the result w
be undefined.

3. If offset + width exceeds the value of 56, the result is undefined.

Operation Assembler Syntax

Offset = S1[5:0] EXTRACT S1,S2,D
Width = S1[17:12]

S2[(offset + width – 1):offset] → D[(width – 1):0]
S2[offset + width – 1] → D[39:width] (sign extension)

Offset = #CO[5:0]
Width = #CO[17:12]

EXTRACT #CO,S2,D

S2[(offset + width – 1):offset] → D[(width – 1):0]
S2[offset + width – 1] → D[39:width] (sign extension)

{S2} s Source accumulator [A,B]
SeeTable 12-13on page
12-22

{D} D Destination accumulator [A,B]
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1]
{#CO} Control word extension.
13-70 DSP56300 Family Manual Motorola

EXTRACT Extract Bit Field EXTRACT
Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V Always cleared.
* C Always cleared.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0
EXTRACT S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 0 0 s S S S D

23 16 15 8 7 0
EXTRACT #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 s 0 0 0 D

Control Word Extension

EXTRACT B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11Width = 5

x x x x x x x x 1 0 1 0 1 x x x x x x x x x x xx x

4
7 0

A1 A0

1 0 1 0 11 1

4
7 0

A1 A0

11 1 1 1 1 1 1 1

x x x x x x x x

5
5

5
5

5
1

1
1

Motorola Instruction Set 13-71

th
he
ntrol
e
TU

rol
e

EXTRACTU EXTRACTU
Extract Unsigned Bit Field

Instruction Fields

Description Extract an unsigned bit-field from source accumulator S2. The bit-field wid
is specified by bits 17–12 in the S1 register or in the immediate control word #CO. T
offset from the LSB is specified by bits 5–0 in the S1 register or in the immediate co
word #CO. The extracted field is placed into destination accumulator D, aligned to th
right. The control register can be consructed using the MERGE instruction. EXTRAC
is a 56-bit operation. Bits outside the field are filled with 0s.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the cont
register and the width field is located in bits 21-16 of the control register. Thes
fields correspond to the definition of the fields in the MERGE instruction.

2. If offset + width exceeds the value of 56, the result is undefined.

Operation Assembler Syntax

Offset = S1[5:0] EXTRACTU S1,S2,D
Width = S1[17:12]

S2[(offset + width – 1):offset] → D[(width – 1):0]
zero → D[55:width]

Offset = #CO[5:0] EXTRACTU #CO,S2,D
Width = #CO[17:12]

S2[(offset + width – 1):offset] → D[(width – 1):0]
zero fi D[39:width]

{S2} s Source accumulator [A,B]
SeeTable 12-13on page
12-22

{D} D Destination accumulator [A,B]
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1]
{#CO} Control word extension
13-72 DSP56300 Family Manual Motorola

EXTRACTU EXTRACTU
Extract Unsigned Bit Field

Condition Codes

Example

Instruction Formats and opcodes

7 6 5 4 3 2 1 0

S L E U N Z V C

— — √ √ √ √ * *

CCR

* V Always cleared.
* C Always cleared.
— Unchanged by the instruction.
√ Changed according to the standard definition.

23 16 15 8 7 0
EXTRACTU S1,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 s S S S D

23 16 15 8 7 0
EXTRACTU #CO,S2,D 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 1 0 0 s 0 0 0 D

Control Word Extension

EXTRACTU B1,A,A

B1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 1

4
7

2
4

Offset =11width = 7

x x x x x x 1 1 1 0 1 0 1 x x x x x x x x x x xx x

4
7 0

A

A1 A0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 10 0

4
7 0

A

A1 A0

00 0 0 0 0 0 0 0

x x x x x x x x

5
5

5
5

Motorola Instruction Set 13-73

ata
 is

 and
IFcc Execute Conditionally Without CCR Update IFcc

Instruction Fields

Description If the specified condition is true, execute and store result of the specified D
ALU operation. If the specified condition is false, no destination is altered. The CCR
never updated with the condition codes generated by the Data ALU operation. The
instructions that can conditionally be executed using IFcc are the parallel arithmetic
logical instructions. SeeTable 12-4on page 12-7 andTable 12-5on page 12-9 for a list
of those instructions. The conditions specified by “cc” are listed inTable 12-18on page
12-28.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax
If cc, then opcode operation opcode-Operands IFcc

{cc} CCCC Condition code (seeTable 12-18on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
IFcc 0 0 1 0 0 0 0 0 0 0 1 0 C C C C Instruction opcode
13-74 DSP56300 Family Manual Motorola

U
 not
rallel
IFcc.U Execute Conditionally With CCR Update IFcc.U

Instruction Fields

If the specified condition is true, execute and store result of the specified Data ALU
operation and update the CCR with the status information generated by the Data AL
operation. If the specified condition is false, no destination is altered and the CCR is
affected. The instructions that can conditionally be executed using IFcc.U are the pa
arithmetic and logical instructions. SeeTable 12-4on page 12-7 andTable 12-5on page
12-9 for a list of these instructions. The conditions specified by “cc” are listed on
Table 12-18on page 12-28

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax
If cc, then opcode operation opcode-Operands IFcc

{cc} CCCC Condition code (seeTable 12-18on page 12-28)

7 6 5 4 3 2 1 0

S L E U N Z V C

* * * * * * * *

CCR

* If the specified condition is true, changes are made according to the
instruction. Otherwise, it is not changed.

23 16 15 8 7 0
IFcc.U 0 0 1 0 0 0 0 0 0 0 1 1 C C C C Instruction opcode
Motorola Instruction Set 13-75

l
ated.
l (I1,
pose
r
uld

g
 LC to
nd

 in
ILLEGAL Illegal Instruction Interrupt ILLEGAL

Instruction Fields

None

Description The ILLEGAL instruction executes as if it were a NOP instruction. Norma
instruction execution is suspended and illegal instruction exception processing is initi
The interrupt vector address is located at address P:$3E. The Interrupt Priority Leve
I0) is set to 3 in the Status Register if a long interrupt service routine is used. The pur
of the ILLEGAL instruction is to force the DSP into an illegal instruction exception fo
test purposes. Exiting an illegal instruction is a fatal error. A long exception routine sho
be used to indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA – 1 is bein
interrupted, then LC is decremented twice due to the same mechanism that causes
be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP, a
other instructions at LA are restricted. Restrictions cannot be imposed on illegal
instructions. Since REP is uninterruptable, repeating an ILLEGAL instruction results
the interrupt not being initiated until after the REP completes. After the interrupt is
serviced, program control returns to the address of the second word following the
ILLEGAL instruction. Of course, the ILLEGAL interrupt service routine should abort
further processing, and the processor should be reinitialized.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax
Begin Illegal Instruction exception processing ILLEGAL

7 6 5 4 3 2 1 0

S L E U N Z V C

— — — — — — — —

CCR

— Unchanged by the instruction.

23 16 15 8 7 0
ILLEGAL 0 1 0 1
13-76 DSP56300 Family Manual Motorola

tion
INC Increment by One INC

Instruction Fields

Description Increment by one the specified operand and store the result in the destina
accumulator. One is added from the LSB of D.

Condition Codes

Instruction Formats and opcodes

Operation Assembler Syntax

D + 1 → D INC D

{D} d Destination accumulator [A,B] (seeTable 12-13on page 12-22)

7 6 5 4 3 2 1 0

S L E U N Z V C

— √ √ √ √ √ √ √

CCR

√ Changed according to the standard definition.
— Unchanged by the instruction.

23 16 15 8 7 0
INC D 0 1 0 0 d
Motorola Instruction Set 13-77

his
5–0
th
ister
side

rol
e
th

ld
INSERT Insert Bit Field INSERT

Instruction Fields

Description Insert a bit-field into the destination accumulator D. The bit-field whose
width is specified by bits 17–12 in S1 register begins at the LSB of the S2 register. T
bit-field is inserted in the destination accumulator D, with an offset according to bits
in the S1 register. The S1 operand can be an immediate control word #CO. The wid
specified by S1 should not exceed a value of 24. The construction of the control reg
can be done by using the MERGE instruction. This is a 56-bit operation. Any bits out
the field remain unchanged.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the cont
register and the width field is located in bits 21-16 of the control register. Thes
fields corresponds to the definition of the fields in the MERGE instruction. Wid
specified by S1 should not exceed a value of 16.

2. In Sixteen-Bit Arithmetic mode, the offset value, located in the offset field, shou
be the needed offset you pre-incremented by a bias of 16.

3. If offset + width > 56, the result is undefined.

Operation Assembler Syntax

Offset = S1[5:0]
Width = S1[17:12]

INSERT S1,S2,D

S2[(width – 1):0] → D[(offset + width – 1):offset]

Offset = #CO[5:0]
Width = #CO[17:12]

INSERT #CO,S2,D

S2[(width-1):0] → D[(offset + width – 1):offset]

{D} D Destination accumulator [A,B] (seeTable 12-13 on page 12-22)
{S1} SSS Control register [X0,X1,Y0,Y1,A1,B1] (seeTable 12-16

on page 12-24)
{S2} qqq Source register [X0,X1,Y0,Y1,A0,B0] (seeTable 12-16

on page 12-24)
{#CO} Control word extension
13-78 DSP56300 Family Manual Motorola

	Chapter 13 Instruction Set
	This chapter describes each instruction in the DSP56300 (family) core instruction set in detail. ...
	Table 13-1. DSP56300 Instruction Summary (Continued)

	ABS Absolute Value ABS
	Destination accumulator [A,B] (see Table 12-13 on page 12-22)
	Description�Take the absolute value of the destination operand D and store the result in the dest...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	1
	1
	0
	Optinal Effective Address Extension

	ADC Add Long With Carry ADC
	Source register [X,Y] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Add the source operand S and the Carry bit (C) of the Condition Code Register to the ...
	Changed according to the standard definition.
	Unchanged by the instruction.

	ADD Add ADD
	JJJ
	Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on�page�12�22)
	d
	Destination accumulator [A/B] (see Table�12-13 on page 12-22)
	iiiiii
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Add the source operand S to the destination operand D and store the result in the des...
	Condition Codes
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	ADD Add ADD
	ADDL Shift Left and Add Accumulators ADDL
	d
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Add the source operand S to two times the destination operand D and store the result ...
	V
	Set if overflow has occurred in A or B result or the MSB of the destination operand is changed as...

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	ADDR Shift Right and Add Accumulators ADDR
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Add the source operand S to one-half the destination operand D and store the result i...
	Changed according to the standard definition.
	Unchanged by the instruction.

	AND Logical AND AND
	where • denotes the logical AND operator
	Source input register [X0,X1,Y0,Y1] (see Table�12-13 on page 12-22)
	Destination accumulator [A/B] (see Table�12-13 on page 12-22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically AND the source operand S with bits 47–24 of the destination operand D and s...
	Set if bit 47 of the result is set.
	Set if bits 47-24 of the result are 0.
	Always cleared.
	Changed according to the standard definition.
	Unchanged by the instruction.

	AND Logical AND AND
	ANDI AND Immediate With Control Register ANDI
	Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 on�page�12�22)
	Immediate Short Data
	Description�Logically AND the 8-bit immediate operand (#xx) with the contents of the destination ...
	Cleared if Bit 7 of the immediate operand is cleared.
	Cleared if Bit 6 of the immediate operand is cleared.
	Cleared if Bit 5 of the immediate operand is cleared.
	Cleared if Bit 4 of the immediate operand is cleared.
	Cleared if Bit 3 of the immediate operand is cleared.
	Cleared if Bit 2 of the immediate operand is cleared.
	Cleared if Bit 1 of the immediate operand is cleared.
	Cleared if Bit 0 of the immediate operand is cleared.
	The condition codes are not affected using these operands.

	ASL Arithmetic Shift Accumulator Left ASL
	ASL D (parallel move) ASL D #ii,S2,D ASL S1,S2,D
	Source accumulator [A,B] ()
	See Table 12-13 on�page�12�22
	Destination accumulator [A,B] ()
	Control register [X0,X1,Y0,Y1,A1,B1]
	6-bit unsigned integer [0–40] denoting the shift amount
	In the control register S1: bits 5–0 (LSB) are used as the #ii field, and the rest of the registe...
	Single bit shift: Arithmetically shift the destination accumulator D one bit to the left and stor...
	Multi-bit shift: The contents of the source accumulator S2 are shifted left #ii bits. Bits shifte...

	This is a 56-bit operation.

	ASL Arithmetic Shift Accumulator Left ASL
	V
	Set if Bit 55 is changed any time during the shift operation, cleared otherwise.

	C
	Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and cleare...

	÷
	Changed according to the standard definition.

	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	d
	0
	1
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	0
	1
	S
	i
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1
	0
	S
	s
	s
	s
	D

	ASR Arithmetic Shift Accumulator Right ASR
	ASR D (parallel move) ASR D #ii, S2,D ASR S1,S2,D
	Source accumulator [A,B]
	See Table 12-13 on�page�12�22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	6-bit unsigned integer [0-40] denoting the shift amount
	In the control register S1: bits 5-0 (LSB) are used as the #ii field, and the rest of the registe...
	Single bit shift: Arithmetically shift the destination operand D one bit to the right and store t...
	Multi-bit shift: The contents of the source accumulator S2 are shifted right #ii bits. Bits shift...

	This is a 56- or 40-bit operation, depending on the SA bit value in the SR.
	Note: If the number of shifts indicated by the 6 LSBs of the control register or by the immediate...

	ASR Arithmetic Shift Accumulator Right ASR
	V
	This bit is always cleared.

	C
	This bit is set if the last bit shifted out of the operand is set, cleared for a shift count of 0...

	÷
	Changed according to the standard definition.

	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	0
	1
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	S
	i
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1
	1
	S
	s
	s
	s
	D

	Bcc Branch Conditionally Bcc
	Condition code (see Table�12-13 on page 12-22)
	24-bit PC Relative Long Displacement
	Signed PC Relative Short Displacement
	Address register [R0 – R7]
	Description�If the specified condition is true, program execution continues at location PC + disp...
	Unchanged by the instruction.

	BCHG Bit Test and Change BCHG
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers] (see Table�12-13 on page 12-22)
	Description�Test the nth bit of the destination operand D, complement it, and store the result in...

	BCHG Bit Test and Change BCHG
	For destination operand SR:
	Complemented if bit 0 is specified, unaffected otherwise.
	Complemented if bit 1 is specified, unaffected otherwise.
	Complemented if bit 2 is specified, unaffected otherwise.
	Complemented if bit 3 is specified, unaffected otherwise.
	Complemented if bit 4 is specified, unaffected otherwise.
	Complemented if bit 5 is specified, unaffected otherwise.
	Complemented if bit 6 is specified, unaffected otherwise.
	Complemented if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	Set if bit tested is set, and cleared otherwise.
	Not affected.
	Not affected.
	Not affected.
	Not affected.
	Not affected.
	Set according to the standard definition.
	Set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.
	For other destination operands: MR status bits are not affected.

	BCHG Bit Test and Change BCHG
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	O
	S
	0
	0
	b
	b
	b
	b
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	q
	q
	q
	q
	q
	q
	0
	S
	0
	b
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	0
	b
	b
	b
	b
	b

	BCLR Bit Test and Clear BCLR
	Bit number [0-23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description�Test the nth bit of the destination operand D, clear it and store the result in the d...

	BCLR Bit Test and Clear BCLR
	For destination operand SR:
	Cleared if bit 0 is specified, unaffected otherwise.
	Cleared if bit 1 is specified, unaffected otherwise.
	Cleared if bit 2 is specified, unaffected otherwise.
	Cleared if bit 3 is specified, unaffected otherwise.
	Cleared if bit 4 is specified, unaffected otherwise.
	Cleared if bit 5 is specified, unaffected otherwise.
	Cleared if bit 6 is specified, unaffected otherwise.
	Cleared if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	This bit is set if bit tested is set, and cleared otherwise.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	This bit is set according to the standard definition.
	This bit is set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.

	BCLR Bit Test and Clear BCLR
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	0
	b
	b
	b
	b
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	q
	q
	q
	q
	q
	q
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	0
	0
	b
	b
	b
	b

	BRA Branch Always BRA
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0–R7]
	Description�Program execution continues at location PC + displacement. The displacement is a two’...
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	1
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	1
	1
	0
	0
	0
	0
	0
	0

	BRCLR Branch if Bit Clear BRCLR
	Bit number [0-23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	24-bit PC relative displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
	Source register [all on-chip registers])
	Description�The nth bit in the source operand is tested. If the tested bit is cleared, program ex...

	BRCLR Branch if Bit Clear BRCLR
	÷
	Changed according to the standard definition

	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BRKcc Exit Current DO Loop Conditionally BRKcc
	Condition code (see Table�12-18 on page 12-28)
	Description�Exits conditionally the current hardware DO loop before the current Loop Counter (LC)...
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	C
	C
	C
	C

	BRSET Branch if Bit Set BRSET
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y])
	24-bit PC relative displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description�The nth bit in the source operand is tested. If the tested bit is set, program execut...

	BRSET Branch if Bit Set BRSET
	Changed according to the standard definition
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BScc Branch to Subroutine Conditionally BScc
	Condition code (see Table 12-18 on�page�12�28)
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0 – R7]
	Description�If the specified condition is true, the address of the instruction immediately follow...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	BScc Branch to Subroutine Conditionally BScc
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	C
	C
	C
	C
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	C
	C
	C
	C
	0
	0
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	0
	0
	0
	0
	C
	C
	C
	C

	BSCLR Branch to Subroutine if Bit Clear BSCLR
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	24-bit Relative Long Displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description�The nth bit in the source operand is tested. If the tested bit is cleared, the addres...

	BSCLR Branch to Subroutine if Bit Clear BSCLR
	one; if the condition is true, the push operation writes over the stack level where the SSH value...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition

	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BSET Bit Set and Test BSET
	Bit number [0–23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description�Test the nth bit of the destination operand D, set it, and store the result in the de...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR

	BSET Bit Set and Test BSET
	For destination operand SR:
	Set if bit 0 is specified, unaffected otherwise.
	Set if bit 1 is specified, unaffected otherwise.
	Set if bit 2 is specified, unaffected otherwise.
	Set if bit 3 is specified, unaffected otherwise.
	Set if bit 4 is specified, unaffected otherwise.
	Set if bit 5 is specified, unaffected otherwise.
	Set if bit 6 is specified, unaffected otherwise.
	Set if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	Set if bit tested is set, and cleared otherwise.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Set according to the standard definition.
	Set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.
	For other destination operands: MR status bits are not affected.

	BSET Bit Set and Test BSET
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	1
	0
	b
	b
	b
	b
	OPTIONAL EFFECTIVE ADDRESS EXTENSION
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	q
	q
	q
	q
	q
	q
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	1
	0
	b
	b
	b
	b

	BSR Branch to Subroutine BSR
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0–R7]
	Description� The address of the instruction immediately following the BSR instruction and the SR ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	0
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0

	BSSET Branch to Subroutine if Bit Set BSSET
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	24-bit Relative Long Displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description� The nth bit in the source operand is tested. If the tested bit is set, the address o...

	BSSET Branch to Subroutine if Bit Set BSSET
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BTST Bit Test BTST
	Bit number [0 – 23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description� Test the nth bit of the destination operand D. The state of the nth bit is stored in...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	*
	CCR
	*
	C
	Set if bit tested is set, and cleared otherwise.
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	For destination operand SSH:SP, decrement the SP by 1.
	For other destination operands, the SPis not affected.

	BTST Bit Test BTST
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	O
	S
	1
	0
	b
	b
	b
	b
	OPTIONAL EFFECTIVE ADDRESS EXTENSION
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	q
	q
	q
	q
	q
	q
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	1
	0
	b
	b
	b
	b

	CLB Count Leading Bits CLB
	Destination accumulator [A,B]
	See Table�12-13 on page 12-22
	Source accumulator [A,B]
	Description� Count leading 0s or 1s according to Bit 55 of the source accumulator. Scan bits 55–0...
	Note:

	1. If the source accumulator is all 0s, the result is 0.
	2. In Sixteen-Bit Arithmetic mode, the count ignores the unused 8 Least Significant Bits of the M...
	3. CLB can be used in conjunction with NORMF instruction to specify the shift direction and amoun...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	*
	*
	*
	—
	CCR
	*
	N
	Set if bit 47 of the result is set, and cleared otherwise.

	*
	Z
	Set if bits 47–24 of the result are all 0.

	*
	V
	Always cleared.

	—
	Unchanged by the instruction.

	CLB Count Leading Bits CLB
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	S
	D

	CLR Clear Accumulator CLR
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Clear the destination accumulator. This is a 56-bit clear instruction.
	*
	E
	Always cleared.

	*
	U
	Always set.

	*
	N
	Always cleared.

	*
	Z
	Always set.

	*
	V
	Always cleared.

	*
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	0
	1
	1
	Optional Effective Address Extension

	CMP Compare CMP
	Source one register [B/A,X0,Y0,X1,Y1] (see Table�12-16 on page 12-24)
	Source two accumulator [A/B] (see Table�12-13 on page 12-22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Subtract the source one operand from the source two accumulator, S2, and update the C...
	This instruction subtracts 56-bit operands. When a word is specified as the source one operand, i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	CCR
	÷
	Changed according to the standard definition.

	CMP Compare CMP
	23
	16
	15
	8
	7
	0
	CMP S1, S2
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	0
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	CMP #xx, S2
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	1
	0
	1
	23
	16
	15
	8
	7
	0
	CMP #xxxx,S2
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	d
	1
	0
	1
	Immediate Data Extension

	CMPM Compare Magnitude CMPM
	Source one register [B/A,X0,Y0,X1,Y1] (see Table�12-16 on page 12-24)
	Source two accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Subtract the absolute value (magnitude) of the source one operand, S1, from the absol...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	1
	1
	Optional Effective Address Extension

	CMPU Compare Unsigned CMPU
	Source one register [A,B,X0,Y0,X1,Y1]
	See Table�12-13 on page 12-22
	Source two accumulator [A,B]
	Description�Subtract the source one operand, S1, from the source two accumulator, S2, and update ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	÷
	*
	*
	÷
	CCR
	Always cleared.
	Set if bits 47–0 of the result are 0.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	g
	g
	g
	d

	DEBUG Enter Debug Mode DEBUG
	Instruction Fields None
	Description�Enter the Debug mode and wait for OnCE commands.
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	DEBUGcc DEBUGcc Enter Debug Mode Conditionally
	Condition code (see Table�12-18 on page 12-28)
	Description�If the specified condition is true, enter the Debug mode and wait for OnCE commands. ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	C
	C
	C
	C

	DEC Decrement by One DEC
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Decrement by one the specified operand and store the result in the destination accumu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	d

	DIV Divide Iteration DIV
	where Å denotes the logical exclusive OR operator.
	Source input register [X0,X1,Y0,Y1]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Description�Divide the destination operand D by the source operand S and store the result in the ...
	DIV calculates one quotient bit based on the divisor and the previous partial remainder. To produ...

	DIV Divide Iteration DIV
	DIV uses a nonrestoring fractional division algorithm that consists of the following operations:
	1. Compare the source and destination operand sign bits: An exclusive OR operation is performed o...
	2. Shift the partial remainder and the quotient: The 39-bit destination accumulator D is shifted ...
	3. Calculate the next quotient bit and the new partial remainder: The 24-bit source operand S (si...
	For extended precision division (e.g., N-bit quotients where N > 24), the DIV instruction is no l...

	DIV Divide Iteration DIV
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	*
	—
	—
	—
	—
	*
	*
	CCR
	Set if the Overflow bit (V) is set.
	Set if the MSB of the destination operand is changed as a result of the instruction’s left shift ...
	Set if Bit 55 of the result is cleared.
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	J
	J
	d
	0
	0
	0

	DMAC DMAC Double-Precision Multiply-Accumulate With Right Shift
	Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see Table�12-16 on page 12-24)
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Sign [+,–] (see Table�12-16 on page 12-24)
	[ss,su,uu] (see Table�12-16 on page 12-24)
	Description�Multiply the two 24-bit source operands S1 and S2 and add/subtract the product to/fro...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	s
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	DO Start Hardware Loop DO
	Effective Address
	See Table�12-13 on page 12-22
	Memory Space [X,Y]
	24-bit Absolute Address in 16-bit extension word
	Absolute Address [0–63]
	Immediate Short Data [0–4095]
	Source register [all on-chip registers, except SSH]
	For the DO SP, expr instruction, the actual value that is loaded into the Loop Counter (LC) is th...
	Description�Begin a hardware DO loop that is to be repeated the number of times specified in the ...

	DO Start Hardware Loop DO
	During the first instruction cycle, the current contents of the Loop Address (LA) and the Loop Co...
	During the second instruction cycle, the current contents of the Program Counter (PC) register an...
	During the third instruction cycle, the Loop Flag (LF) is set, resulting in a repeated comparison...
	When a DO loop executes , the instructions are actually fetched each time through the loop. There...
	During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion (SSL) of the Stack...

	DO Start Hardware Loop DO
	Note:
	1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute address ex...
	2. The Loop Flag (LF) is cleared by a hardware reset.

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	—
	—
	—
	—
	—
	—
	CCR
	Set if the instruction sends A/B accumulator contents to XDB or YDB.
	Set if data limiting occurred [see Note].
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	h
	h
	h
	h
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word

	DO FOREVER DO FOREVER Start Infinite Loop
	None
	Description�Begin a hardware DO loop that is to repeat forever with a range of execution terminat...
	During the second instruction cycle, the contents of the Program Counter (PC) register and the St...
	During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set. Thus, the PC...
	Because the instructions are fetched each time through the DO FOREVER loop, the loop can be inter...

	DO FOREVER DO FOREVER Start Infinite Loop
	Note:
	1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute address ex...
	2. The LC register is never tested by the DO FOREVER instruction, and the only way of terminating...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	Absolute Address Extension Word

	DOR Start PC-Relative Hardware Loop DOR
	Effective Address (see Table�12-13 on page 12-22)
	Memory Space [X,Y] (see Table�12-13 on page 12-22)
	24-bit Address Displacement in 24-bit extension word
	Absolute Address [0-63]
	Immediate Short Data [0-4095]
	Source register [all on-chip registers except SSH] (see Table�12-13 on page 12-22)
	Description�Initiates the beginning of a PC-relative hardware program loop. The loop address (LA)...
	During hardware loop operation, each instruction is fetched each time through the program loop. T...

	DOR Start PC-Relative Hardware Loop DOR
	instruction after the DOR instruction. This value is read from the top of the system stack to ret...
	The assembler calculates the end of loop address LA (PC-relative address extension word xxxx) by ...
	Since the end of loop comparison occurs at fetch time ahead of the end of loop execution, instruc...
	DOR SP,xxxx The actual value to be loaded into the LC is the value of the SP before the DOR instr...
	DOR SSL,xxxx The LC is loaded with its previous value saved in the stack by the DOR instruction i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	—
	—
	—
	—
	—
	—
	CCR
	*
	Set if the instruction sends A/B accumulator contents to XDB or YDB.

	*
	Set if data limiting occurred

	—
	Unchanged by the instruction

	DOR Start PC-Relative Hardware Loop DOR
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	0
	1
	h
	h
	h
	h
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement

	DOR FOREVER DOR FOREVER Start PC-Relative Infinite Loops
	Instruction Fields None.
	Description�Begin a hardware DO loop that is to repeat forever with a range of execution terminat...
	During the second instruction cycle, the contents of the Program Counter (PC) register and the St...
	During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. As a result,...
	When a DOR FOREVER loop executes, the instructions are fetched each time through the loop. Theref...

	DOR FOREVER DOR FOREVER Start PC-Relative Infinite Loops
	Note: The assembler calculates the end of loop address LA (PC-relative address extension word xxx...
	The DOR FOREVER instruction never tests the loop counter (LC) register . The only way to terminat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	PC-Relative Displacement

	ENDDO End Current DO Loop ENDDO
	None
	Description�Terminate the current hardware DO loop before the current Loop Counter (LC) equals on...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	1
	0
	0

	EOR Logical Exclusive OR EOR
	where Å denotes the logical XOR operator.
	Source register [X0,X1,Y0,Y1]
	See Table�12-13 on page 12-22
	Destination accumulator [A/B]
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically exclusive OR the source operand S with bits 47:24 of the destination operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	—
	CCR
	Set if bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Changed according to the standard definition.
	Unchanged by the instruction.

	EOR Logical Exclusive OR EOR
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	1
	J
	J
	d
	0
	1
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	0
	1
	1

	EXTRACT Extract Bit Field EXTRACT
	Source accumulator [A,B]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	Control word extension.
	Description�Extract a bit-field from source accumulator S2. The bit-field width is specified by b...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. In Sixteen-bit Arithmetic mode, when the width value is zero, then the result will be undefined.
	3. If offset + width exceeds the value of 56, the result is undefined.

	EXTRACT Extract Bit Field EXTRACT
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	0
	s
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	s
	0
	0
	0
	D
	Control Word Extension

	EXTRACTU EXTRACTU Extract Unsigned Bit Field
	Source accumulator [A,B]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	Control word extension
	Description�Extract an unsigned bit-field from source accumulator S2. The bit-field width is spec...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. If offset + width exceeds the value of 56, the result is undefined.

	EXTRACTU EXTRACTU Extract Unsigned Bit Field
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	1
	0
	0
	s
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	1
	0
	0
	s
	0
	0
	0
	D
	Control Word Extension

	IFcc Execute Conditionally Without CCR Update IFcc
	Condition code (see Table�12-18 on page 12-28)
	Description�If the specified condition is true, execute and store result of the specified Data AL...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	C
	C
	C
	C
	Instruction opcode

	IFcc.U Execute Conditionally With CCR Update IFcc.U
	Condition code (see Table�12-18 on page 12-28)
	If the specified condition is true, execute and store result of the specified Data ALU operation ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	*
	If the specified condition is true, changes are made according to the instruction. Otherwise, it ...
	Instruction Formats and opcodes

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	C
	C
	C
	C
	Instruction opcode

	ILLEGAL Illegal Instruction Interrupt ILLEGAL
	None
	Description�The ILLEGAL instruction executes as if it were a NOP instruction. Normal instruction ...
	If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA – 1 is being interrupt...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1

	INC Increment by One INC
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Increment by one the specified operand and store the result in the destination accumu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	d

	INSERT Insert Bit Field INSERT
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on�page�12�24)
	Source register [X0,X1,Y0,Y1,A0,B0] (see Table 12-16 on�page�12�24)
	Control word extension
	Description�Insert a bit-field into the destination accumulator D. The bit-field whose width is s...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. In Sixteen-Bit Arithmetic mode, the offset value, located in the offset field, should be the n...
	3. If offset + width > 56, the result is undefined.

