Chapter 13
Instruction Set

This chapter describes each instruction in the DSP56300 (family) core instruction set in
detail. Instructions that allow parallel moves are so noted in bothgkeation and the
Assembler Syntaxfields. The MOVE instruction is equivalent to a NOP with parallel
moves, so a description of each parallel move accompanies the MOVE instruction details.
When an instruction uses an accumulator as both a destination operand for Data ALU
operation and a source for a parallel move operation, the parallel move operation uses the
value in the accumulator before any Data ALU operation execute§.db$e 13-1to

locate the page number of an instruction.

Table 13-1. DSP56300 Instruction Summary

Instruction Page Instruction Page
ABS page 13-5 ADC page 13-6
Absolute Value Add Long With Carry
ADD page 13-7 ADDL page 13-9
Add Shift Left and Add Accumulators
ADDR page 13-10 AND page 13-11
Shift Right and Add Accumulators Logical AND
ANDI page 13-13 ASL page 13-14
AND Immediate With Control Register Arithmetic Shift Accumulator Left
ASR page 13-16 Bcc page 13-18
Arithmetic Shift Accumulator Right Branch Conditionally
BCHG page 13-19 BCLR page 13-22
Bit Test and Change Bit Test and Clear
BRA page 13-25 BRCLR page 13-26
Branch Always Branch if Bit Clear
BRKcc page 13-28 BRSET page 13-29
Exit Current DO Loop Conditionally Branch if Bit Set
BScc page 13-31 BSCLR page 13-33
Branch to Subroutine Conditionally Branch to Subroutine if Bit Clear
BSET page 13-35 BSR page 13-38
Bit Test and Set Branch to Subroutine
BSSET page 13-39 BTST page 13-41
Branch to Subroutine if Bit Set Bit Test
CLB page 13-43 CLR page 13-45
Count Leading Bits Clear Accumulator

Motorola

Instruction Set

13-1

Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page
CMP page 13-46 CMPM page 13-48
Compare Compare Magnitude
CMPU page 13-49 DEBUG page 13-50
Compare Unsigned Enter Debug Mode
DEBUGcc page 13-51 DEC page 13-52
Enter Debug Mode Conditionally Decrement by One
DIV page 13-53 DO page 13-57
Divide lteration Start Hardware Loop
DMAC page 13-56 DOR page 13-62
Double (Multi) Precision Multiply Start PC-Relative Hardware Loop
Accumulate With Right Shift
DO FOREVER page 13-60 ENDDO page 13-67
Start Infinite Loop End Current DO Loop
DOR FOREVER page 13-65 EXTRACT page 13-70
Start PC-Relative Infinite Loop Extract Bit Field
EOR page 13-68 IFcc.U page 13-74
Logical Exclusive OR Execute Conditionally With CCR Update
EXTRACTU page 13-72 INC page 13-77
Extract Unsigned Bit Field Increment by One
ILLEGAL page 13-76 Jcc page 13-80
lllegal Instruction Interrupt JumpConditionally
INSERT page 13-78 JMP page 13-83
Insert Bit Field Jump
JCLR page 13-81 JSCLR page 13-85
Jump if Bit Clear Jump to Subroutine if Bit Clear
JScc page 13-84 JSR page 13-89
Jump to Subroutine Conditionally Jump to Subroutine
JSET page 13-87 LRA page 13-92
Jump if Bit Set Load PC-Relative Address
JSSET page 13-90 LSR page 13-96
Jump to Subroutine if Bit Set Logical Shift Right
LSL page 13-93 MAC page 13-99
Logical Shift Left Signed Multiply Accumulate
LUA page 13-98 MAC (su, uu) page 13-102
Load Updated Address Mixed Multiply Accumulate
MACI page 13-101 MACRI page 13-105
Signed Multiply Accumulate With Signed Multiply Accumulate and Round
Immediate Operand With Immediate Operand
MACR page 13-103 | MAXM page 13-107
Signed Multiply Accumulate and Round Transfer by Magniture
MAX page 13-106 | MOVE page 13-110
Transfer by Signed Value Move Data
MERGE page 13-108 | No Parallel Data Move page 13-112
Merge Two Half Words
13-2 DSP56300 Family Manual Motorola

Table 13-1. DSP56300 Instruction Summary (Continued)
Instruction Page Instruction Page

R page 13-115 Immediate Short Data Move page 13-113
Register-to-Register Data Move
X: page 13-118 J U page 13-117
X Memory Data Move Address Register Update
Y: page 13-122 | X:R page 13-120
Y Memory Data Move X Memory and Register Data Move
L: page 13-126 R:Y page 13-124
Long Memory Data Move Register and Y Memory Data Move
MOVEC page 13-130 | X:Y: page 13-128
Move Control Register XY Memory Data Move
MOVEP page 13-134 MOVEM page 13-132
Move Peripheral Data Move Program Memory
MPY (su, uu) page 13-139 MPY page 13-137
Mixed Multiply Signed Multiply
MPYR page 13-141 MPYI page 13-140
Signed Multiply and Round Signed Multiply With Immediate Operand
NEG page 13-144 MPYRI page 13-143
Negate Accumulator Signed Multiply and Round With

Immediate Operand
NORM page 13-147 NOP page 13-145
Norm Accumulator Iteration No Operation
NOT page 13-149 NORMF page 13-147
Logical Complement Fast Accumulator Normalization
ORI page 13-152 | OR page 13-150
OR Immediate With Control Register Logical Inclusive OR
PFLUSHUN page 13-154 | PFLUSH page 13-153
Program cache Flush Unlocked Sectors Program Cache Flush
PLOCKR page 13-157 PFREE page 13-155
Lock Instruction Cache Relative Sector Program Cache Global Unlock
PUNLOCKR page 13-159 | PUNLOCK page 13-158
Unlock Instruction Cache Relative Sector Unlock Instruction Cache Sector
RESET page 13-162 REP page 13-160
Reset On-Chip Peripherals Devices Repeat Next Instruction
ROL page 13-165 | RND page 13-163
Rotate Left Round Accumulator
RTI page 13-168 ROR page 13-166
Return From Interrupt Rotate Right
SBC page 13-169 | RTS page 13-168
Subtract Long With Carry Return From Subroutine
SUB page 13-172 | STOP page 13-170
Subtract Stop Instruction Processing
SUBR page 13-175 SUBL page 13-174
Shift Right and Subtract Accumulators Shift Left and Subtract Accumulators
Tcc page 13-176 | TFR page 13-178
Transfer Conditionally Transfer Data ALU Register
Motorola Instruction Set 13-3

Table 13-1. DSP56300 Instruction Summary (Continued)

Instruction Page Instruction Page

TRAP page 13-179 | TRAPcc page 13-180
Software Interrupt Conditional Software Interrupt
TST page 13-181 | VSL page 13-182
Test Accumulator Viterbi Shift Left
WAIT page 13-183
Wait for Interrupt or DMA Request

13-4 DSP56300 Family Manual Motorola

ABS Absolute Value ABS

Operation Assembler Syntax

|ID| - D (parallel move) ABS D (parallel move)
Instruction Fields

{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

Description ~ Take the absolute value of the destination operand D and store the result in
the destination accumulator.

Condition Codes

7 5 4 3 2 1 0
U N
v V| V| V| V|V
CCR
v Changed according to the standard definition.

— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0
ABS D Data Bus Move Field 00 10/d110

Optinal Effective Address Extension

Motorola Instruction Set 13-5

ADC Add Long With Carry ADC

Operation Assembler Syntax

S+C+D-D (parallel move) ADC S,D (parallel move)

Instruction Fields

{s} J Source register [X,Y] (se€able 12-13on page 12-22)
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

Description Add the source operand S and the Carry bit (C) of the Condition Code
Register to the destination operand D and store the result in the destination accumulator.
Long words (48 bits) can be added to the 56-bit destination accumulator. Note that the
Carry bit is set correctly for multiple-precision arithmetic using long-word operands if the
extension register of the destination accumulator (A2 or B2) is the sign extension of Bit 47
of the destination accumulator (A or B).

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0
ADC S,D Data Bus Move Field 0 01JjdoOo1

Optional Effective Address Extension

13-6 DSP56300 Family Manual Motorola

ADD Add ADD

Operation Assembler Syntax

S+D-D (parallel move) ADD S,D (parallel move)
#xx+D - D ADD #xx,D

#xxxx+D - D ADD #xxxx,D

Instruction Fields

{s} JJJ Source register [B/A,X,Y,X0,Y0,X1,Y1] (s€able 12-13
on page 12-22)
{0} d Destination accumulator [A/B] (s@@ble 12-13on page 12-22)
{#xx} liiii -~ 6-bit Immediate Short Data
{hooex) 24-bit Immediate Long Data extension word

Description Add the source operand S to the destination operand D and store the result in
the destination accumulator. The source can be a register (24-bit word, 48-bit long word,
or 56-bit accumulator), 6-bit short immediate, or 24-bit long immediate. When 6-bit
immediate data is used, the data is interpreted as an unsigned integer. That is, the six bits
are right-aligned and the remaining bits are zeroed to form a 24-bit source operand. Note
that the Carry bit(C) is set correctly using word or long-word source operands if the
extension register of the destination accumulator (A2 or B2) is the sign extension of Bit 47

of the destination accumulator (A or B). Thus, the C bit is always set correctly using
accumulator source operands, but it can be set incorrectly if A1, B1, A10, B10 or
immediate operand are used as source operands and A2 and B2 are not replicas of Bit 47.

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

Motorola Instruction Set 13-7

ADD Add ADD

Instruction Formats and opcodes

23 16 15 8 7 0
ADD S,D Data Bus Move Field |o JJJldoo

o

Optional Effective Address Extension

23 16 15 8 7 0
ADD #xx,D O0000001|O1iiiiii|1000d000
23 16 15 8 7 0
ADD #xxxx,D 00000001|o 1oooooo|1100dooo

Immediate Data Extension

13-8 DSP56300 Family Manual Motorola

ADDL Shift Left and Add Accumulators ADDL

Operation Assembler Syntax

S + 2 [ID - D (parallel move) ADDL S,D (parallel move)

Instruction Fields

{D} d Destination accumulator [A,B] (s@@&ble 12-13on page 12-22)

{s} The source accumulator is B if the destination accumulator (selected
by thed bit in the opcode) is A, or A if the destination accumulator is
B.

Description Add the source operand S to two times the destination operand D and store
the result in the destination accumulator. The destination operand D is arithmetically
shifted one bit to the left, and a 0 is shifted into the LSB of D prior to the addition
operation. The Carry bit (C) is set correctly if the source operand does not overflow as a
result of the left shift operation. The Overflow bit (V) may be set as a result of either the
shifting or addition operation (or both). This instruction is useful for efficient divide and
Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

Vv
i v v v *
CCR
v Set if overflow has occurred in A or B result or the MSB of the destination

operand is changed as a result of the instruction’s left shift.
Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0

ADDL S,D Data Bus Move Field 0 00O 1|d O 1 O
Optional Effective Address Extension

Motorola Instruction Set 13-9

ADDR Shift Right and Add Accumulators ADDR

Operation Assembler Syntax

S+D/2-D (parallel move) ADDR S,D (parallel move)

Instruction Fields

{D} d Destination accumulator [A,B] (s@@ble 12-13on page 12-22)

{s} The source accumulator is B if the destination accumulator (selected
by thed bit in the opcode) is A, or A if the destination accumulator is
B.

Description Add the source operand S to one-half the destination operand D and store the
result in the destination accumulator. The destination operand D is arithmetically shifted
one bit to the right while the MS bit of D is held constant prior to the addition operation. In
contrast to the ADDL instruction, the Carry bit (C) is always set correctly, and the
Overflow bit (V) can only be set by the addition operation and not by an overflow due to
the initial shifting operation. This instruction is useful for efficient divide and
Decimation-In-Time (DIT) FFT algorithms.

Condition Codes

CCR

4 Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0

ADDR S,D Data Bus Move Field 0 00 0O(dO 10
Optional Effective Address Extension

13-10 DSP56300 Family Manual Motorola

AND Logical AND AND

Operation Assembler Syntax

S « D[47:24] - D[47:24] (parallel move) ANDS,D (parallel move)
#xx ¢ D[47:24] - D[47:24] AND #xx,D

#XXXX » D[47:24] — D[47:24] AND #x0x,D

where = denotes the logical AND operator

Instruction Fields

{s} oy Source input register [X0,X1,Y0,Y1] (s@able 12-130on page
12-22)

{D} d Destination accumulator [A/B] (s@eable 12-13on page 12-22)

{rxxy i 6-bit Immediate Short Data

{#xxxx 24-bit Immediate Long Data extension word

Description Logically AND the source operand S with bits 47—24 of the destination
operand D and store the result in bits 47—24 of the destination accumulator. The source
can be a 24-bit register, 6-bit short immediate, or 24-bit long immediate. This instruction

is a 24-bit operation. The remaining bits of the destination operand D are not affected.
When 6-bit immediate data is used, the data is interpreted as an unsigned integer. That is,
the six bits are right aligned and the remaining bits are zeroed to form a 24-bit source
operand.

Condition Codes

CCR

* N Set if bit 47 of the result is set.

* Z Setif bits 47-24 of the result are 0.

* V. Always cleared.

v Changed according to the standard definition.
— Unchanged by the instruction.

Motorola Instruction Set 13-11

AND Logical AND AND

Instruction Formats and opcodes

23 16 15 8 7
AND S,D Data Bus Move Field 01 JJld110
Optional Effective Address Extension
23 16 15 8 7
AND #xx,D 0000000T1[/01 i i i i i i|]1000d110
23 16 15 8 7 0
AND #xxxx,D 00000O00O0TU1/01000000[1100d110

Immediate Data Extension

13-12 DSP56300 Family Manual Motorola

AN D| AND Immediate With Control Register AN D|

Operation Assembler Syntax
#xx+*D - D AND(l) #xx,D
where ¢ denotes the logical AND operator

Instruction Fields

{D} EE Program Controller register MR,CCR,COM,EOM] (SE&ble 12-13
on page 12-22)
fog il Immediate Short Data

Description ~ Logically AND the 8-bit immediate operand (#xx) with the contents of the
destination control register D and store the result in the destination control register. The
condition codes are affected only when the Condition Code Register (CCR) is specified as
the destination operand.

Condition Codes

CCR

For CCR Operand

* S Cleared if Bit 7 of the immediate operand is cleared.
Cleared if Bit 6 of the immediate operand is cleared.
Cleared if Bit 5 of the immediate operand is cleared.
Cleared if Bit 4 of the immediate operand is cleared.
Cleared if Bit 3 of the immediate operand is cleared.
Cleared if Bit 2 of the immediate operand is cleared.
Cleared if Bit 1 of the immediate operand is cleared.
Cleared if Bit 0 of the immediate operand is cleared.

*
0O < N zZz c m r

For MR and OMR Operands
The condition codes are not affected using these operands.
Instruction Formats and opcodes

23 16 15 8 7 0
AND() #xx,D loooo0oo0o0o0w0[i i i i iiiilt01110EE]

Motorola Instruction Set 13-13

AS |_ Arithmetic Shift Accumulator Left AS L

Operation

C 55 48 47 24 23 0

Assembler Syntax

ASL D (parallel move)
ASL D #ii,S2,D
ASL S1,S2,D

Instruction Fields

{52} S Source accumulator [A,B] ()
{0} D Destination accumulator [A,B] () SeeTable 12-130n page 12-22
{S1} sss Control register
[X0,X1,Y0,Y1,A1,B1]
(i} i 6-bit unsigned integer [0—40]

denoting the shift amount

In the control register S1: bits 5-0 (LSB) are used as the #ii field, and the rest of the
register is ignored.

Description

= Single bit shift:Arithmetically shift the destination accumulator D one bit to the
left and store the result in the destination accumulator. The MSB of D prior to
instruction execution is shifted into the Carry bit (C)eaO isshifted into the LSB
of the destination accumulator D.

= Multi-bit shift: The contents of the source accumulator S2 are shifted left #ii bits.
Bits shifted out of position 55 are lost except for the last bit, which is latched in the
C bit. The vacated positions on the right are zero-filled. The result is placed into
destination accumulator D. The number of bits to shift is determined by the 6-bit
immediate field in the instruction, or by the 6-bit unsigned integer located in the six
LSBs of the control register S1. If a zero shift count is specified, the C bit is
cleared. The difference between ASL and LSL is that ASL operates on the entire 56
bits of the accumulator, and therefore, sets the Overflow bit (V) if the number
overflows.

This is a 56-bit operation.

13-14 DSP56300 Family Manual Motorola

ASL

Arithmetic Shift Accumulator Left AS L

Condition Codes

Example

CCR

Set if Bit 55 is changed any time during the shift operation, cleared
otherwise.

Set if the last bit shifted out of the operand is set, cleared for a shift count of
0, and cleared otherwise.

Changed according to the standard definition.

ASL #7,A, B 3 1

1 6 0
A |tfo[s]ofso[o]oft]o[1]o[1]o[o]1]o[+]1[s]1[ofo[s]s]o]a]1]oo[s]ofs|o[+]o[1]o[o]4]

7z 7z 7z 7z
- s - .
. - - - Shiftleft7 .~
- - - - s
- -
s

P y
loJ2[2]1]1]ofofa]2[o[1]1]o[o]

s

s s
s

y A‘/ 0
o]1]o[1]o]1]o]o]t|o]o]o]o]o]o]o]

Plw
DS

;/
® lols]ox[o]1]olo]

Instruction Formats and opcodes

23 8 7 0

ASL D Data Bus Move Field 001 1d0O010O0
Optional Effective Address Extension

23 16 15 8 7 0
ASL #ii,S2,D l0o0o001100[/00011101|S i i i i i i D]

23 16 15 8 7 0
ASL S1,52,D loooo01100/00011110[/010Ss s s D
Motorola Instruction Set 13-15

AS R Arithmetic Shift Accumulator Right AS R

55 48 47 24 23 0 C

Operation: L > >

Assembler Syntax

ASR D (parallel move)
ASR D #ii, S2,D
ASR S1,S2,D

Instruction Fields

{52} S Source accumulator [A,B]

{D} D Destination accumulator [A,B] SeeTable 12-13on page 12-22
{s1} sss Control register [X0,X1,Y0,Y1,A1,B1]

{#ii} i 6-bit unsigned integer [0-40] denoting

the shift amount

In the control register S1: bits 5-0 (LSB) are used as the #ii field, and the rest of the
register is ignored.

Description

= Single bit shift:Arithmetically shift the destination operand D one bit to the right
and store the result in the destination accumulator. The LSB of D prior to
instruction execution is shifted into the Carry bit (C), and the MSB of D is held
constant.

= Multi-bit shift: The contents of the source accumulator S2 are shifted right #ii bits.
Bits shifted out of position 0 are lost except for the last bit, which is latched in the
C bit. Copies of the MSB are supplied to the vacated positions on the left. The
result is placed into destination accumulator D. The number of bits to shift is
determined by the 6-bit immediate field in the instruction, or by the 6-bit unsigned
integer located in the six 6 LSBs of the control register S1. If a zero shift count is
specified, the C bit is cleared.

This is a 56- or 40-bit operation, depending on the SA bit value in the SR.

Note: If the number of shifts indicated by the 6 LSBs of the control register or by the
immediate field exceeds the value of 55 (40 in Sixteen Bit Arithmetic mode),
then the result is undefined.

13-16 DSP56300 Family Manual Motorola

ASR Arithmetic Shift Accumulator Right ASR

Condition Codes

CCR

This bit is always cleared.

c This bit is set if the last bit shifted out of the operand is set, cleared for a shift
count of 0, and cleared otherwise.
Changed according to the standard definition.

Example
ASR X0,A,B
3 0
x0 (Dl |||l]|
shift = 3
5 4 2

5 7 4 0
A |tfafa]a]afsfa]a]a]s]s]2]ololofo]o]s]2]s]s|1]ofolo]o]o]1]1]fa]s]s|s]2]s]olofo]olof]s]s]1]s]olo]o]oo]1] o]

5 Shift right 3 Shift right 3
4 2
5 7 4 0
& [o]afs]a]sfsfa]afs]s[a]s]s[a]s]o[o]ofo]o[+]1][+]1]o[o]o|o[o]s[s]a]s[s]a]s[1]a]olo[o]o|o[+]|[s]]o]o]c[o]o]x]1]

Instruction Formats and opcodes

23 8 7 0
ASR D Data Bus Move Field 001 0doOZ10
Optional Effective Address Extension

23 16 15 8 7 0
ASR #ii,52,D loooo0o1100[/00011100[Siii i i iD|
23 16 15 8 7 0
ASR S1,52,D loooo0o1100[/00011110/011Ss s s D

Motorola Instruction Set 13-17

Bcc Branch Conditionally Bcc

Operation Assembler Syntax

If cc, then PC + xxxx — PC Bcc xxxx
else PC+1 - PC

If cc, then PC + xxx - PC Bcc xxx
elsePC+1 - PC

If cc, then PC + Rn - PC Bcc Rn
else PC+1 - PC

Instruction Fields

{cc} ccce Condition code (se€able 12-13on page 12-22)
(xxxx) 24-bit PC Relative Long Displacement

(o} aaaaaaaaa Signed PC Relative Short Displacement

{Rn} RRR Address register [RO — R7]

Description If the specified condition is true, program execution continues at location PC

+ displacement. If the specified condition is false, the PC is incremented and program
execution continues sequentially. The displacement is a two’s-complement 24-bit integer
that represents the relative distance from the current PC to the destination PC. Short
Displacement and Address Register PC Relative addressing modes can be used. The Short
Displacement 9-bit data is sign-extended to form the PC relative displacement. The
conditions that the term “cc” can specify are listedrable 12-17on page 12-28.

Condition Codes

CCR

— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0

Bce XXXX loo0o00101/ccccCco01aalaa0aaaaal
PC Relative Placement

23 16 15 8 7 0

Bce XXX loo000101/cccco1aalaa0aaaaal

23 16 15 8 7 0

Bce Rn loooo01101/00011RRR/0O10O0CCCC]|

13-18 DSP56300 Family Manual Motorola

BCHG Bit Test and Change BCHG

Operation Assembler Syntax

D[n] - C D[n] - D[n BCHG #n,[XorY]:ea
D[n] fi C D_[n] - D[n BCHG #n,[XorY]:aa
D[n] — C D_[n] - DI[n] BCHG #n,[XorY]:pp
D[n] - C D_[n] - DI[n] BCHG #n,[XorY]:qq
D[n] - C D_[n] - D[n BCHG #n,D

Instruction Fields

{tn} bbbb Bit number [0-23]

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

xny s Memory Space [X,Y] (se€able 12-13on page 12-22)

{ad} aaaaaa Absolute Address [0-63]

{pp} PPPPPP I/O Short Address [64 addresses: $FFFFCO — $FFFFFF]

{qa} 999999 I/O Short Address [64 addresses: $FFFF80 — $FFFFBF]

{D} DDDDDD Destination register [all on-chip registers] (Jedle 12-13on
page 12-22)

Description Test the H' bit of the destination operand D, complement it, and store the
result in the destination location. The state of tHhit is stored in the Carry bit (C) of the
CCR register. The bit to be tested is selected by an immediate bit number from 0 — 23.
This instruction performs a read-modify-write operation on the destination location using
two destination accesses before releasing the bus. This instruction provides a
test-and-change capability, which is useful for synchronizing multiple processors using a
shared memory. This instruction can use all memory alterable addressing modes.

Condition Codes

Motorola Instruction Set 13-19

BCHG Bit Test and Change BCHG

CCR Condition Codes

For destination operand SR:

Complemented if bit O is specified, unaffected otherwise.
Complemented if bit 1 is specified, unaffected otherwise.
Complemented if bit 2 is specified, unaffected otherwise.
Complemented if bit 3 is specified, unaffected otherwise.
Complemented if bit 4 is specified, unaffected otherwise.
Complemented if bit 5 is specified, unaffected otherwise.
Complemented if bit 6 is specified, unaffected otherwise.
Complemented if bit 7 is specified, unaffected otherwise.

*
nw rmc zZz N < 0O

For other destination operands:
* C Setif bit tested is set, and cleared otherwise.

Set according to the standard definition.
Set according to the standard definition.

* VvV Not affected.
* Z Not affected.
* N Not affected.
* U Not affected.
* E Not affected.
L
S

MR Status Bits

For destination operand SR:

* 10 Changed if bit 8 is specified, unaffected otherwise.
* 11 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* Sl Changed if bit 11 is specified, unaffected otherwise.
* Fv Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.

For other destination operands: MR status bits are not affected.

13-20 DSP56300 Family Manual Motorola

BCHG Bit Test and Change BCHG

Instruction Formats and opcodes

23 16 15 8 7 0
BCHG #n,[X or Y]:ea 0000101101 MMMRRRIOSOUOUDbUDbUDbDb
Optional Effective Address Extension

23 16 15 8 7 0
BCHG #n,[X or Y]:aa 0000101 1/00aaaaaal0S00bbbob]
23 16 15 8 7 0
BCHG #n,[X or Y]:pp 000010111 0ppoppppl0oSo00bbobob
23 16 15 8 7 0
BCHG #n,[X or Y]:qq 0 0000001/01qgqgqgqqgqg|l0oSO0bbbbb]
23 16 15 8 7 0
BCHG #n,D [0 0o 001011/1 1 DDDDDD|0106bUbLbL Db Db

Motorola Instruction Set 13-21

BCLR Bit Test and Clear BCLR

Operation Assembler Syntax
D[n] - C (0N D[n] BCLR #n,[XorY].ea
D[n] - C (0N D[n] BCLR #n,[XorY]:aa
D[n] - C 0 - DI[n] BCLR #n,[XorY]:pp
D[n] - C 0 - D[n] BCLR #n,[XorY]:qq
D[n] - C 0 - D[n] BCLR #n,D

Instruction Fields

{tn} bbbb Bit number [0-23]
{ea} MMMRRR Effective Address
xrvy s Memory Space [X,Y]
{ad} aaaaaa Absolute Address [0—63]
{pp} PPPPPP gIC:)F?:rI\:ch Aidglr:istF[gé]addresses:S eeTable 12-130n page 12-22
{qa} q9qqqq I/O Short Address [64 addresses:
$FFFF80 — $FFFFBF]
{D} DDDDDD Destination register [all on-chip
registers]

Description ~ Test the i bit of the destination operand D, clear it and store the result in the
destination location. The state of tHB Init is stored in the Carry bit (C) of the CCR

register. The bit to be tested is selected by an immediate bit number from 0-23. This
instruction performs a read-modify-write operation on the destination location using two
destination accesses before releasing the bus. This instruction provides a test-and-clear
capability, which is useful for synchronizing multiple processors using a shared memory.
This instruction can use all memory alterable addressing modes.

Condition Codes

13-22 DSP56300 Family Manual Motorola

BCLR Bit Test and Clear BCLR

CCR Condition Codes

For destination operand SR:

* € Cleared if bit O is specified, unaffected otherwise.
Cleared if bit 1 is specified, unaffected otherwise.
Cleared if bit 2 is specified, unaffected otherwise.
Cleared if bit 3 is specified, unaffected otherwise.
Cleared if bit 4 is specified, unaffected otherwise.
Cleared if bit 5 is specified, unaffected otherwise.
Cleared if bit 6 is specified, unaffected otherwise.
Cleared if bit 7 is specified, unaffected otherwise.

*
nw r mc Z2 N <

For other destination operands:
* C This bit is set if bit tested is set, and cleared otherwise.

* V. Unaffected.

* Z Unaffected.

* N Unaffected.

* U Unaffected.

* E Unaffected.

* L This bitis set according to the standard definition.
* S

This bit is set according to the standard definition.

MR Status Bits

For destination operand SR:

* 10 Changed if bit 8 is specified, unaffected otherwise.
* 11 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* Sl Changed if bit 11 is specified, unaffected otherwise.
* FVv. Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.

Motorola Instruction Set 13-23

BCLR

Instruction Formats and opcodes

Bit Test and Clear

23 16 15 8 7 0

BCLR #n,[X or Y]:ea 00001010/01lMMMRRR|0 SO b b
Optional Effective Address Extension

23 16 15 8 7 0
BCLR #n,[X or Y]:aa [0 0001010/00aaaaaaldso b b

23 16 15 8 7 0
BCLR #n,[X or Y]:pp [0 0001010[/10pppppoploso b b

23 16 15 8 7 0
BCLR #n,[X or Y]:qq [0 000000U1/00qggqqggqaqgqloso b b

23 16 15 8 7 0
BCLR #n,D [0 0001010[/11DDDDDD|[010 b b
13-24 DSP56300 Family Manual Motorola

B RA Branch Always B RA

Operation Assembler Syntax
PC + xxxx - Pc BRA xxxx

PC + xxx - Pc BRA xxx

PC+Rn - Pc BRA Rn

Instruction Fields

{ooxxt 24-bit PC-Relative Long Displacement
{xxx} aaaaaaaaa Signed PC-Relative Short Displacement
{Rn} RRR Address register [RO-R7]

Description ~ Program execution continues at location PC + displacement. The
displacement is a two’s-complement 24-bit integer that represents the relative distance
from the current PC to the destination PC. Short Displacement and Address Register PC
Relative addressing modes may be used. The Short Displacement 9-bit data is
sign-extended to form the PC relative displacement.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and opcodes
23 16 15 8 7 0
BRA XXXX 0000110 1/00010O0O0O0110O0O0O0O0TO0

PC-Relative Displacement

23 16 15 8 7 0
BRA XXX [0 0000101/000011aalaa0aaaaal

23 16 15 8 7 0
BRA RN [0 00011012/00011RRR|1100000 0]

Motorola Instruction Set 13-25

BRCLR Branch if Bit Clear BRCLR

Operation Assembler Syntax

If S{n}=0 then PC+xxxx a PC BRCLR #n,[X or Y]:ea,xxxx
else PC+1 a PC

If S{n}=0 then PC+xxxx a PC BRCLR #n,[X or Y],aa,xxxx
else PC+1 a PC

If S{n}=0 then PC+xxxx 1l PC BRCLR #n,[X or Y]:pp,Xxxx
else PC+1 0 PC

If S{n}=0 then PC+xxxx O PC BRCLR #n,[X or Y]:qq,xxxx
else PC+1 0 PC

If S{n}=0 then PC+xxxx O PC BRCLR #n,S,XXXX
else PC+1 a PC

Instruction Fields

{#n} bbbbb Bit number [0-23]

{ea} MMMRRR Effective Address

xry s Memory Space [X,Y]

{xooxx} 24-bit PC relative displacement

{aa} aaaaaa Absolute Address [0-63]

{op} pPPPPP I/O Short Address [64 addresseSeeTable 12-13on page 12-22
$FFFFCO-$FFFFFF]

{qq} 9q9aaq I/O Short Address [64 addresses:
$FFFF80-$FFFFBF]

{s} DDDDDD Source register [all on-chip
registers])

Description The nth bit in the source operand is tested. If the tested bit is cleared, program
execution continues at location PC+displacement. If the tested bit is set, the PC is
incremented and program execution continues sequentially. However, the address register
specified in the effective address field is always updated independently of the condition.
The displacement is a 2’s complement 24-bit integer that represents the relative distance
from the current PC to the destination PC. The 24-bit displacement is contained in the
extension word of the instruction. All memory alterable addressing modes may be used to
reference the source operand. Absolute Short, /0 Short and Register Direct addressing
modes may also be used. Note that if the specified source operand S is the SSH, the stack
pointer register will be decremented by one. The bit to be tested is selected by an
immediate bit number 0-23.

13-26 DSP56300 Family Manual Motorola

BRCLR

Condition Codes

\/

Instruction Formats and opcodes

Branch if Bit Clear

CCR

Changed according to the standard definition
Unchanged by the instruction

BRCLR

23 16 15 8 7 0

BRCLR #n,[X or Y]:ea,xxxx 00 011001 OMMMRRR|O b b
PC-Relative Displacement

23 16 15 8 7 0

BRCLR #n,[X or Y]:aa,xxxx 00 01 100|10aawaaaall b b
PC-Relative Displacement

23 16 15 8 7 0

BRCLR #n,[X or Y]:pp,Xxxx 00 01 100|221 pppppoplo b b
PC-Relative Displacement

23 16 15 8 7 0

BRCLR #n,[X or Y]:qq,xxxx 00 00100|20d9g9g9g4gqqaql|O b b
PC-Relative Displacement

23 16 15 8 7 0

BRCLR #n,S,xxxx 00 011 00|12 1DDUDDTPDD|1 b b
PC-Relative Displacement

Motorola Instruction Set 13-27

BRKcc Exit Current DO Loop Conditionally BRKcc

Operation Assembler Syntax

Ifcc LA+1- PC;SSL(LF,FV) -~ SR;SP-1 - SP BRKcc
SSH - LA;SSL - LC;SP—-1 - SP
else PC+1 - PC

Instruction Fields

{cc} cccC Condition code (se€able 12-18on page 12-28)

Description EXits conditionally the current hardware DO loop before the current Loop
Counter (LC) equals 1. It also terminates the DO FOREVER loop. If the value of the
current DO LC is needed, it must be read before the execution of the BRKcc instruction.
Initially, the PC is updated from the LA, the Loop Flag (LF) and the Forever flag (FV) are
restored and the remaining portion of the Status Register (SR) is purged from the system
stack. The Loop Address (LA) and the LC registers are then restored from the system
stack. The conditions that the term “cc” can specify are list@dlne 12-18

on page 12-28.

Condition Codes

CCR

— Unchanged by the instruction.
Instruction Formats and opcodes

23 16 15 8 7 0
BRKcc |00000000000000100001CCCC

13-28 DSP56300 Family Manual Motorola

BRS ET Branch if Bit Set BRS ET

Operation Assembler Syntax

If S{n}=1 then PC+xxxx 0 PC BRSET #n,[X or Y]:ea,xxxx
else PC+1 0 PC

If S{n}=1 then PCH+xxxx 0 PC BRSET #n,[X or Y],aa,xxxx
else PC+1 0 PC

If S{n}=1 then PC+xxxx 0 PC BRSET #n,[X or Y]:pp,xxxx
else PC+1 t PC

If S{n}=1 then PC+xxxx O PC BRSET #n,[X or Y]:.qq,Xxxx
else PC+1 0 PC

If S{n}=1 then PC+xxxx O PC BRSET #N,S ,XXXX
else PC+1 0 PC

Instruction Fields

{#n} bbbbb Bit number [0-23]

{ea} MMMRRR Effective Address

xry s Memory Space [X,Y])

{oxx 24-bit PC relative displacement

{aa} aaaaaa Absolute Address [0-63]

{op} PPPPPP /O Short Address [64 addresseSeeTable 12-13on page 12-22
$FFFFCO — $FFFFFF]

{qq} q90aaq I/O Short Address [64 addresses:
$FFFF80 — $FFFFBF]

{s} DDDDDD Source register [all on-chip
registers]

Description The A bit in the source operand is tested. If the tested bit is set, program
execution continues at location PC+displacement. If the tested bit is cleared, the PC is
incremented and program execution continues sequentially. However, the address register
specified in the effective address field is always updated independently of the condition.
The displacement is a 2’s complement 24-bit integer that represents the relative distance
from the current PC to the destination PC. The 24-bit displacement is contained in the
extension word of the instruction. All memory alterable addressing modes may be used to
reference the source operand. Absolute Short, /0O Short and Register Direct addressing
modes may also be used. Note that if the specified source operand S is the SSH, the stack
pointer register will be decremented by one. The bit to be tested is selected by an
immediate bit number 0-23.

Motorola Instruction Set 13-29

BRSET Branch if Bit Set

Condition Codes

BRSET

VivI|i—|—-|-|-1-1|-
CCR
v Changed according to the standard definition
— Unchanged by the instruction
Instruction Formats and opcodes
23 16 15 8 7 0
BRSET #n,[X or Y]:ea,xxxx 000011001 OMMMRRRI|O b b b
PC-Relative Displacement
23 16 15 8 7 0
BRSET #n,[X or Y]:aa,xxxx 00001100|10awawaaaall b b b
PC-Relative Displacement
23 16 15 8 7 0
BRSET #n,[X or Y]:pp,Xxxx 000011001 1ppppepwp|o b b b
PC-Relative Displacement
23 16 15 8 7 0
BRSET #n,[X or Y]:qQ,XXXx 0000010021 09gggqgqqggQgl|O b b b
PC-Relative Displacement
23 16 15 8 7 0
BRSET #n,S,xxxx 000011001 1DDDUDDTUD|1 b b b
PC-Relative Displacement
13-30 DSP56300 Family Manual Motorola

BScc Branch to Subroutine Conditionally BScc

Operation Assembler Syntax

If cc, then PC fiSSH;SR fiSSL;PC+xxxx fiPC BScc xxxx
else PC+1fiPC

If cc, then PC - SSH;SR - SSL;PC + xxx - PC BScc xxx
else PC+1 - PC

If cc, then PC - SSH;SR - SSL;PC+Rn - PC BScc Rn
else PC+1 - PC

Instruction Fields

{cc} ccce Condition code (se€able 12-18on page 12-28)
{ooxxt 24-bit PC-Relative Long Displacement

{xxx} aaaaaaaaa Signed PC-Relative Short Displacement

{Rn} RRR Address register [RO — R7]

Description If the specified condition is true, the address of the instruction immediately
following the BScc instruction and the SR are pushed onto the stack. Program execution
then continues at location PC + displacement. If the specified condition is false, the PC is
incremented and program execution continues sequentially. The displacement is a 2's
complement 24-bit integer that represents the relative distance from the current PC to the
destination PC. Short Displacement and Address Register PC Relative addressing modes
may be used. The Short Displacement 9-bit data is sign extended to form the PC relative
displacement. The conditions that the term “cc” can specify are list€dlda 12-18on

page 12-28.

Condition Codes

CCR

— Unchanged by the instruction.

Motorola Instruction Set 13-31

BScc Branch to Subroutine Conditionally BScc

Instruction Formats and opcodes

23 16 15 8 7 0
BScc XXXX 0000110100010 00O00O0O0O0CTCTCTC
PC-Relative Displacement

23 16 15 8 7 0
BScc XXX loo0oo00101/ccCcCO0O0aalaa0aaaaal
23 16 15 8 7 0
BScc Rn loooo0o1101/00011RRR[0O0ODODO0CCCC]|

13-32 DSP56300 Family Manual Motorola

BSCLR Branch to Subroutine if Bit Clear BSCLR

Operation Assembler Syntax

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y]:ea,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y],aa,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y]:pp,XXxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,[X or Y]:qg,xxxx
else PC+1fiPC

If S{n}=0 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSCLR #n,S,XXXX
else PC+1fiPC

Instruction Fields

{tn} bbbbb Bit number [0-23]

{ea} MMMRRR Effective Address

xm s Memory Space [X,Y]

oot 24-bit Relative Long
Displacement

{aa} aaaaaa Absolute Address [0-63]

{pp} PPPPPP I/O Short Address [64 addresseg:e eTable 12-130n page 12-22
$FFFFCO — $FFFFFF]

{qq} q90aaq I/O Short Address [64 addresses:
$FFFF80 — $FFFFBF]

{s} DDDDDD Source register [all on-chip
registers]

Description The " bit in the source operand is tested. If the tested bit is cleared, the
address of the instruction immediately following the BSCLR instruction and the status
register are pushed onto the stack. Program execution then continues at location
PC+displacement. If the tested bit is set, the PC is incremented and program execution
continues sequentially. However, the address register specified in the effective address
field is always updated independently of the condition. The displacement is a two’s
complement 24-bit integer that represents the relative distance from the current PC to the
destination PC. The 24-bit displacement is contained in the extension word of the
instruction. All memory alterable addressing modes can reference the source operand.
Absolute Short, I1/0 Short and Register Direct addressing modes can also be used. Note
that if the specified source operand S is the SSH, the stack pointer register decrements by

Motorola Instruction Set 13-33

BSCLR Branch to Subroutine if Bit Clear BSCLR

one; if the condition is true, the push operation writes over the stack level where the SSH
value is taken. The bit to be tested is selected by an immediate bit number 0-23.

Condition Codes

CCR

v Changed according to the standard definition
— Unchanged by the instruction

Instruction Formats and opcodes
23 16 15 8 7 0

BSCLR #n,[X or Y]:ea,xxxx 0000110111 0MMMRRR|OS ODbDbbbob
PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,[X or Y]:aa,xxxx 000011 1|1 0 a aaaaallSO0bbobobob
PC-Relative Displacement

o

23 16 15 8 7 0
BSCLR #n,[X or Y]:qqg,Xxxxx 0 000O0O100{1 0g9g9q99ggqggg|lSO0Dbbbbob
PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,[X or Y]:pp,XXXx 0000110121 pppppoploSO0obbbhbhb
PC-Relative Displacement

23 16 15 8 7 0
BSCLR #n,S,xxxx 000011 1|1 1 DDDDDD[10O0DbDbUbUbob
PC-Relative Displacement

o

13-34 DSP56300 Family Manual Motorola

BS ET Bit Set and Test BS ET

Operation Assembler Syntax
D[n] - C 1= D[n] BSET #n,[XorY].ea
D[n] - C 1> D[n] BSET #n,[XorY].aa
D[n] - C 1 - D[n] BSET #n,[XorY]:pp
D[n] - C 1 - D[n] BSET #n,[XorY]:qq
D[n] — C 1 - DI[n] BSET #n,D

Instruction Fields

{#n} bbbb Bit number [0-23] Se&able 12-130on page
{ea} MMMRRR Effective Address 12-22
xm s Memory Space [X,Y]
{aa} aaaaaa Absolute Address [0-63]
{pp} PPPPPP I/O Short Address [64 addresses:
$FFFFCO — $FFFFFF]
{aq} qqaqqq I/O Short Address [64 addresses:
$FFFF80 — $FFFFBF]
{D} DDDDDD Destination register [all on-chip registers]

Description ~ Test the H bit of the destination operand D, set it, and store the result in the
destination location. The state of tHB Init is stored in the Carry bit (C) of the CCR
register. The bit to be tested is selected by an immediate bit number from 0-23. This
instruction performs a read-modify-write operation on the destination location using two
destination accesses before releasing the bus. This instruction provides a test-and-set
capability that is useful for synchronizing multiple processors using a shared memory.
This instruction can use all memory alterable addressing modes. When this instruction
performs a bit manipulation/test on either the A or B 56-bit accumulator, it optionally
shifts the accumulator value according to scaling mode bits SO and S1 in the system Status
Register (SR). If the data out of the shifter indicates that the accumulator extension
register is in use, the instruction acts on the limited value (limited on the maximum
positive or negative saturation constant). The “L” flag in the SR is set accordingly.

Condition Codes

CCR

Motorola Instruction Set 13-35

BS ET Bit Set and Test BSET

CCR Condition Codes

For destination operand SR:

* € Setif bit 0is specified, unaffected otherwise.
Set if bit 1 is specified, unaffected otherwise.
Set if bit 2 is specified, unaffected otherwise.
Set if bit 3 is specified, unaffected otherwise.
Set if bit 4 is specified, unaffected otherwise.
Set if bit 5 is specified, unaffected otherwise.
Set if bit 6 is specified, unaffected otherwise.
Set if bit 7 is specified, unaffected otherwise.

*
n r mc Z2 N <

For other destination operands:
* C Setif bit tested is set, and cleared otherwise.

* vV Unaffected.

* Z Unaffected.

* N Unaffected.

* U Unaffected.

* E Unaffected.

* L Setaccording to the standard definition.
* S

Set according to the standard definition.

MR Status Bits

For destination operand SR:

* 10 Changed if bit 8 is specified, unaffected otherwise.
* 11 Changed if bit 9 is specified, unaffected otherwise.
* S0 Changed if bit 10 is specified, unaffected otherwise.
* 81 Changed if bit 11 is specified, unaffected otherwise.
* Fv. Changed if bit 12 is specified, unaffected otherwise.
* SM Changed if bit 13 is specified, unaffected otherwise.
* RM Changed if bit 14 is specified, unaffected otherwise.
* LF Changed if bit 15 is specified, unaffected otherwise.

For other destination operands: MR status bits are not affected.

13-36 DSP56300 Family Manual Motorola

BS ET Bit Set and Test BS ET

Instruction Formats and opcodes

23 16 15 8 7 0
BSET #n,[X or Y]:ea 0000101001 MMMRRR|OS 1O
OPTIONAL EFFECTIVE ADDRESS EXTENSION

(o3
(on
o
(o3

23 16 15 8 7 0
BSET #n,[X or Y]:aa [0 0001010/00aaaaaal0S10bbbhb]
23 16 15 8 7 0
BSET #n,[X or Y]:pp [0 0o001010[/10ppppppl0oS10bbbhbl
23 16 15 8 7 0
BSET #n,[X or Y]:qq 0 0000001/00qgqqgqaqgqgl0oS10bbbb]
23 16 15 8 7 0
BSET #n,D l0o0o001010[/11DDDDDD|0110bobbb]

Motorola Instruction Set 13-37

BSR

Operation
PC fiSSH;SR fiSSL;PC+xxxxfiPC
PC - SSH;SR - SSL;PC + xxx - PC

PC - SSH;SR - SSL;PC +Rn - PC

Instruction Fields

{xxxxt

{xxx} aaaaaaaaa
{Rn} RRR
Description

Branch to Subroutine

Assembler Syntax
BSR XXXX
BSR XXX

BSR Rn

BSR

24-bit PC-Relative Long Displacement
Signed PC-Relative Short Displacement
Address register [RO-R7]

The address of the instruction immediately following the BSR instruction

and the SR are pushed onto the stack. Program execution then continues at location PC +
displacement. The displacement is a twos-complement 24-bit integer that represents the
relative distance from the current PC to the destination PC. Short Displacement and
Address Register PC-Relative addressing modes can be used. The Short Displacement
9-bit data is sign-extended to form the PC-Relative displacement.

Condition Codes

S E U N VA \% C
CCR

— Unchanged by the instruction.
Instruction Formats and opcodes

23 16 15 8 7 0
BSR XXXX 0000110110001 00O0O0)1 0000000

PC-Relative Displacement

23 16 15 8 7 0
BSR XXX 0 00OO1O011|00 0 010 aala a 0 a a a a a

23 16 15 8 7 0
BSR Rn 0000110 1/00 011 RRRI1O0OO0OO0O0OOQ 0O
13-38 DSP56300 Family Manual Motorola

BSS ET Branch to Subroutine if Bit Set BSS ET

Operation Assembler Syntax

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y]:ea,xxxx
else PC+10PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y],aa,xxxx
else PC+10PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y]:pp,XXxx
else PC+1OPC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,[X or Y]:qq,xxxx
else PC+10PC

If S{n}=1 then PC fiSSH;SR fiSSL;PC+xxxx fiPC BSSET #n,S,XXXX
else PC+10PC

Instruction Fields

{tn} bbbbb Bit number [0-23]
{ea} MMMRRR Effective Address
xm s Memory Space [X,Y]
{ooxxt 24-bit Relative Long Displacement
{aa} aaaaaa Absolute Address [0-63] SeeTable 12-13on page
{op} PPPPPP I/O Short Address [64 addresses: 12-22
$FFFFCO — $FFFFFF
{qq} 9999qq I/O Short Address [64 addresses:
$FFFF80 — $FFFFBF]
{s} DDDDDD Source register [all on-chip registers]

Description ~ The AN bit in the source operand is tested. If the tested bit is set, the address
of the instruction immediately following the BSSET instruction and the status register is
pushed onto the stack. Program execution then continues at location PC+displacement. If
the tested bit is cleared, the PC is incremented and program execution continues
sequentially. However, the address register specified in the effective address field is
always updated independently of the condition. The displacement is a two’s complement
24-bit integer that represents the relative distance from the current PC to the destination
PC. The 24-bit displacement is contained in the extension word of the instruction. All
memory alterable addressing modes can reference the source operand. Absolute Short, 1/0
Short and Register Direct addressing modes can also be used. Note that if the specified
source operand S is the SSH, the stack pointer register is decremented by one; if the
condition is true, the push operation writes over the stack level where the SSH value is
taken. The bit to be tested is selected by an immediate bit number 0-23.

Motorola Instruction Set 13-39

BSSET

Condition Codes

v

Instruction Formats and opcodes

Branch to Subroutine if Bit Set

CCR

Changed according to the standard definition.
Unchanged by the instruction.

BSSET

23 16 15 8 7 0

BSSET #n,[X or Y]:ea,xxxx 000011011 0OMMMRRRI|O b b b
PC-Relative Displacement

23 16 15 8 7 0

BSSET #n,[X or Y]:aa,xxxx 0000110 1|10awawaaaall b b b
PC-Relative Displacement

23 16 15 8 7 0

BSSET #n,[X or Y]:pp,Xxxx 0000110111 ppppepwp|o b b b
PC-Relative Displacement

23 16 15 8 7 0

BSSET #n,[X or Y]:qQ,XXXx 000001001 0g9gqgqgqqggqgaqll b b b
PC-Relative Displacement

23 16 15 8 7 0

BSSET #n,S,xxxx 0000110111 DDDUDDD]|1 b b b
PC-Relative Displacement

13-40 DSP56300 Family Manual Motorola

BTST

Operation
D[n] - C
D[n] - C
D[n] - C
D[n] - C
D[n] - C

Instruction Fields

{#n} bbbb

{ea} MMMRRR
{X/Y} S

{aa} aaaaaa
{pp} pPpPPpPP
{qa} qqqqaq
{D} DDDDDD
Description

Bit Test BTST

Assembler Syntax

BTST #n,[XorY]:ea
BTST #n,[XorY].aa
BTST #n,[XorY]:pp
BTST #n,[XorY]:qq
BTST #n,D

Bit number [0 — 23]

Effective Address

Memory Space [X,Y]

Absolute Address [0—63]

I/O Short Address [64 addresses:
$FFFFCO — $FFFFFF]

I/O Short Address [64 addresses:
$FFFF80 — $FFFFBF]

Destination register [all on-chip registers]

SeeTable 12-130on
page 12-22

Test the H bit of the destination operand D. The state of fidinis stored

in the Carry bit (C) of the CCR. The bit to test is selected by an immediate bit number
from 0-23. BTST is useful for performing serial-to-parallel conversion with appropriate
rotate instructions. This instruction can use all memory alterable addressing modes.

Condition Codes

*

CCR

C Set if bit tested is set, and cleared otherwise.
Changed according to the standard definition.

Unchanged by the instruction.
SP—Stack Pointer

For destination operand SSH:SP, decrement the SP by 1.
For other destination operands, the SPis not affected.

Motorola

Instruction Set 13-41

BTST

BTST

Bit Test

Instruction Formats and opcodes

23 16 15 8 7 0
BTST #n,[X or Y]:ea 0 0101101 MMMRRR|OS 10 b b

OPTIONAL EFFECTIVE ADDRESS EXTENSION

23 16 15 8 7 0
BTST #n,[X or Y]:aa |O 0101 1|0 0 a a a a a a|0 S 10 b b|

23 16 15 8 7 0
BTST #n,[X or Y]:pp [0 01011[/10ppppppl0sio b b

23 16 15 8 7 0
BTST #n,[X or Y]:qq |O 0 00O 1|0 1 9 9g9gq9gq q|0 S 10 b b|

23 16 15 8 7 0
BTST #n,D [0 01011/1 1 DDDDDD|0110 b b|
13-42 DSP56300 Family Manual Motorola

CLB Count Leading Bits CLB

Operation Assembler Syntax

If S[39] = 0 then CLBS,D
9 — (Number of consecutive leading zeros in S[55:0]) —» D[47:24]

else

9 — (Number of consecutive leading ones in S[55:0]) - D[47:24]

Instruction Fields

{D} D Destination accumulator [A,B]

{s} s Source accumulator [A,B] SeeTable 12-13on page 12-22

Descripion Count leading Os or 1s according to Bit 55 of the source accumulator. Scan
bits 55—0 of the source accumulator starting from Bit 55. The MSP of the destination
accumulator is loaded with nine minus the number of consecutive leading 1s or Os found.
The result is a signed integer in MSP whose range of possible values is from +8 to —47.
This is a 56-bit operation. The LSP of the destination accumulator D is filled with 0s. The
EXP of the destination accumulator D is sign-extended.

Note:

1. If the source accumulator is all Os, the result is 0.

2. In Sixteen-Bit Arithmetic mode, the count ignores the unused 8 Least Significant
Bits of the MSP and LSP of the source accumulator. Therefore, the result is a
signed integer whose range of possible values is from +8 to —31.

3. CLB can be used in conjunction with NORMF instruction to specify the shift
direction and amount needed for normalization.

Condition Codes

CCR

* N Setif bit 47 of the result is set, and cleared otherwise.
* Z Setif bits 47-24 of the result are all O.

* vV Always cleared.

— Unchanged by the instruction.

Motorola Instruction Set 13-43

CLB Count Leading Bits CLB

Example

CLBB,A

4 2
4 0

7
8 1]2|1J1]1]oJs]1]1]1]2]a]s]ofo]ofs|1]olo]]o]1]o]]o[o]1]o]olo]1]1]o]o]|s]o]olo]]2]o]o]o]s]o]4]c]o]]o]olo]s

5 Leading ones

4 2
4 0

4
A [ololofolololofofololofo]ololofo]ololo]olo]o]o]elo]o]elo]jo]ofo]ololofo]o]olo]oolofofelojo]olefo]o]olofofo]o]

ResultinAis9-5=4
Instruction Formats and opcode

23 16 15 8 7 0
CLB S.D |00001100000111100000008D

13-44 DSP56300 Family Manual Motorola

CLR Clear Accumulator CLR

Operation Assembler Syntax

0-D (parallel move) CLRD (parallel move)

Instruction Fields
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

Description Clear the destination accumulator. This is a 56-bit clear instruction.

Condition Codes

CCR

Always cleared.

Always set.

Always cleared.

Always set.

Always cleared.

Changed according to the standard definition.
— Unchanged by the instruction.

*
< < N Z2 Cm

Instruction Formats and opcodes

23 16 15 8 7 0
CLRD Data Bus Move Field 000 1|d 0 1 1
Optional Effective Address Extension

Motorola Instruction Set 13-45

CMP Compare CMP

Operation Assembler Syntax

S2-8S1 (parallel move) CMP S1, S2 (parallel move)
S2 — #xx CMP #xx, S2

S2 — #XXXXXX CMP #xxxxxx, S2

Instruction Fields

{s1} J3J Source one register [B/A,X0,Y0,X1,Y1] (s@able 12-160n page
12-24)

{sz} d Source two accumulator [A/B] (sdable 12-13o0n page 12-22)

{#xx} il 6-bit Immediate Short Data

{000t 24-bit Immediate Long Data extension word

Description ~ Subtract the source one operand from the source two accumulator, S2, and
update the CCR. The result of the subtraction operation is not stored. The source one
operand can be a register (24-bit word or 56-bit accumulator), 6-bit short immediate, or
24-bit long immediate. When using 6-bit immediate data, the data is interpreted as an
unsigned integer. That is, the six bits will be right-aligned and the remaining bits will be
zeroed to form a 24-bit source operand.

This instruction subtracts 56-bit operands. When a word is specified as the source one
operand, it is sign-extended and zero-filled to form a valid 56-bit operand. For the carry to
be set correctly as a result of the subtraction, S2 must be properly sign-extended. S2 can
be improperly sign-extended by writing A1 or B1 explicitly prior to executing the

compare so that A2 or B2, respectively, may not represent the correct sign extension. This
particularly applies to the case where it is extended to compare 24-bit operands, such as
X0 with Al.

Condition Codes

v Changed according to the standard definition.

13-46 DSP56300 Family Manual Motorola

CMP Compare CMP

Instruction Formats and opcodes

23 16 15 8 7 0

CMP S1, S2 Data Bus Move Field 0J JJjd1 o0 1
Optional Effective Address Extension

23 16 15 8 7 0

CMP #xx, S2 00000001[01 i i i i i i|]10004d4101

23 16 15 8 7 0

CMP #xxxx,S2 0000000O0TU1/01000000[1100d1071

Immediate Data Extension

Motorola Instruction Set 13-47

CM PM Compare Magnitude CMPM

Operation Assembler Syntax

|S2| — S]] (parallel move) CMPM S1, S2 (parallel move)

Instruction Fields

{s1} SAN Source one register [B/A,X0,Y0,X1,Y1] (séable 12-16on page
12-24)
{s2} d Source two accumulator [A,B] (s@able 12-13on page 12-22)

Description ~ Subtract the absolute value (magnitude) of the source one operand, S1, from
the absolute value of the source two accumulator, S2, and update the CCR. The result of
the subtraction operation is not stored. Note that this instruction subtracts 56-bit operands.
When a word is specified as S1, it is sign-extended and zero-filled to form a valid 56-bit
operand. For the carry to be set correctly as a result of the subtraction, S2 must be properly
sign-extended. S2 can be improperly sign-extended by writing A1 or B1 explicitly prior to
executing the compare so that A2 or B2, respectively, may not represent the correct sign
extension. This applies especially when it is extended to compare 24-bit operands, such as
X0 with Al.

Condition Codes

CCR
v Changed according to the standard definition.
Instruction Formats and opcodes
23 16 15 8 7 0
CMPM S1, S2 Data Bus Move Field 0JJJ|jd111

Optional Effective Address Extension

13-48 DSP56300 Family Manual Motorola

CM PU Compare Unsigned CM PU

Operation Assembler Syntax

S2-851 CMPU S1, S2

Instruction Fields

{s1} 999 Source one register [A,B,X0,Y0,X1,Y1] SeeTable 12-13on page
{52} d Source two accumulator [A,B] 12-22

Description Subtract the source one operand, S1, from the source two accumulator, S2,
and update the CCR. The result of the subtraction operation is not stored. Note that this
instruction subtracts a 24- or 48-bit unsigned operand from a 48-bit unsigned operand.
When a 24-bit word is specified as S1, it is aligned to the left and zero-filled to form a
valid 48-bit operand. If an accumulator is specified as an operand, the value in the EXP
does not affect the operation.

Condition Codes

CCR

Always cleared.

* Z Setif bits 47-0 of the result are 0.

— Unchanged by the instruction.

v Changed according to the standard definition.

Instruction Formats and opcodes

23 16 15 8 7 0
CMPU S1, S2 [0 o001100[00011111[1111¢9gggd

Motorola Instruction Set 13-49

DEBUG Enter Debug Mode DEBUG

Operation Assembler Syntax

Enter the Debug mode DEBUG

Instruction Fields None

Description Enter the Debug mode and wait for OnCE commands.

Condition Codes

CCR

— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0
DEBUG | 0O 00O0OOOOO(0OOODOOOT11O0(0O0O0OO0OBODO0OTGO0OO
Motorola

13-50 DSP56300 Family Manual

DEBUGCcC DEBUGCcC

Enter Debug Mode Conditionally

Operation Assembler Syntax

If cc, then enter the Debug mode DEBUGcc

Instruction Fields

{cc} cccC Condition code (se€able 12-18on page 12-28)

Description If the specified condition is true, enter the Debug mode and wait for OnCE
commands. If the specified condition is false, continue with the next instruction. The
conditions that the term “cc” can specify are listedrable 12-18on page 12-28.

Condition Codes

CCR
— Unchanged by the instruction.
Instruction Formats and opcodes
23 16 15 8 7 0
DEBUGcc |00000000000000110000CCCC

Motorola Instruction Set 13-51

DEC Decrement by One DEC

Operation Assembler Syntax

D-1-D DEC D
Instruction Fields

{D} d Destination accumulator [A,B] (s@@ble 12-13on page 12-22)

Description Decrement by one the specified operand and store the result in the destination
accumulator. One is subtracted from the LSB of D.

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0
DECD |00000000000000000000lOld

13-52 DSP56300 Family Manual Motorola

D |V Divide Iteration D |V

Operation Assembler Syntax
IF D[39]LIS[15] = 1 DIVS,D

then 2UD+C+S - D

else 2 D+C-S-D

wherell denotes the logical exclusive OR operator.

Instruction Fields

{s} SN Source input register [X0,X1,Y0,Y1]

{0} d Destination accumulator [A,B] SeeTable 12-13on page 12-22

Description Divide the destination operand D by the source operand S and store the result
in the destination accumulator D. The 48-bit dividend must be a positive fraction that is
sign-extended to 56 bits and stored in the full 56-bit destination accumulator D. The 24-bit
divisor is a signed fraction stored in the source operand S. Each DIV iteration calculates
one quotient bit using a nonrestoring fractional division algorithm. After the first DIV
Instruction executes, the destination operand holds both the partial remainder and the
formed quotient. The partial remainder occupies the high-order portion of the destination
accumulator D and is a signed fraction. The formed quotient occupies the low-order
portion of the destination accumulator D (AO or BO) and is a positive fraction. One bit of
the formed quotient is shifted into the LSB of the destination accumulator at the start of
each DIV iteration. The formed quotient is the true quotient if the true quotient is positive.
If the true quotient is negative, the formed quotient must be negated. Valid results are
obtained only when |D| < |S| and the operands are interpreted as fractions. This condition
ensures that the magnitude of the quotient is less than 1 (i.e., a fractional quotient) and
precludes division by 0.

DIV calculates one quotient bit based on the divisor and the previous partial remainder.
To produce an N-bit quotient, the DIV instruction executes N times, where N is the
number of bits of precision desired in the quotiert,NL.< 24. Thus, for a full-precision
(24-bit) quotient, sixteen DIV iterations are required. In general, executing the DIV
instruction N times produces an N-bit quotient and a 48-bit remainder that has (48 — N)
bits of precision and whose N MSBs are 0s. The partial remainder is not a true remainder
and must be corrected due to the nonrestoring nature of the division algorithm before it
can be used. Therefore, once the divide is complete, it is necessary to reverse the last DIV
operation and restore the remainder to obtain the true remainder.

Motorola Instruction Set 13-53

D |V Divide Iteration D |V

DIV uses a nonrestoring fractional division algorithm that consists of the following
operations:

1. Compare the source and destination operand sign bitgn exclusive OR
operation is performed on Bit 55 of the destination operand D and Bit 23 of the
source operand S.

2. Shift the partial remainder and the quotient: The 39-bit destination accumulator
D is shifted one bit to the left. The Carry bit (C) is moved into the LSB (Bit 0) of
the accumulator.

3. Calculate the next quotient bit and the new partial remainderThe 24-bit
source operand S (signed divisor) is either added to or subtracted from the Most
Significant Portion (MSP) of the destination accumulator (Al or B1), and the result
is stored back into the MSP of that destination accumulator. If the result of the
exclusive OR operation previously described was 1 (i.e., the sign bits were
different), the source operand S is added to the accumulator. If the result of the
exclusive OR operation was O (i.e., the sign bits were the same), the source operand
S is subtracted from the accumulator. Because of the automatic sign extension of
the 24-bit signed divisor, the addition or subtraction operation correctly sets the C
bit with the next quotient bit.

For extended precision division (e.g., N-bit quotients where N > 24), the DIV instruction
is no longer applicable, and a user-defined N-bit division routine is required. For more
information on division algorithms, see pages 524-53hebry and Application of

Digital Signal Processingpy Rabiner and Gold (Prentice-Hall, 1975), pages 190-199 of
Computer Architecture and Organizatiby John Hayes (McGraw-Hill, 1978), pages
213-223 ofComputer Arithmetic: Principles, Architecture, and DediynKai Hwang

(John Wiley and Sons, 1979), or other references as required.

13-54 DSP56300 Family Manual Motorola

D |V Divide Iteration D |V

Condition Codes

CCR

* L Setif the Overflow bit (V) is set.

* V. Setif the MSB of the destination operand is changed as a result of the
instruction’s left shift operation.

* € Setif Bit 55 of the result is cleared.

— Unchanged by the instruction

Instruction Formats and opcodes

23 16 15 8 7 0
DIV S,D |000000011000000001JJdOOO

Motorola Instruction Set 13-55

DMAC DMAC

Double-Precision Multiply-Accumulate With Right Shift

Operation Assembler Syntax

[D>>16]*s1 [s2 - D DMACss (*)s1,52,D (no parallel move)
(S1 signed, S2 signed)

D>>16]%s1s2 - b DMACsu *)s1,52,D (no parallel move)
(S1 signed, S2 unsigned)

[D>>16]*s1[s2 - D DMACuu *)s1,52,D (no parallel move)
(S1 unsigned, S2 unsigned)

Instruction Fields

{S1.82} QQQQ Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1]
(seeTable 12-160n page 12-24)

{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
(£} k Sign [+,—] (se€élable 12-160n page 12-24)
{ss,suuu} ss [ss,su,uu] (se@able 12-160n page 12-24)

Description ~ Multiply the two 24-bit source operands S1 and S2 and add/subtract the
product to/from the specified 56-bit destination accumulator D, which has been previously
shifted 24 bits to the right. The multiplication can be performed on signed numbers (ss),
unsigned numbers (uu), or mixed (unsigrnésigned, (su)). The “~" sign option is used to
negate the specified product prior to accumulation. The default sign option is “+”. This
instruction is optimized for multi-precision multiplication support.

Condition Codes

CCR

4 Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0
DMAC (+)S1,52,D 00000001[/0010010s|lsdkQQQQ

13-56 DSP56300 Family Manual Motorola

D O Start Hardware Loop D O

Operation Assembler Syntax
SP+1 - SP;LA - SSH;LC - SSL;[X or Y]:ea - LC DO [X or Y]:ea,expr
SP+1 - SP;PC - SSH;SR - SSL;expr—1 - LA

15 LF

SP+1 - SP;LA - SSH;LC - SSL;[Xor Y]:aa - LC DO [Xor Y]:aa,expr
SP+1 - SP;PC - SSH;SR - SSL;expr—-1 - LA

1-LF

SP+1 - SP;LA - SSH;LC - SSL;#xxx - LC DO #xxx,expr
SP+1 - SP;PC - SSH;SR - SSL;expr—1 - LA

1-LF

SP+1 - SP,LA - SSH;LC - SSL;S - LC DO S,expr

SP+1 - SP;PC - SSH;SR - SSL;expr—1 - LA

15 LF

End of Loop:

SSL(LF) -~ SR;SP-1 . SP
SSH - LASSSL ~ LC;SP—1 - SP

Instruction Fields

{ea} MMMRRR Effective Address
{X/y} S Memory Space [X,Y]
{expr} 24-bit Absolute Address in 16-bit
extension word
{aa} aaaaaa Absolute Address [0-63] SeeTable 12-13on page
{#oot hhhhiiiiii Immediate Short Data [0-4095] 12-22
{S} DDDDDD Source register [all on-chip registers,
except SSH

For the DO SP, expr instruction, the actual value that is loaded into the Loop Counter (LC)
is the value of the Stack Pointer (SP) before the DO instruction executes, incremented by
1. Thus, if SP = 3, the execution of the DO SP,expr instruction loads the LC with the value
LC =4. For the DO SSL, expr instruction, the LC is loaded with its previous value, which
was saved on the stack by the DO instruction itself.

Descripion Begin a hardware DO loop that is to be repeated the number of times
specified in the instruction’s source operand and whose range of execution is terminated
by the destination operand (previously shown as “expr”). No overhead other than the
execution of this DO instruction is required to set up this loop. DO loops can be nested
and the loop count can be passed as a parameter.

Motorola Instruction Set 13-57

DO Start Hardware Loop DO

During the first instruction cycle, the current contents of the Loop Address (LA) and the
Loop Counter (LC) registers are pushed onto the System Stack. The DO source operand
then loads into the LC register, which contains the remaining number of times the DO
loop is to execute and can be accessed from inside the DO loop under certain restrictions.
If the initial value of LC is 0 and the Sixteen-Bit Compatibility mode bit (bit 13, SC, in the
Chip Status Register) is cleardlde DO loop does not execufd.C initial value is zero

but SC is set, the DO loop executes 65,536 times. All address register indirect addressing
modes can be used to generate the effective address of the source operand. If immediate
short data is specified, the twelve LSBs of the LC register are loaded with the 12-bit
immediate value, and the twelve MSBs of the LC register are cleared.

During the second instruction cycle, the current contents of the Program Counter (PC)
register and the Status Register (SR) are pushed onto the System Stack. The stacking of
the LA, LC, PC, and SR registers is the mechanism that permits the nesting of DO loops.
The DO destination operand (shown as “expr”) is then loaded into the LA register. This
24-bit operand is located in the instruction’s 24-bit absolute address extension word, as
shown in the opcode section. The value in the PC register pushed onto the system stack is
the address of the first instruction following the DO instruction (i.e., the first actual
instruction in the DO loop). This value is read (copied but not pulled) from the top of the
system stack to return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) is set, resulting in a repeated
comparison of PC with LA to determine whether the last instruction in the loop has been
fetched. If LA equals PC, the last instruction in the loop has been fetched and the LC is
tested. If the LC is not equal to 1, it is decremented by one and SSH is loaded into the PC
to fetch the first instruction in the loop again. When LC = 1, the “end-of-loop” processing
begins.

When a DO loop executes , the instructions are actually fetched each time through the
loop. Therefore, a DO loop can be interrupted. DO loops can also be nested. When DO
loops are nested, the end-of-loop addresses must also be nested and are not allowed to be
equal. The assembler generates an error message when DO loops are improperly nested.

During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion (SSL) of
the Stack Pointer is written into the SR, the contents of the LA register are restored from
the upper portion (SSH) of (SP — 1), the contents of LC are restored from the lower
portion (SSL) of (SP — 1), and the Stack Pointer is decremented by two. Instruction fetches
continue at the address of the instruction following the last instruction in the DO loop.
Note that LF is the only bit in the SR that is restored after a hardware DO loop is exited.

13-58 DSP56300 Family Manual Motorola

D O Start Hardware Loop D O

Note:

1. The assembler calculates the end-of-loop address to be loaded into LA (the
absolute address extension word) by evaluating the end-of-loop expression “expr”
and subtracting 1. This is done to accommodate the case where the last word in the
DO loop is a two-word instruction. Thus, the end-of-loop expression “expr” in the
source code must represent the address of the instruction AFTER the last
instruction in the loop.

2. The Loop Flag (LF) is cleared by a hardware reset.

Condition Codes

CCR

* S Setif the instruction sends A/B accumulator contents to XDB or YDB.
* L Setif data limiting occurred [see Note].
— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0
DO [X or Y]:ea, expr 0 00O0O 1 0/]01 MMMRRR|OS O0O0OOOODO
Absolute Address Extension Word

[

23 16 15 8 7 0
DO [X or Y]:aa, expr 0 000O0O11O0|00awawawawaall0s
Absolute Address Extension Word

o
o
o
o
o
o

23 16 15 8 7 0
DO #XXX, expr 0 0O0O0O O 1 O0|i i i i i i 1 i]/1 0 0 0 h h h h
Absolute Address Extension Word

[

23 16 15 8 7 0
DO S, expr 00000110212 DDDDDD|O0OO0O0O0O0OO0OO0OO0TO
Absolute Address Extension Word

Motorola Instruction Set 13-59

DO FOREVER DO FOREVER

Start Infinite Loop

Operation Assembler Syntax
SP+1 - SP;LA - SSH;LC - SSL DO FOREVER,expr
SP+1 - SP;PC - SSH;SR - SSL;expr—1 - LA

1-LF1-FV

Instruction Fields
None

Description Begin a hardware DO loop that is to repeat forever with a range of execution
terminated by the destination operand (“expr”). No overhead other than the execution of
this DO FOREVER instruction is required to set up this loop. DO FOREVER loops can
nest with other types of instructions. During the first instruction cycle, the contents of the
Loop Address (LA) and the Loop Counter (LC) registers are pushed onto the system
stack. The LC register is pushed onto the stack but is not updated by this instruction.

During the second instruction cycle, the contents of the Program Counter (PC) register
and the Status Register (SR) are pushed onto the system stack. Stacking the LA, LC, PC,
and SR registers permits nesting DO FOREVER loops. The DO FOREVER destination
operand (shown as “expr”) is then loaded into the LA register. This 24-bit operand resides
in the instruction’s 24-bit absolute address extension word, as shown in the opcode
section. The value in the PC register pushed onto the system stack is the address of the
first instruction following the DO FOREVER instruction (i.e., the first actual instruction

in the DO FOREVER loop). This value is read (copied, but not pulled) from the top of the
system stack to return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set. Thus,
the PC is repeatedly compared with LA to determine whether the last instruction in the
loop has been fetched. When LA equals PC, the last instruction in the loop has been
fetched and SSH is loaded into the PC to fetch the first instruction in the loop again. The
LC register is then decremented by one without being tested. You can use this register to
count the number of loops already executed.

Because the instructions are fetched each time through the DO FOREVER loop, the loop
can be interrupted. DO FOREVER loops can also be nested. When DO FOREVER loops
are nested, the end of loop addresses must also be nested and are not allowed to be equal.
The assembler generates an error message when DO FOREVER loops are improperly
nested.

13-60 DSP56300 Family Manual Motorola

DO FOREVER DO FOREVER

Start Infinite Loop

Note:

1. The assembler calculates the end-of-loop address to be loaded into LA (the
absolute address extension word) by evaluating the end-of-loop expression “expr”
and subtracting one. This is done to accommodate the case where the last word in
the DO loop is a two-word instruction. Thus, the end-of-loop expression “expr” in
the source code must represent the address of the instruction AFTER the last
instruction in the loop.

2. The LC register is never tested by the DO FOREVER instruction, and the only way
of terminating the loop process is to use either the ENDDO or BRKcc instructions.
LC is decremented every time PC = LA so that it can be used by the programmer to
keep track of the number of times the DO FOREVER loop has been executed. If
the programer wants to initialize LC to a particular value before the DO
FOREVER, care should be taken to save it before if the DO loop is nested. If so,
LC should also be restored immediately after exiting the nested DO FOREVER
loop.

Condition Codes

CCR

— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0
DO FOREVER 0O 0OO0OOOOOOO0OO0OOOOT11O0(/00O0OO0O0O0O0O0T11
Absolute Address Extension Word

Motorola Instruction Set 13-61

DO R Start PC-Relative Hardware Loop DO R

Operation Assembler Syntax

SP+1 fi SP;LA fi SSH;LC fi SSL;[X or Y]:eafi LC DOR [Xor Y]:ea,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1fiLF

SP+1 fi SP;LA fi SSH;LC fi SSL;[X or Y]:ea fi LC DOR [Xor Y]:aa,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1fiLF

SP+1 fi SP;LA fi SSH;LC fi SSL;#xxx fi LC DOR #xxx,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1fiLF

SP+1 fi SP;LA fi SSH;LC fi SSL;S fi LC DOR S,label

SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA
1fiLF

Instruction Fields

{ea} MMMRRR Effective Address (se€able 12-13on page 12-22)

{xrv} S Memory Space [X,Y] (se€able 12-130on page 12-22)

{label} 24-bit Address Displacement in 24-bit extension word

{aa} aaaaaa Absolute Address [0-63]

{#xxx} hhhhiiiiii Immediate Short Data [0-4095]

{s} DDDDDD Source register [all on-chip registerscept SSH (seeTable 12-13

on page 12-22)

Description Initiates the beginning of a PC-relative hardware program loop. The loop
address (LA) and loop counter (LC) values are pushed onto the system stack. With proper
system stack management, this allows unlimited nested hardware DO loops. The PC and
SR are pushed onto the system stack. The PC is added to the 24-bit address displacement
extension word and the resulting address is loaded into the loop address register (LA). The
effective address specifies the address of the loop count that is loaded into the loop
counter (LC). The DO loop executes LC times. If the LC initial value is zero and the
16-Bit Compatibility mode bit (bit 13, SC, in the Status Register) is cleared, the DO loop
is not executed. If LC initial value is zero but SC is set, the DO loop executes 65,536
times. All address register indirect addressing modes (less Long Displacement) can be
used. Register Direct addressing mode can also be used. If immediate short data is
specified, the LC is loaded with the zero extended 12-bit immediate data.

During hardware loop operation, each instruction is fetched each time through the
program loop. Therefore, instructions executing in a hardware loop are interruptible and
can be nested. The value of the PC pushed onto the system stack is the location of the first

13-62 DSP56300 Family Manual Motorola

DO R Start PC-Relative Hardware Loop DO R

instruction after the DOR instruction. This value is read from the top of the system stack
to return to the start of the program loop. When DOR instructions are nested, the end of
loop addresses must also be nested and are not allowed to be equal.

The assembler calculates the end of loop address LA (PC-relative address extension word
xXxX) by evaluating the end of loop expression and subtracting one. Thus, the end of the
loop expression in the source code represents the “next address” after the end of the loop.
If a simple end of loop address label is used, it should be placed after the last instruction in
the loop.

Since the end of loop comparison occurs at fetch time ahead of the end of loop execution,
instructions that change program flow or the system stack cannot be used near the end of
the loop without some restrictions. Proper hardware loop operation is guaranteed if no
instruction starting at address LA-2, LA-1 or LA specifies the program controller registers
SR, SP, SSL, LA, LC or (implicitly) PC as a destination register; or specifies SSH as a
source or destination register. Also, SSH cannot be specified as a source register in the
DOR instruction itself. The assembler generates a warning if the restricted instructions are
found within their restricted boundaries.

Implementation Notes

DOR SP,xxxx The actual value to be loaded into the LC is the value of the SP before the
DOR instruction incremented by one.

DOR SSL,xxxx The LC is loaded with its previous value saved in the stack by the DOR
instruction itself.

Condition Codes

CCR

* S Set if the instruction sends A/B accumulator contents to XDB or YDB.
* L Setif data limiting occurred
— Unchanged by the instruction

Motorola Instruction Set 13-63

DOR

Instruction Formats and opcodes

Start PC-Relative Hardware Loop

16 15 8 7

10

01 MMMRRR|O

PC-Relative Displacement

16 15 8 7

10

0 0O0aaawawaalo

PC-Relative Displacement

16 15 8 7

1 0@ i i i i i i if1

PC-Relative Displacement

16 15 8 7

23
DOR [Xor Y]:ea,label 00
23
DOR [Xor Y]:aa,label 00
23
DOR #xxx, label 0 0
23
DOR S, label 00

10

1 1 DDDDDD|O

PC-Relative Displacement

13-64

DSP56300 Family Manual

Motorola

DOR FOREVER DOR FOREVER

Start PC-Relative Infinite Loops

Operation Assembler Syntax
SP+1 fi SP;LA fi SSH;LC fi SSL DOR FOREVER,label
SP+1 fi SP;PC fi SSH;SR fi SSL;PC+xxxx fi LA

1fi LF; 1fiFV

Instruction Fields NonNe.

Description Begin a hardware DO loop that is to repeat forever with a range of execution
terminated by the destination operand (“label”). No overhead other than the execution of
this DOR FOREVER instruction is required to set up this loop. DOR FOREVER loops
can be nested. During the first instruction cycle, the contents of the Loop Address (LA)
and the Loop Counter (LC) registers are pushed onto the system stack. The loop counter
(LC) register is pushed onto the stack but is not updated.

During the second instruction cycle, the contents of the Program Counter (PC) register
and the Status Register (SR) are pushed onto the system stack. Stacking the LA, LC, PC,
and SR registers permits nesting DOR FOREVER loops. The DOR FOREVER
destination operand (shown as label) is then loaded into the Loop Address (LA) register
after it is added to the PC. This 24-bit operand resides in the instruction’s 24-bit relative
address extension word as shown in the opcode section. The value in the Program Counter
(PC) register pushed onto the system stack is the address of the first instruction following
the DOR FOREVER instruction (i.e., the first actual instruction in the DOR FOREVER
loop). This value is read (i.e., copied but not pulled) from the top of the system stack to
return to the top of the loop for another pass through the loop.

During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. As a
result, the PC is repeatedly compared with LA to determine whether the last instruction in
the loop has been fetched. If LA equals PC, the last instruction in the loop has been
fetched and SSH is read (i.e copied but not pulled) into the PC to fetch the first instruction
in the loop again. The loop counter (LC) register is then decremented by one without
being tested. You can use this register to count the number of loops already executed.

When a DOR FOREVER loop executes, the instructions are fetched each time through the
loop. Therefore, a DOR FOREVER loop can be interrupted. DOR FOREVER loops can
also be nested. When DOR FOREVER loops are nested, the end of loop addresses must
also be nested and cannot be equal. The assembler generates an error message when DOR
FOREVER loops are improperly nested.

Motorola Instruction Set 13-65

DOR FOREVER DOR FOREVER

Start PC-Relative Infinite Loops

Note: The assembler calculates the end of loop address LA (PC-relative address
extension word xxxx) by evaluating the end of loop expression and subtracting
one. Thus the end of loop expression in the source code represents the “next
address” after the end of the loop. If a simple end of loop address label is used,
it should be placed after the last instruction in the loop.

The DOR FOREVER instruction never tests the loop counter (LC) register . The only way
to terminate the loop process is to use either the ENDDO or BRKcc instruction. LC is
decremented every time PC=LA, so you can use it to keep track of the number of times the
DOR FOREVER loop has executed. If you want to initialize LC to a particular value
before the DOR FOREVER, take care to save it before if the DO loop is nested. If so, LC
should also be restored immediately after exiting the nested DOR FOREVER loop.

Condition Codes

CCR

— Unchanged by the instruction
Instruction Formats and opcodes

23 16 15 8 7 0
DOR FOREVER 0 000O0OO0OOO|O0OO0OOOO?11IO0(O0O0O0OOOOT1O0
PC-Relative Displacement

13-66 DSP56300 Family Manual Motorola

ENDDO End Current DO Loop ENDDO

Operation Assembler Syntax

SSL(LF) - SR;SP-1 - SP ENDDO
SSH - LA;SSL - LC;SP-1 - SP

Instruction Fields
None

Description ~ Terminate the current hardware DO loop before the current Loop Counter
(LC) equals one. If the value of the current DO LC is needed, it must be read before the
execution of the ENDDO instruction. Initially, the Loop Flag (LF) is restored from the
system stack and the remaining portion of the Status Register (SR) and the Program
Counter (PC) are purged from the system stack. The Loop Address (LA) and the LC
registers are then restored from the system stack.

Condition Codes

CCR

— Unchanged by the instruction.
Instruction Formats and opcodes

23 16 15 8 7 0
ENDDO |OOOOOOOOOOOOOOOOlOOOl100

Motorola Instruction Set 13-67

EOR Logical Exclusive OR EOR

Operation Assembler Syntax

S D[47:24] - D[47:24] (parallel move) EOR S,D (parallel move)
#xx [D[47:24] - D[47:24] EOR #xx,D

#xxxx [1 D[47:24] - D[47:24] EOR #x00,D

wherel] denotes the logical XOR operator.

Instruction Fields

{s} SN Source register [X0,X1,Y0,Y1]
{D} d Destination accumulator [A/B]
{#xx} i 6-bit Immediate Short Data fgz‘;able 12-13on page
{#xooxx} 24-bit Immediate Long Data extension
word

Description Logically exclusive OR the source operand S with bits 47:24 of the

destination operand D and store the result in bits 47—24 of the destination accumulator.
The source can be a 24-bit register, 6-bit short immediate or 24-bit long immediate. This
instruction is a 24-bit operation. The remaining bits of the destination operand D are not
affected. When 6-bit immediate datais used, the data is interpreted as an unsigned integer.
That is, the 6 bits are right-aligned, and the remaining bits are zeroed to form a 24-bit
source operand.

Condition Codes

CCR

* N Setif bit 47 of the result is set.

* 2 Setif bits 47-24 of the result are 0.

* V. Always cleared.

v Changed according to the standard definition.
— Unchanged by the instruction.

13-68 DSP56300 Family Manual Motorola

EOR Logical Exclusive OR EOR
Instruction Formats and opcodes
23 16 15 8 7 0
EOR S,D Data Bus Move Field 01 JJ|jdoOo 11
Optional Effective Address Extension
23 16 15 8 7 0
EOR #xx,D 0000O0O0GO0U1[0 1 i i i i i il]1 0004doO0T11
23 16 15 8 7 0
EOR #xxxx,D 0000O00O0O0TU1/01000000[11004do11
Immediate Data Extension
Motorola Instruction Set 13-69

EXTRACT Extract Bit Field EXTRACT

Operation Assembler Syntax

Offset = S1[5:0] EXTRACT S1,52,D
Width = S1[17:12]

S2[(offset + width — 1):offset] —» D[(width — 1):0]
S2[offset + width — 1] - D[39:width] (sign extension)

Offset = #CO[5:0] EXTRACT #CO,S2,D
Width = #CO[17:12]

S2[(offset + width — 1):offset] —» D[(width — 1):0]
S2[offset + width — 1] - D[39:width] (sign extension)

Instruction Fields

{52} s Source accumulator [A,B]

{D} D Destination accumulator [A,B] SeeTable 12-13o0n page
{s1} Sss Control register [X0,X1,Y0,Y1,A1,B1] 12-22

{#CO} Control word extension.

Description ~ Extract a bit-field from source accumulator S2. The bit-field width is
specified by bits 17-12 in the S1 register or in the immediate control word #CO. The
offset from the Least Significant Bit is specified by bits 5-0 in the S1 register or in the
immediate control word #CO. The extracted field is placed into destination accumulator
D, aligned to the right. The control register can be constructed by the MERGE instruction.
EXTRACT is a 56-bit operation. Bits outside the field are filled with sign extension
according to the Most Significant Bit of the extracted bit field.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control
register and the width field is located in bits 21-16 of the control register. These
fields corresponds to the definition of the fields in the MERGE instruction.

2. In Sixteen-bit Arithmetic mode, when the width value is zero, then the result will
be undefined.

3. If offset + width exceeds the value of 56, the result is undefined.

13-70 DSP56300 Family Manual Motorola

EXTRACT Extract Bit Field EXTRACT

Condition Codes

CCR

* V. Always cleared.

* C Always cleared.

— Unchanged by the instruction.

v Changed according to the standard definition.

Example
EXTRACT B1,AA

4 2

7 4

g1 |ol9lo[ololofo]olo]1[o]]o]ofo]o|o]o]o[o[1]o]s1
Width =5 Offset =11

1 1

5 4
5 7 5 1 0
e e el x|] o] dofax x|l

Al AO

5 4

5 7
(|2 a|a]a]a]a]a]a|a|a|a|a]a|a]a|a]a|a]]| o] |a]a|a]a|a]a|a]a|afa|a 1 |a]a|a]a|a]x]a]]] a]a] a]a] o] 2] 1] 2| O] 2]0]x

Al A0

Instruction Formats and opcodes

23 16 15 8 7 0
EXTRACT S1,S2D [0 0o001100[/00011010/000sSSSD
23 16 15 8 7 0
EXTRACT #CO,S2,D 00001100[00011000[/000s000O0D

Control Word Extension

Motorola Instruction Set 13-71

EXTRACTU EXTRACTU

Extract Unsigned Bit Field

Operation Assembler Syntax

Offset = S1[5:0] EXTRACTU S1,S2,D
Width = S1[17:12]

S2[(offset + width — 1):0ffset] —» D[(width — 1):0]
zero — D[55:width]

Offset = #CO[5:0] EXTRACTU #CO,S2,D
Width = #CO[17:12]

S2[(offset + width — 1):0ffset] —» D[(width — 1):0]
zero fi D[39:width]

Instruction Fields

{52} s Source accumulator [A,B]

{D} D Destination accumulator [A,B] SeeTable 12-130n page
{s1} SSS Control register [X0,X1,Y0,Y1,A1,B1] 12-22

{#Co} Control word extension

Description Extract an unsigned bit-field from source accumulator S2. The bit-field width
is specified by bits 17-12 in the S1 register or in the immediate control word #CO. The
offset from the LSB is specified by bits 5-0 in the S1 register or in the immediate control
word #CO. The extracted field is placed into destination accumulator D, aligned to the
right. The control register can be consructed using the MERGE instruction. EXTRACTU

is a 56-bit operation. Bits outside the field are filled with Os.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control
register and the width field is located in bits 21-16 of the control register. These

fields correspond to the definition of the fields in the MERGE instruction.
2. If offset + width exceeds the value of 56, the result is undefined.

13-72 DSP56300 Family Manual Motorola

EXTRACTU EXTRACTU

Extract Unsigned Bit Field

Condition Codes

* V. Always cleared.

* € Always cleared.

— Unchanged by the instruction.

v Changed according to the standard definition.

Example
EXTRACTU B1,AA

4 2

7 4
s |ololo[ololoolo]o]1]1]c[oo|o]o]o[o[o[1]o[a]1
width =7 Offset =11
5 4
5 7 0
A e e e e e e o] of x| x| ||
Al A0
5 4
5 7 C
A [o[o[o]o[ofo[o[o]o[o]o]o]o]o[o[o[o]o]o]]o]o[o]|o[o][e|]o] do]o[o]o[ofo]o]o]o]o]e[do]o|o[o]o]e] 1]]o]]o]|
Al A0

Instruction Formats and opcodes

23 16 15 8 7 0
EXTRACTU S1,S2,D [0 o0o01100[/00011010[/100sSSSD
23 16 15 8 7 0
EXTRACTU #CO,S2,D 00001100[/00011000[100s000D

Control Word Extension

Motorola Instruction Set 13-73

IFcc Execute Conditionally Without CCR Update IFcc

Operation Assembler Syntax
If cc, then opcode operation opcode-Operands IFcc

Instruction Fields

{cc} ccce Condition code (se€able 12-18on page 12-28)

Description If the specified condition is true, execute and store result of the specified Data
ALU operation. If the specified condition is false, no destination is altered. The CCR is
never updated with the condition codes generated by the Data ALU operation. The
instructions that can conditionally be executed using IFcc are the parallel arithmetic and
logical instructions. Se€able 12-4on page 12-7 and@lable 12-50n page 12-9 for a list

of those instructions. The conditions specified by “cc” are listdble 12-18on page
12-28.

Condition Codes

CCR

— Unchanged by the instruction.
Instruction Formats and opcodes

23 16 15 8 7 0
IFcc |O 01 00000001 O0CCCC Instruction opcode

13-74 DSP56300 Family Manual Motorola

|Fcc.U Execute Conditionally With CCR Update |FCC.U

Operation Assembler Syntax
If cc, then opcode operation opcode-Operands IFcc

Instruction Fields

{cc} ccec Condition code (se€able 12-18on page 12-28)

If the specified condition is true, execute and store result of the specified Data ALU
operation and update the CCR with the status information generated by the Data ALU
operation. If the specified condition is false, no destination is altered and the CCR is not
affected. The instructions that can conditionally be executed using IFcc.U are the parallel
arithmetic and logical instructions. S€able 12-4on page 12-7 an@lable 12-50n page

12-9 for a list of these instructions. The conditions specified by “cc” are listed on

Table 12-18on page 12-28

Condition Codes

CCR

*

If the specified condition is true, changes are made according to the
instruction. Otherwise, it is not changed.

Instruction Formats and opcodes

23 16 15 8 7 0
IFcc.U |O 01 000000011 CCCC Instruction opcode

Motorola Instruction Set 13-75

”_LEGAL lllegal Instruction Interrupt ”_LEGAL

Operation Assembler Syntax
Begin lllegal Instruction exception processing ILLEGAL

Instruction Fields

None

Description ~ The ILLEGAL instruction executes as if it were a NOP instruction. Normal
instruction execution is suspended and illegal instruction exception processing is initiated.
The interrupt vector address is located at address P:$3E. The Interrupt Priority Level (11,
10) is set to 3 in the Status Register if a long interrupt service routine is used. The purpose
of the ILLEGAL instruction is to force the DSP into an illegal instruction exception for
test purposes. Exiting an illegal instruction is a fatal error. A long exception routine should
be used to indicate this condition and cause the system to be restarted.

If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA — 1 is being
interrupted, then LC is decremented twice due to the same mechanism that causes LC to
be decremented twice if JSR, REP, etc. are located at LA. This is why JSR, REP, and
other instructions at LA are restricted. Restrictions cannot be imposed on illegal
instructions. Since REP is uninterruptable, repeating an ILLEGAL instruction results in
the interrupt not being initiated until after the REP completes. After the interrupt is
serviced, program control returns to the address of the second word following the
ILLEGAL instruction. Of course, the ILLEGAL interrupt service routine should abort
further processing, and the processor should be reinitialized.

Condition Codes

CCR

— Unchanged by the instruction.
Instruction Formats and opcodes

23 16 15 8 7 0
ILLEGAL |000000000000000000000101

13-76 DSP56300 Family Manual Motorola

|NC Increment by One |NC

Operation Assembler Syntax

D+1-D INC D

Instruction Fields
{D} d Destination accumulator [A,B] (s@&ble 12-13on page 12-22)

Description Increment by one the specified operand and store the result in the destination
accumulator. One is added from the LSB of D.

Condition Codes

CCR

v Changed according to the standard definition.
— Unchanged by the instruction.

Instruction Formats and opcodes

23 16 15 8 7 0
INC D |00000000000000000000100d

Motorola Instruction Set 13-77

|NSERT Insert Bit Field |NSERT

Operation Assembler Syntax

Offset = S1[5:0] INSERT S1,S2,D
Width = S1[17:12]

S2[(width — 1):0] - D[(offset + width — 1):0ffset]

Offset = #CO[5:0] INSERT #CO,S2,D
Width = #CO[17:12]

S2[(width-1):0] — D[(offset + width — 1):0ffset]

Instruction Fields

{} D Destination accumulator [A,B] (s@&ble 12-13on page 12-22)
{s1} Sss Control register [X0,X1,Y0,Y1,A1,B1] (seBable 12-16
on page 12-24)
{s2} qaq Source register [X0,X1,Y0,Y1,A0,B0] (sdable 12-16
on page 12-24)
{#CO} Control word extension

Description Insert a bit-field into the destination accumulator D. The bit-field whose
width is specified by bits 17-12 in S1 register begins at the LSB of the S2 register. This
bit-field is inserted in the destination accumulator D, with an offset according to bits 5-0
in the S1 register. The S1 operand can be an immediate control word #CO. The width
specified by S1 should not exceed a value of 24. The construction of the control register
can be done by using the MERGE instruction. This is a 56-bit operation. Any bits outside
the field remain unchanged.

Note:

1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control
register and the width field is located in bits 21-16 of the control register. These
fields corresponds to the definition of the fields in the MERGE instruction. Width
specified by S1 should not exceed a value of 16.

2. In Sixteen-Bit Arithmetic mode, the offset value, located in the offset field, should
be the needed offset you pre-incremented by a bias of 16.

3. If offset + width > 56, the result is undefined.

13-78 DSP56300 Family Manual Motorola

	Chapter 13 Instruction Set
	This chapter describes each instruction in the DSP56300 (family) core instruction set in detail. ...
	Table 13-1. DSP56300 Instruction Summary (Continued)

	ABS Absolute Value ABS
	Destination accumulator [A,B] (see Table 12-13 on page 12-22)
	Description�Take the absolute value of the destination operand D and store the result in the dest...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	1
	1
	0
	Optinal Effective Address Extension

	ADC Add Long With Carry ADC
	Source register [X,Y] (see Table 12-13 on�page�12�22)
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Description�Add the source operand S and the Carry bit (C) of the Condition Code Register to the ...
	Changed according to the standard definition.
	Unchanged by the instruction.

	ADD Add ADD
	JJJ
	Source register [B/A,X,Y,X0,Y0,X1,Y1] (see Table 12-13 on�page�12�22)
	d
	Destination accumulator [A/B] (see Table�12-13 on page 12-22)
	iiiiii
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Add the source operand S to the destination operand D and store the result in the des...
	Condition Codes
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	ADD Add ADD
	ADDL Shift Left and Add Accumulators ADDL
	d
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Add the source operand S to two times the destination operand D and store the result ...
	V
	Set if overflow has occurred in A or B result or the MSB of the destination operand is changed as...

	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	ADDR Shift Right and Add Accumulators ADDR
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	The source accumulator is B if the destination accumulator (selected by the d bit in the opcode) ...
	Description�Add the source operand S to one-half the destination operand D and store the result i...
	Changed according to the standard definition.
	Unchanged by the instruction.

	AND Logical AND AND
	where • denotes the logical AND operator
	Source input register [X0,X1,Y0,Y1] (see Table�12-13 on page 12-22)
	Destination accumulator [A/B] (see Table�12-13 on page 12-22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically AND the source operand S with bits 47–24 of the destination operand D and s...
	Set if bit 47 of the result is set.
	Set if bits 47-24 of the result are 0.
	Always cleared.
	Changed according to the standard definition.
	Unchanged by the instruction.

	AND Logical AND AND
	ANDI AND Immediate With Control Register ANDI
	Program Controller register [MR,CCR,COM,EOM] (see Table 12-13 on�page�12�22)
	Immediate Short Data
	Description�Logically AND the 8-bit immediate operand (#xx) with the contents of the destination ...
	Cleared if Bit 7 of the immediate operand is cleared.
	Cleared if Bit 6 of the immediate operand is cleared.
	Cleared if Bit 5 of the immediate operand is cleared.
	Cleared if Bit 4 of the immediate operand is cleared.
	Cleared if Bit 3 of the immediate operand is cleared.
	Cleared if Bit 2 of the immediate operand is cleared.
	Cleared if Bit 1 of the immediate operand is cleared.
	Cleared if Bit 0 of the immediate operand is cleared.
	The condition codes are not affected using these operands.

	ASL Arithmetic Shift Accumulator Left ASL
	ASL D (parallel move) ASL D #ii,S2,D ASL S1,S2,D
	Source accumulator [A,B] ()
	See Table 12-13 on�page�12�22
	Destination accumulator [A,B] ()
	Control register [X0,X1,Y0,Y1,A1,B1]
	6-bit unsigned integer [0–40] denoting the shift amount
	In the control register S1: bits 5–0 (LSB) are used as the #ii field, and the rest of the registe...
	Single bit shift: Arithmetically shift the destination accumulator D one bit to the left and stor...
	Multi-bit shift: The contents of the source accumulator S2 are shifted left #ii bits. Bits shifte...

	This is a 56-bit operation.

	ASL Arithmetic Shift Accumulator Left ASL
	V
	Set if Bit 55 is changed any time during the shift operation, cleared otherwise.

	C
	Set if the last bit shifted out of the operand is set, cleared for a shift count of 0, and cleare...

	÷
	Changed according to the standard definition.

	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	1
	d
	0
	1
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	0
	1
	S
	i
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1
	0
	S
	s
	s
	s
	D

	ASR Arithmetic Shift Accumulator Right ASR
	ASR D (parallel move) ASR D #ii, S2,D ASR S1,S2,D
	Source accumulator [A,B]
	See Table 12-13 on�page�12�22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	6-bit unsigned integer [0-40] denoting the shift amount
	In the control register S1: bits 5-0 (LSB) are used as the #ii field, and the rest of the registe...
	Single bit shift: Arithmetically shift the destination operand D one bit to the right and store t...
	Multi-bit shift: The contents of the source accumulator S2 are shifted right #ii bits. Bits shift...

	This is a 56- or 40-bit operation, depending on the SA bit value in the SR.
	Note: If the number of shifts indicated by the 6 LSBs of the control register or by the immediate...

	ASR Arithmetic Shift Accumulator Right ASR
	V
	This bit is always cleared.

	C
	This bit is set if the last bit shifted out of the operand is set, cleared for a shift count of 0...

	÷
	Changed according to the standard definition.

	23
	8
	7
	0
	Data Bus Move Field
	0
	0
	1
	0
	d
	0
	1
	0
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	0
	0
	S
	i
	i
	i
	i
	i
	i
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	1
	1
	S
	s
	s
	s
	D

	Bcc Branch Conditionally Bcc
	Condition code (see Table�12-13 on page 12-22)
	24-bit PC Relative Long Displacement
	Signed PC Relative Short Displacement
	Address register [R0 – R7]
	Description�If the specified condition is true, program execution continues at location PC + disp...
	Unchanged by the instruction.

	BCHG Bit Test and Change BCHG
	Bit number [0–23]
	Effective Address (see Table 12-13 on�page�12�22)
	Memory Space [X,Y] (see Table 12-13 on�page�12�22)
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers] (see Table�12-13 on page 12-22)
	Description�Test the nth bit of the destination operand D, complement it, and store the result in...

	BCHG Bit Test and Change BCHG
	For destination operand SR:
	Complemented if bit 0 is specified, unaffected otherwise.
	Complemented if bit 1 is specified, unaffected otherwise.
	Complemented if bit 2 is specified, unaffected otherwise.
	Complemented if bit 3 is specified, unaffected otherwise.
	Complemented if bit 4 is specified, unaffected otherwise.
	Complemented if bit 5 is specified, unaffected otherwise.
	Complemented if bit 6 is specified, unaffected otherwise.
	Complemented if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	Set if bit tested is set, and cleared otherwise.
	Not affected.
	Not affected.
	Not affected.
	Not affected.
	Not affected.
	Set according to the standard definition.
	Set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.
	For other destination operands: MR status bits are not affected.

	BCHG Bit Test and Change BCHG
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	O
	S
	0
	0
	b
	b
	b
	b
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	q
	q
	q
	q
	q
	q
	0
	S
	0
	b
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	0
	b
	b
	b
	b
	b

	BCLR Bit Test and Clear BCLR
	Bit number [0-23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description�Test the nth bit of the destination operand D, clear it and store the result in the d...

	BCLR Bit Test and Clear BCLR
	For destination operand SR:
	Cleared if bit 0 is specified, unaffected otherwise.
	Cleared if bit 1 is specified, unaffected otherwise.
	Cleared if bit 2 is specified, unaffected otherwise.
	Cleared if bit 3 is specified, unaffected otherwise.
	Cleared if bit 4 is specified, unaffected otherwise.
	Cleared if bit 5 is specified, unaffected otherwise.
	Cleared if bit 6 is specified, unaffected otherwise.
	Cleared if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	This bit is set if bit tested is set, and cleared otherwise.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	This bit is set according to the standard definition.
	This bit is set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.

	BCLR Bit Test and Clear BCLR
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	0
	b
	b
	b
	b
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	q
	q
	q
	q
	q
	q
	0
	S
	0
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	0
	0
	b
	b
	b
	b

	BRA Branch Always BRA
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0–R7]
	Description�Program execution continues at location PC + displacement. The displacement is a two’...
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	1
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	1
	1
	0
	0
	0
	0
	0
	0

	BRCLR Branch if Bit Clear BRCLR
	Bit number [0-23]
	See Table 12-13 on�page�12�22
	Effective Address
	Memory Space [X,Y]
	24-bit PC relative displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0-$FFFFFF]
	I/O Short Address [64 addresses: $FFFF80-$FFFFBF]
	Source register [all on-chip registers])
	Description�The nth bit in the source operand is tested. If the tested bit is cleared, program ex...

	BRCLR Branch if Bit Clear BRCLR
	÷
	Changed according to the standard definition

	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BRKcc Exit Current DO Loop Conditionally BRKcc
	Condition code (see Table�12-18 on page 12-28)
	Description�Exits conditionally the current hardware DO loop before the current Loop Counter (LC)...
	Unchanged by the instruction.
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	1
	C
	C
	C
	C

	BRSET Branch if Bit Set BRSET
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y])
	24-bit PC relative displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description�The nth bit in the source operand is tested. If the tested bit is set, program execut...

	BRSET Branch if Bit Set BRSET
	Changed according to the standard definition
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BScc Branch to Subroutine Conditionally BScc
	Condition code (see Table 12-18 on�page�12�28)
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0 – R7]
	Description�If the specified condition is true, the address of the instruction immediately follow...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	BScc Branch to Subroutine Conditionally BScc
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	C
	C
	C
	C
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	C
	C
	C
	C
	0
	0
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	0
	0
	0
	0
	C
	C
	C
	C

	BSCLR Branch to Subroutine if Bit Clear BSCLR
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	24-bit Relative Long Displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description�The nth bit in the source operand is tested. If the tested bit is cleared, the addres...

	BSCLR Branch to Subroutine if Bit Clear BSCLR
	one; if the condition is true, the push operation writes over the stack level where the SSH value...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition

	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	0
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BSET Bit Set and Test BSET
	Bit number [0–23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description�Test the nth bit of the destination operand D, set it, and store the result in the de...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR

	BSET Bit Set and Test BSET
	For destination operand SR:
	Set if bit 0 is specified, unaffected otherwise.
	Set if bit 1 is specified, unaffected otherwise.
	Set if bit 2 is specified, unaffected otherwise.
	Set if bit 3 is specified, unaffected otherwise.
	Set if bit 4 is specified, unaffected otherwise.
	Set if bit 5 is specified, unaffected otherwise.
	Set if bit 6 is specified, unaffected otherwise.
	Set if bit 7 is specified, unaffected otherwise.
	For other destination operands:
	Set if bit tested is set, and cleared otherwise.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Unaffected.
	Set according to the standard definition.
	Set according to the standard definition.
	For destination operand SR:
	Changed if bit 8 is specified, unaffected otherwise.
	Changed if bit 9 is specified, unaffected otherwise.
	Changed if bit 10 is specified, unaffected otherwise.
	Changed if bit 11 is specified, unaffected otherwise.
	Changed if bit 12 is specified, unaffected otherwise.
	Changed if bit 13 is specified, unaffected otherwise.
	Changed if bit 14 is specified, unaffected otherwise.
	Changed if bit 15 is specified, unaffected otherwise.
	For other destination operands: MR status bits are not affected.

	BSET Bit Set and Test BSET
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	1
	0
	b
	b
	b
	b
	OPTIONAL EFFECTIVE ADDRESS EXTENSION
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	q
	q
	q
	q
	q
	q
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	1
	0
	b
	b
	b
	b

	BSR Branch to Subroutine BSR
	24-bit PC-Relative Long Displacement
	Signed PC-Relative Short Displacement
	Address register [R0–R7]
	Description� The address of the instruction immediately following the BSR instruction and the SR ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	1
	0
	a
	a
	a
	a
	0
	a
	a
	a
	a
	a
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	1
	1
	R
	R
	R
	1
	0
	0
	0
	0
	0
	0
	0

	BSSET Branch to Subroutine if Bit Set BSSET
	Bit number [0-23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	24-bit Relative Long Displacement
	Absolute Address [0-63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Source register [all on-chip registers]
	Description� The nth bit in the source operand is tested. If the tested bit is set, the address o...

	BSSET Branch to Subroutine if Bit Set BSSET
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	CCR
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	M
	M
	M
	R
	R
	R
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	0
	a
	a
	a
	a
	a
	a
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	p
	p
	p
	p
	p
	p
	0
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	q
	q
	q
	q
	q
	q
	1
	S
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	1
	D
	D
	D
	D
	D
	D
	1
	0
	1
	b
	b
	b
	b
	b
	PC-Relative Displacement

	BTST Bit Test BTST
	Bit number [0 – 23]
	See Table�12-13 on page 12-22
	Effective Address
	Memory Space [X,Y]
	Absolute Address [0–63]
	I/O Short Address [64 addresses: $FFFFC0 – $FFFFFF]
	I/O Short Address [64 addresses: $FFFF80 – $FFFFBF]
	Destination register [all on-chip registers]
	Description� Test the nth bit of the destination operand D. The state of the nth bit is stored in...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	—
	—
	—
	*
	CCR
	*
	C
	Set if bit tested is set, and cleared otherwise.
	Changed according to the standard definition.

	—
	Unchanged by the instruction.
	For destination operand SSH:SP, decrement the SP by 1.
	For other destination operands, the SPis not affected.

	BTST Bit Test BTST
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	1
	M
	M
	M
	R
	R
	R
	O
	S
	1
	0
	b
	b
	b
	b
	OPTIONAL EFFECTIVE ADDRESS EXTENSION
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	0
	p
	p
	p
	p
	p
	p
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	q
	q
	q
	q
	q
	q
	0
	S
	1
	0
	b
	b
	b
	b
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	0
	1
	1
	1
	1
	D
	D
	D
	D
	D
	D
	0
	1
	1
	0
	b
	b
	b
	b

	CLB Count Leading Bits CLB
	Destination accumulator [A,B]
	See Table�12-13 on page 12-22
	Source accumulator [A,B]
	Description� Count leading 0s or 1s according to Bit 55 of the source accumulator. Scan bits 55–0...
	Note:

	1. If the source accumulator is all 0s, the result is 0.
	2. In Sixteen-Bit Arithmetic mode, the count ignores the unused 8 Least Significant Bits of the M...
	3. CLB can be used in conjunction with NORMF instruction to specify the shift direction and amoun...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	*
	*
	*
	—
	CCR
	*
	N
	Set if bit 47 of the result is set, and cleared otherwise.

	*
	Z
	Set if bits 47–24 of the result are all 0.

	*
	V
	Always cleared.

	—
	Unchanged by the instruction.

	CLB Count Leading Bits CLB
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	0
	0
	0
	0
	0
	0
	0
	S
	D

	CLR Clear Accumulator CLR
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Clear the destination accumulator. This is a 56-bit clear instruction.
	*
	E
	Always cleared.

	*
	U
	Always set.

	*
	N
	Always cleared.

	*
	Z
	Always set.

	*
	V
	Always cleared.

	*
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	0
	0
	1
	d
	0
	1
	1
	Optional Effective Address Extension

	CMP Compare CMP
	Source one register [B/A,X0,Y0,X1,Y1] (see Table�12-16 on page 12-24)
	Source two accumulator [A/B] (see Table�12-13 on page 12-22)
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Subtract the source one operand from the source two accumulator, S2, and update the C...
	This instruction subtracts 56-bit operands. When a word is specified as the source one operand, i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	CCR
	÷
	Changed according to the standard definition.

	CMP Compare CMP
	23
	16
	15
	8
	7
	0
	CMP S1, S2
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	0
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	CMP #xx, S2
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	1
	0
	1
	23
	16
	15
	8
	7
	0
	CMP #xxxx,S2
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	d
	1
	0
	1
	Immediate Data Extension

	CMPM Compare Magnitude CMPM
	Source one register [B/A,X0,Y0,X1,Y1] (see Table�12-16 on page 12-24)
	Source two accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Subtract the absolute value (magnitude) of the source one operand, S1, from the absol...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	J
	J
	J
	d
	1
	1
	1
	Optional Effective Address Extension

	CMPU Compare Unsigned CMPU
	Source one register [A,B,X0,Y0,X1,Y1]
	See Table�12-13 on page 12-22
	Source two accumulator [A,B]
	Description�Subtract the source one operand, S1, from the source two accumulator, S2, and update ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	÷
	*
	*
	÷
	CCR
	Always cleared.
	Set if bits 47–0 of the result are 0.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	g
	g
	g
	d

	DEBUG Enter Debug Mode DEBUG
	Instruction Fields None
	Description�Enter the Debug mode and wait for OnCE commands.
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	0
	0

	DEBUGcc DEBUGcc Enter Debug Mode Conditionally
	Condition code (see Table�12-18 on page 12-28)
	Description�If the specified condition is true, enter the Debug mode and wait for OnCE commands. ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	C
	C
	C
	C

	DEC Decrement by One DEC
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Decrement by one the specified operand and store the result in the destination accumu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	÷
	Changed according to the standard definition.

	—
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	d

	DIV Divide Iteration DIV
	where Å denotes the logical exclusive OR operator.
	Source input register [X0,X1,Y0,Y1]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Description�Divide the destination operand D by the source operand S and store the result in the ...
	DIV calculates one quotient bit based on the divisor and the previous partial remainder. To produ...

	DIV Divide Iteration DIV
	DIV uses a nonrestoring fractional division algorithm that consists of the following operations:
	1. Compare the source and destination operand sign bits: An exclusive OR operation is performed o...
	2. Shift the partial remainder and the quotient: The 39-bit destination accumulator D is shifted ...
	3. Calculate the next quotient bit and the new partial remainder: The 24-bit source operand S (si...
	For extended precision division (e.g., N-bit quotients where N > 24), the DIV instruction is no l...

	DIV Divide Iteration DIV
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	*
	—
	—
	—
	—
	*
	*
	CCR
	Set if the Overflow bit (V) is set.
	Set if the MSB of the destination operand is changed as a result of the instruction’s left shift ...
	Set if Bit 55 of the result is cleared.
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	0
	0
	1
	J
	J
	d
	0
	0
	0

	DMAC DMAC Double-Precision Multiply-Accumulate With Right Shift
	Source registers S1,S2 [all combinations of X0,X1,Y0, and Y1] (see Table�12-16 on page 12-24)
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Sign [+,–] (see Table�12-16 on page 12-24)
	[ss,su,uu] (see Table�12-16 on page 12-24)
	Description�Multiply the two 24-bit source operands S1 and S2 and add/subtract the product to/fro...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	—
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	1
	0
	0
	1
	0
	s
	1
	s
	d
	k
	Q
	Q
	Q
	Q

	DO Start Hardware Loop DO
	Effective Address
	See Table�12-13 on page 12-22
	Memory Space [X,Y]
	24-bit Absolute Address in 16-bit extension word
	Absolute Address [0–63]
	Immediate Short Data [0–4095]
	Source register [all on-chip registers, except SSH]
	For the DO SP, expr instruction, the actual value that is loaded into the Loop Counter (LC) is th...
	Description�Begin a hardware DO loop that is to be repeated the number of times specified in the ...

	DO Start Hardware Loop DO
	During the first instruction cycle, the current contents of the Loop Address (LA) and the Loop Co...
	During the second instruction cycle, the current contents of the Program Counter (PC) register an...
	During the third instruction cycle, the Loop Flag (LF) is set, resulting in a repeated comparison...
	When a DO loop executes , the instructions are actually fetched each time through the loop. There...
	During the “end-of-loop” processing, the Loop Flag (LF) from the lower portion (SSL) of the Stack...

	DO Start Hardware Loop DO
	Note:
	1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute address ex...
	2. The Loop Flag (LF) is cleared by a hardware reset.

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	—
	—
	—
	—
	—
	—
	CCR
	Set if the instruction sends A/B accumulator contents to XDB or YDB.
	Set if data limiting occurred [see Note].
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	h
	h
	h
	h
	Absolute Address Extension Word
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	0
	0
	0
	0
	0
	Absolute Address Extension Word

	DO FOREVER DO FOREVER Start Infinite Loop
	None
	Description�Begin a hardware DO loop that is to repeat forever with a range of execution terminat...
	During the second instruction cycle, the contents of the Program Counter (PC) register and the St...
	During the third instruction cycle, the Loop Flag (LF) and the Forever flag are set. Thus, the PC...
	Because the instructions are fetched each time through the DO FOREVER loop, the loop can be inter...

	DO FOREVER DO FOREVER Start Infinite Loop
	Note:
	1. The assembler calculates the end-of-loop address to be loaded into LA (the absolute address ex...
	2. The LC register is never tested by the DO FOREVER instruction, and the only way of terminating...

	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	Absolute Address Extension Word

	DOR Start PC-Relative Hardware Loop DOR
	Effective Address (see Table�12-13 on page 12-22)
	Memory Space [X,Y] (see Table�12-13 on page 12-22)
	24-bit Address Displacement in 24-bit extension word
	Absolute Address [0-63]
	Immediate Short Data [0-4095]
	Source register [all on-chip registers except SSH] (see Table�12-13 on page 12-22)
	Description�Initiates the beginning of a PC-relative hardware program loop. The loop address (LA)...
	During hardware loop operation, each instruction is fetched each time through the program loop. T...

	DOR Start PC-Relative Hardware Loop DOR
	instruction after the DOR instruction. This value is read from the top of the system stack to ret...
	The assembler calculates the end of loop address LA (PC-relative address extension word xxxx) by ...
	Since the end of loop comparison occurs at fetch time ahead of the end of loop execution, instruc...
	DOR SP,xxxx The actual value to be loaded into the LC is the value of the SP before the DOR instr...
	DOR SSL,xxxx The LC is loaded with its previous value saved in the stack by the DOR instruction i...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	—
	—
	—
	—
	—
	—
	CCR
	*
	Set if the instruction sends A/B accumulator contents to XDB or YDB.

	*
	Set if data limiting occurred

	—
	Unchanged by the instruction

	DOR Start PC-Relative Hardware Loop DOR
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	1
	M
	M
	M
	R
	R
	R
	0
	S
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	a
	a
	a
	a
	a
	a
	0
	S
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	i
	i
	i
	i
	i
	i
	i
	i
	1
	0
	0
	1
	h
	h
	h
	h
	PC-Relative Displacement
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	1
	1
	0
	1
	1
	D
	D
	D
	D
	D
	D
	0
	0
	0
	1
	0
	0
	0
	0
	PC-Relative Displacement

	DOR FOREVER DOR FOREVER Start PC-Relative Infinite Loops
	Instruction Fields None.
	Description�Begin a hardware DO loop that is to repeat forever with a range of execution terminat...
	During the second instruction cycle, the contents of the Program Counter (PC) register and the St...
	During the third instruction cycle, the Loop Flag (LF) and the ForeVer flag are set. As a result,...
	When a DOR FOREVER loop executes, the instructions are fetched each time through the loop. Theref...

	DOR FOREVER DOR FOREVER Start PC-Relative Infinite Loops
	Note: The assembler calculates the end of loop address LA (PC-relative address extension word xxx...
	The DOR FOREVER instruction never tests the loop counter (LC) register . The only way to terminat...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	—
	Unchanged by the instruction

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	PC-Relative Displacement

	ENDDO End Current DO Loop ENDDO
	None
	Description�Terminate the current hardware DO loop before the current Loop Counter (LC) equals on...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	0
	1
	1
	0
	0

	EOR Logical Exclusive OR EOR
	where Å denotes the logical XOR operator.
	Source register [X0,X1,Y0,Y1]
	See Table�12-13 on page 12-22
	Destination accumulator [A/B]
	6-bit Immediate Short Data
	24-bit Immediate Long Data extension word
	Description�Logically exclusive OR the source operand S with bits 47:24 of the destination operan...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	÷
	÷
	—
	—
	*
	*
	*
	—
	CCR
	Set if bit 47 of the result is set.
	Set if bits 47–24 of the result are 0.
	Always cleared.
	Changed according to the standard definition.
	Unchanged by the instruction.

	EOR Logical Exclusive OR EOR
	23
	16
	15
	8
	7
	0
	Data Bus Move Field
	0
	1
	J
	J
	d
	0
	1
	1
	Optional Effective Address Extension
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1
	i
	i
	i
	i
	i
	i
	1
	0
	0
	0
	d
	0
	1
	1

	EXTRACT Extract Bit Field EXTRACT
	Source accumulator [A,B]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	Control word extension.
	Description�Extract a bit-field from source accumulator S2. The bit-field width is specified by b...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. In Sixteen-bit Arithmetic mode, when the width value is zero, then the result will be undefined.
	3. If offset + width exceeds the value of 56, the result is undefined.

	EXTRACT Extract Bit Field EXTRACT
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	0
	0
	0
	s
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	0
	s
	0
	0
	0
	D
	Control Word Extension

	EXTRACTU EXTRACTU Extract Unsigned Bit Field
	Source accumulator [A,B]
	See Table�12-13 on page 12-22
	Destination accumulator [A,B]
	Control register [X0,X1,Y0,Y1,A1,B1]
	Control word extension
	Description�Extract an unsigned bit-field from source accumulator S2. The bit-field width is spec...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. If offset + width exceeds the value of 56, the result is undefined.

	EXTRACTU EXTRACTU Extract Unsigned Bit Field
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	÷
	÷
	÷
	÷
	*
	*
	CCR
	Always cleared.
	Always cleared.
	Unchanged by the instruction.
	Changed according to the standard definition.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	1
	0
	1
	0
	0
	s
	S
	S
	S
	D
	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	0
	0
	1
	1
	0
	0
	0
	1
	0
	0
	s
	0
	0
	0
	D
	Control Word Extension

	IFcc Execute Conditionally Without CCR Update IFcc
	Condition code (see Table�12-18 on page 12-28)
	Description�If the specified condition is true, execute and store result of the specified Data AL...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	0
	C
	C
	C
	C
	Instruction opcode

	IFcc.U Execute Conditionally With CCR Update IFcc.U
	Condition code (see Table�12-18 on page 12-28)
	If the specified condition is true, execute and store result of the specified Data ALU operation ...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	*
	*
	*
	*
	*
	*
	*
	*
	CCR
	*
	If the specified condition is true, changes are made according to the instruction. Otherwise, it ...
	Instruction Formats and opcodes

	23
	16
	15
	8
	7
	0
	0
	0
	1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	C
	C
	C
	C
	Instruction opcode

	ILLEGAL Illegal Instruction Interrupt ILLEGAL
	None
	Description�The ILLEGAL instruction executes as if it were a NOP instruction. Normal instruction ...
	If the ILLEGAL instruction is in a DO loop at LA and the instruction at LA – 1 is being interrupt...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	—
	—
	—
	—
	—
	—
	—
	CCR
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	1

	INC Increment by One INC
	Destination accumulator [A,B] (see Table�12-13 on page 12-22)
	Description�Increment by one the specified operand and store the result in the destination accumu...
	7
	6
	5
	4
	3
	2
	1
	0
	S
	L
	E
	U
	N
	Z
	V
	C
	—
	÷
	÷
	÷
	÷
	÷
	÷
	÷
	CCR
	Changed according to the standard definition.
	Unchanged by the instruction.

	23
	16
	15
	8
	7
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1
	0
	0
	d

	INSERT Insert Bit Field INSERT
	Destination accumulator [A,B] (see Table 12-13 on�page�12�22)
	Control register [X0,X1,Y0,Y1,A1,B1] (see Table 12-16 on�page�12�24)
	Source register [X0,X1,Y0,Y1,A0,B0] (see Table 12-16 on�page�12�24)
	Control word extension
	Description�Insert a bit-field into the destination accumulator D. The bit-field whose width is s...
	Note:

	1. In Sixteen-bit Arithmetic mode, the offset field is located in bits 13-8 of the control regist...
	2. In Sixteen-Bit Arithmetic mode, the offset value, located in the offset field, should be the n...
	3. If offset + width > 56, the result is undefined.

