
r use

uage

s, an

ord
ess
upies

, the

B),
300
Chapter 12
Guide to the Instruction Set
This chapter presents the DSP56300 instruction format as well as partial encodings fo
in instruction encoding. The alphabetical instruction descriptions are presented in
Appendix B, Instruction Set. The complete range of instruction capabilities combined
with the flexible DSP56300 addressing modes provide a very powerful assembly lang
for implementing DSP algorithms. The instruction set allows efficient coding for DSP
high-level language compilers, such as the C Compiler. Hardware looping capabilitie
instruction pipeline, and parallel moves minimize execution time.

12.1 Instruction Formats and Syntax

The DSP56300 core instructions consist of one or two 24-bit words—an operation w
and an optional extension word. This extension word can be either an effective addr
extension word or an immediate data extension word. While the extension word occ
the full 24-bit width of the program memory, only the sixteen Least Significant Bits
(LSBs) are relevant for effective address extension or for immediate data. Therefore
extension word is effectively sixteen bits wide.Figure 12-1shows the general formats of
the instruction word. Most instructions specify data movement on the X Data Bus (XD
Y Data Bus (YDB), and Data ALU operations in the same operation word. The DSP56
core performs each of these operations in parallel.

Figure 12-1. General Formats of an Instruction Word

Optional Effective Address Extension
X X X X X X X X

23 8 7 0

Data Bus Movement
OPCODE

Optional Immediate Data Extension
X X X X X X X X

23 8 7 0

Data Bus Movement
OPCODE

Optional Effective Address Extension

23 0

Non-parallel Operation Code
Motorola DSP56300 Family Manual 12-1

Instruction Formats and Syntax

type
ve
onal
ord

nsion

ram

ds,

d in

 in
00
 on the

The
DB

ress

 in

t are
The Data Bus Movement field provides the operand reference type, which selects the
of memory or register reference to be made, the direction of transfer, and the effecti
address(es) for data movement on the XDB and/or YDB. This field may require additi
information to fully specify the operand for certain addressing modes. An extension w
following the operation word is used to provide immediate data, absolute address or
address displacement, if required. Examples of operations that may include the exte
word include move operation such as MOVE X:$100,X0.

The Opcode field of the operation word specifies the Data ALU operation or the Prog
Control Unit (PCU) operation to be performed.

The instruction syntax has two formats—parallel and non-parallel, asTable 12-1 and
Table 12-2show. A parallel instruction is organized into five columns: opcode, operan
two optional parallel-move fields, and an optional condition field. The condition field
disables the execution of the opcode if the condition is not true, and it cannot be use
conjunction with the parallel move fields.

Assembly-language source codes for some typical one-word instructions are shown
Table 12-1. Because of the multiple bus structure and the parallelism of the DSP563
core, as many as three data transfers can be specified in the instruction word—one
XDB, one on the YDB, and one within the Data ALU. These transfers are explicitly
specified. A fourth data transfer is implied and occurs in the PCU (instruction word
prefetch, program looping control, etc.). The opcode column indicates the Data ALU
operation to be performed, but may be excluded if only a MOVE operation is needed.
operands column specifies the operands to be used by the opcode. The XDB and Y
columns specify optional data transfers over the XDB and YDB and the associated
addressing modes. The address space qualifiers (X:, Y:, and L:) indicate which add
space is being referenced.

A non-parallel instruction is organized into two columns: opcode and operands.
Assembly-language source codes for some typical one-word instructions are shown
Table 12-2. Non-parallel instructions include all the program control, looping, and
peripherals read/write instructions. They also include some Data ALU instructions tha
impossible to encode in the Opcode field of the parallel format.

Table 12-1. Parallel Instruction Format

Opcode Operands XDB YDB Condition

Example 1 MAC X0,Y0,A X:(R0)+,X0 Y:(R4)+,Y0
Example 2 MOVE X:-(R1),X1
Example 3 MAC X1,Y1,B
Example 4 MPY X0,Y0,A IFeq
12-2 DSP56300 Family Manual Motorola

Operand Lengths

is 48

ord

core.
12.2 Operand Lengths

Operand lengths are defined as follows: a byte is 8 bits, a word is 16 bits, a long word
bits, and an accumulator is 56 bits, as shown inFigure 12-2. The operand size for each
instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation.

Figure 12-2. Operand Lengths

In Sixteen-Bit Arithmetic mode the operand lengths are as follows: a byte is 8 bits, a w
is 16 bits, a long word is 32 bits, and an accumulator is 40 bits.

Figure 12-3. Operand Lengths in Sixteen-Bit Mode

Table 12-3 shows the operand lengths supported by the registers of the DSP56300

Table 12-2. Non-Parallel Instruction Format

Opcode Operands

Example 1: JEQ (R5)
Example 2: MOVEP #data,X:ipr
Example 3: RTS

7
Byte

Word

Long Word

Accumulator

0

015

048

056

Byte

Word

Long Word

Accumulator

7 0

23 0

0

0

47

55
Motorola Guide to the Instruction Set 12-3

Operand Lengths

B) is
r

bit 8

nsion
; the

 (e.g.,
r

red in

it
12.2.1 Data ALU Registers

The eight main data registers are 24 bits wide. Word operands occupy one register;
long-word operands occupy two concatenated registers. The Least Significant Bit (LS
the right-most bit (Bit 0) and the Most Significant Bit (MSB) is the left-most bit (bit 23 fo
word operands and bit 47 for long-word operands). In Sixteen-Bit mode, the LSB is
and bits 24 to 31 are ignored for long-word operands. The MSB is the leftmost bit.

The two accumulator extension registers are 8 bits wide. When an accumulator exte
register is a source operand, it occupies the low-order portion (bits 0–7) of the word
high-order portion (bits 8–23) is sign-extended (seeFigure 12-5). As a destination
operand, this register receives the low-order portion of the word, and the high-order
portion is not used. Accumulator operands occupy an entire group of three registers
A2:A1:A0 or B2:B1:B0). The LSB is the right-most bit (bit 0 in 24-bit mode and bit 8 fo
16-bit mode), and the MSB is the leftmost bit (bit 55).

When a 56-bit accumulator (A or B) is specified as asource operand S, the accumulator
value is optionally shifted according to the Scaling mode bits S0 and S1 in the Mode
Register (MR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value sto
the destination is limited to a maximum positive or negative saturation constant to
minimize truncation error. Limiting does not occur if an individual 24-bit accumulator
register (A1, A0, B1, or B0) is specified as a source operand instead of the full 56-b

Table 12-3. Register Operand Lengths

Registers
Number of
Registers

Operand Lengths Supported Sixteen-Bit Mode

ALU 10 8- or 24-bit data
With concatenation: 48- or 56-bit data

16-bit data
With concatenation: 32- or
40-bit data

AGU address
registers

8 24-bit address or data No

AGU offset registers 8 24-bit offsets or 24-bit address or data No

AGU modifier
registers

8 24-bit modifiers or 24-bit address or data No

Program Counter
(PC)

1 24-bit address No

Status Register (SR) 1 8- or 24-bit data 16-bit data

Operating Mode
Register (OMR)

1 8- or 24-bit data 16-bit data

Loop Counter (LC) 1 24-bit address No

Loop Address (LA) 1 24-bit address No
12-4 DSP56300 Family Manual Motorola

Operand Lengths

e
 is

y
erand

to be

s,
 of the
offset

sters,

ister
er

 are
accumulator (A or B). This limiting feature allows block floating-point operations to b
performed with error detection since the L bit in the Condition Code Register (CCR)
latched.

Figure 12-4. Reading and Writing the ALU Extension Registers

When a 56-bit accumulator (A or B) is specified as adestination operand D, any 24-bit
source data to be moved into that accumulator is automatically extended to 56 bits b
sign-extending the MSB of the source operand (Bit 23) and appending the source op
with twenty-four 0s in the LSBs. For 24-bit source operands, both the automatic sign
extension and zeroing features can be disabled by specifying the destination register
one of the individual 24-bit accumulator registers (A1 or B1).

12.2.2 AGU Registers

The twenty-four 24-bit AGU registers can be accessed as word operands for addres
address offset, address modifier, and data storage. The Rn notation designates one
eight address registers, R0–R7. The Nn notation designates one of the eight address
registers, N0–N7. The Mn notation designates one of the eight address modifier regi
M0–M7.

12.2.3 Program Control Registers

Within the 24-bit Operating Mode Register (OMR), the Chip Operating Mode (COM)
register occupies the low-order 8 bits, the Extended chip Operating Mode (EOM) reg
occupies the middle-order 8 bits, and the System Stack Control Status (SCS) regist
occupies the high-order 8 bits. The OMR and the Vector Base Address (VBA) are
accessed as word operands; however, not all of their bits are defined. Reserved bits
read as zero and should be written with zero for future compatibility.

Bus

Not used
LSB Of
word

A2/B2

15

Register A2, B2 used
as a destination

Register A2, B2
used as a source

Sign extension
of A2/B2

Contents
Of A2/b2

Not used

78 0

15 78 0

Register A2, B2

Bus

15 78 0
Motorola Guide to the Instruction Set 12-5

Instruction Groups

 8
nded
 word

ck
ed as
as a

ll

 SR

hich
Within the 24-bit SR, the user condition code register (CCR) occupies the low-order
bits, the system Mode Register (MR) occupies the middle-order 8 bits, and the Exte
Mode Register (EMR) occupies the high-order 8 bits. The SR can be accessed as a
operand. The MR and CCR can be accessed individually as word operands (seeFigure
12-5). The Loop Counter (LC), Loop Last Address (LA), stack Size (SZ), System Sta
High (SSH), and System Stack Low (SSL) registers are 24 bits wide and are access
word operands. The system Stack Pointer (SP) is a 24-bit register that is accessed
word operand. The PC, a special 24-bit-wide Program Counter register, is generally
referenced implicitly as a word operand, but it can also be referenced explicitly (by a
PC-relative operation codes) as a word operand.(seeFigure 12-5).

Figure 12-5. Reading and Writing Control Registers

12.2.4 Data Organization in Memory

The 24-bit program memory can store both 24-bit instruction words and instruction
extension words. The 48-bit System Stack (SS) can store the concatenated PC and
registers (PC:SR) for subroutine calls, interrupts, and program looping. The SS also
supports the concatenated LA and LC registers (LA:LC) for program looping. The
16-bit-wide X and Y memories can store word and byte operands. Byte operands, w
usually occupy the low-order portion of the X or Y memory word, are either zero
extended or sign-extended on the XDB or YDB.

12.3 Instruction Groups

The instruction set is divided into the following groups:

■ Arithmetic

■ Logical

MR, CCR and COM
as a Destination

 as a Source
MR, CCR and COM

Bus

Not Used LSB

23 78 0

23 78 0

Bus

MR, CCR and COM

Zero Fill
12-6 DSP56300 Family Manual Motorola

Instruction Groups

LU.

a ALU
ata
s,

ing
se in
 The
he

 by the
■ Bit Manipulation

■ Loop

■ Move

■ Program Control

Each instruction group is described in the following paragraphs.

12.3.1 Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the Data A
These instructions may affect all of the CCR bits. Arithmetic instructions are
register-based (register direct addressing modes used for operands), so that the Dat
operation indicated by the instruction does not use the XDB, the YDB, or the Global D
Bus (GDB). Optional data transfers may be specified with most arithmetic instruction
which allows for parallel data movement over the XDB and YDB or over the GDB dur
a Data ALU operation. This parallel movement allows new data to be prefetched for u
subsequent instructions and results calculated in previous instructions to be stored.
move operation that can be specified in parallel to the instruction marked is one of t
parallel instructions listed inTable 12-8, “Move Instructions,” on page 12-12. Arithmetic
instructions can be executed conditionally, based on the condition codes generated
previous instructions. Conditional arithmetic instructions do not allow parallel data
movement over the various data buses.Table 12-4 lists the arithmetic instructions.

Table 12-4. Arithmetic Instructions

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

ABS Absolute Value √

ADC Add Long with Carry √

ADD Add √

ADD (imm.) Add (immediate operand)

ADDL Shift Left and Add √

ADDR Shift Right and Add √

ASL Arithmetic Shift Left √

ASL (mb.) Arithmetic Shift Left (multi-bit)

ASL (mb., imm.) Arithmetic Shift Left (multi-bit, immediate operand)
Motorola Guide to the Instruction Set 12-7

Instruction Groups
ASR Arithmetic Shift Right √

ASR (mb.) Arithmetic Shift Right (multi-bit)

ASR (mb., imm.) Arithmetic Shift Right (multi-bit, immediate operand)

CLR Clear an Operand √

CMP Compare √

CMP (imm.) Compare (immediate operand)

CMPM Compare Magnitude √

CMPU Compare Unsigned

DEC Decrement Accumulator

DIV Divide Iteration

DMAC Double Precision Multiply-Accumulate

INC Increment Accumulator

MAC Signed Multiply-Accumulate √

MAC (su,uu) Mixed Multiply-Accumulate

MACI Signed Multiply-Accumulate (immediate operand)

MACR Signed Multiply-Accumulate and Round √

MACRI Signed Multiply-Accumulate and Round
(immediate operand)

MAX Transfer By Signed Value √

MAXM Transfer By Magnitude √

MPY Signed Multiply √

MPY (su,uu) Mixed Multiply

MPYI Signed Multiply (immediate operand)

MPYR Signed Multiply and Round √

MPYRI Signed Multiply and Round (immediate operand)

NEG Negate Accumulator √

NORMF Fast Accumulator Normalize

Table 12-4. Arithmetic Instructions (Continued)

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
12-8 DSP56300 Family Manual Motorola

Instruction Groups

ions
,
cified
B
ata
s

12.3.2 Logical Instructions

The logical instructions execute in one instruction cycle and perform all logical operat
within the Data ALU (except ANDI and ORI). They can affect all of the CCR bits and
like the arithmetic instructions, are register-based. Optional data transfers can be spe
with most logical instructions, allowing parallel data movement over the XDB and YD
or over the GDB during a Data ALU operation. This parallel movement allows new d
to be prefetched for use in subsequent instructions and results calculated in previou
instructions to be stored.The move operation that can be specified in parallel to the
instruction marked is one of the parallel instructions listed inTable 12-8, “Move
Instructions,” on page 12-12.Table 12-5 lists the logical instructions.

RND Round √

SBC Subtract Long with Carry √

SUB Subtract √

SUB (imm.) Subtract (immediate operand)

SUBL Shift Left and Subtract √

SUBR Shift Right and Subtract √

Tcc Transfer Conditionally

TFR Transfer Data ALU Register √

TST Test an Operand √

Table 12-5. Logical Instructions

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

AND Logical AND √

AND (imm.) Logical AND (immediate operand)

ANDI AND Immediate to Control Register

CLB Count Leading Bits

Table 12-4. Arithmetic Instructions (Continued)

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
Motorola Guide to the Instruction Set 12-9

Instruction Groups

 and
lt of
12.3.3 Bit Manipulation Instructions

The bit manipulation instructions test the state of any single bit in a memory location
then optionally set, clear, or invert the bit. The carry bit of the CCR contains the resu
the bit test.Table 12-6 lists the bit manipulation instructions.

EOR Logical Exclusive OR √

EOR (imm.) Logical Exclusive OR (immediate operand)

EXTRACT Extract Bit Field

EXTRACT (imm.) Extract Bit Field (immediate operand)

EXTRACTU Extract Unsigned Bit Field

EXTRACTU (imm.) Extract Unsigned Bit Field (immediate operand)

INSERT INSERT Bit Field

INSERT (imm.) INSERT Bit Field (immediate operand)

LSL Logical Shift Left √

LSL (mb.) Logical Shift Left (multi-bit)

LSL (mb., imm.) Logical Shift Left (multi-bit, immediate operand)

LSR Logical Shift Right √

LSR (mb.) Logical Shift Right (multi-bit)

LSR (mb.,imm.) Logical Shift Right (multi-bit, immediate operand)

MERGE Merge Two Half Words

NOT Logical Complement √

OR Logical Inclusive OR √

OR (imm.) Logical Inclusive OR (immediate operand)

ORI OR Immediate to Control Register

ROL Rotate Left √

ROR Rotate Right √

Table 12-5. Logical Instructions (Continued) (Continued)

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
12-10 DSP56300 Family Manual Motorola

Instruction Groups

e

sters
d by
 of the

O

DB.
e

12.3.4 Loop Instructions

The hardware DO loop executes with no overhead cycles—that is, it runs as fast as
straight-line code. Replacing straight-line code with DO loops can significantly reduc
program memory usage. The loop instructions control hardware looping either by
initiating a program loop and establishing looping parameters or by restoring the regi
by pulling the SS when terminating a loop. Initialization includes saving registers use
a program loop (LA and LC) on the SS so that program loops can nest The address
first instruction in a program loop is also saved to allow no-overhead looping. The
ENDDO instruction is not used for normal termination of a DO loop; it terminates a D
loop before the LC is decremented to 1.Table 12-7 lists the loop instructions.

12.3.5 Move Instructions

The move instructions perform data movement over the XDB and YDB or over the G
Move instructions, most of which allow Data ALU opcode in parallel, do not affect th
CCR, except the limit bit L, if limiting is performed when reading a Data ALU
accumulator register.Table 12-8 lists the move instructions.

Table 12-6. Bit Manipulation Instructions

Mnemonic Description Parallel Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

BCHG Bit Test and Change

BCLR Bit Test and Clear

BSET Bit Test and Set

BTST Bit Test

Table 12-7. Loop Instructions

Mnemonic Description
Parallel

Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

BRKcc Conditionally Break the current Hardware Loop

DO Start Hardware Loop

DO FOREVER Start Forever Hardware Loop

ENDDO Abort and Exit from Hardware Loop
Motorola Guide to the Instruction Set 12-11

Instruction Groups

ions
12.3.6 Program Control Instructions

The program control instructions include jumps, conditional jumps, and other instruct
affecting the PC and SS. Program control instructions may affect the CCR bits as
specified in the instruction. Optional data transfers over the XDB and YDB may be
specified in some of the program control instructions.Table 12-9lists the program control
instructions.

Table 12-8. Move Instructions

Mnemonic Description Parallel Instruction

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

LUA Load Updated Address

LRA Load PC-Relative Address

MOVE Move Data Register √

MOVEC Move Control Register

MOVEM Move Program Memory

MOVEP Move Peripheral Data

U MOVE Update Move √

VSL Viterbi Shift Left

Table 12-9. Program Control Instructions

Mnemonic Description Parallel Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

IFcc.U Execute Conditionally and Update CCR

IFcc Execute Conditionally

Bcc Branch Conditionally

BRA Branch Always

BScc Branch to Subroutine Conditionally

BSR Branch to Subroutine Always

DEBUGcc Enter into the Debug Mode Conditionally

DEBUG Enter into the Debug Mode Always
12-12 DSP56300 Family Manual Motorola

Guide to Instruction Descriptions

 a

 is
n
ax
12.4 Guide to Instruction Descriptions

The following information is included in each instruction description:

■ Name and Mnemonic: Highlighted inbold type for easy reference.

■ Assembler Syntax and Operation:The syntax line for each instruction symbolically
describes the corresponding operation. If several operations are indicated on
single line in the operation field, those operations may not occur in the order
shown, but are generally assumed to occur in parallel. Any parallel data move
indicated in parentheses in both the assembler syntax and operation fields. A
optional letter in the mnemonic appears in parentheses in the assembler synt
field.

Jcc Jump Conditionally

JMP Jump Always

JCLR Jump if Bit Clear

JSET Jump if Bit Set

JScc Jump to Subroutine Conditionally

JSR Jump to Subroutine Always

JSCLR Jump to Subroutine if Bit Clear

JSSET Jump to Subroutine if Bit Set

NOP No Operation

REP Repeat Next Instruction

RESET Reset On-Chip Peripheral Devices

RTI Return from Interrupt

RTS Return from Subroutine

STOP Stop Processing (Low-Power Standby)

TRAPcc Trap Conditionally

TRAP Trap Always

WAIT Wait for Interrupt (Low-Power Standby)

Table 12-9. Program Control Instructions (Continued)

Mnemonic Description Parallel Instruction*

* A √ in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
Motorola Guide to the Instruction Set 12-13

Guide to Instruction Descriptions

its
bits

f the

n
r.
■ Description: Includes any special cases and/or condition code anomalies.

■ Condition Codes:The Status Register (SR) is depicted with the condition code b
that can be affected by the instruction. Not all bits in the SR are used. Reserved
are indicated with gray boxes.

■ Instruction Format:The instruction fields, the instruction opcode, and the
instruction extension word are specified in the instruction syntax. Optional
extension words are so indicated. The values that can be assumed by each o
variables in the various instruction fields are shown under the instruction field
heading.

12.4.1 Notation

Each instruction description contains symbols to abbreviate certain operands and
operations.Table 12-10 lists the symbols and their respective meanings. Depending o
the context, registers refer either to the register itself or to the contents of the registe

Table 12-10. Instruction Description Notation

Symbol Meaning

Data ALU Registers Operands

Xn Input Register X1 or X0 (24 bits)

Yn Input Register Y1 or Y0 (24 bits)

An Accumulator Registers A2, A1, A0 (A2—8 bits, A1 and A0—24 bits)

Bn Accumulator Registers B2, B1, B0 (B2—8 bits, B1 and B0—24 bits)

X Input Register X = X1: X0 (48 bits)

Y Input Register Y = Y1: Y0 48 bits)

A Accumulator A = A2: A1: A0 (56 bits)

B Accumulator B = B2: B1: B0 (56 bits)

AB Accumulators A and B = A1: B1 (48 bits)

BA Accumulators B and A = B1: A1 (48 bits)

A10 Accumulator A = A1: A0 (48 bits)

B10 Accumulator B = B1:B0 (48 bits)

Program Control Unit Registers Operands

PC Program Counter Register (24 bits)

MR Mode Register (8 bits)
12-14 DSP56300 Family Manual Motorola

Guide to Instruction Descriptions
CCR Condition Code Register (8 bits)

SR Status Register = EMR:MR:CCR (24 bits)

EOM Extended Chip Operating Mode Register (8 bits)

COM Chip Operating Mode Register (8 bits)

OMR Operating Mode Register = EOM:COM (24 bits)

SZ System Stack Size Register (24 bits)

SC System Stack Counter Register (5 bits)

VBA Vector Base Address (24 bits, eight set to 0)

LA Hardware Loop Address Register (24 bits)

LC Hardware Loop Counter Register (24 bits)

SP System Stack Pointer Register (24 bits)

SSH Upper Portion of the Current Top of the Stack (24 bits)

SSL Lower Portion of the Current Top of the Stack (24 bits)

SS System Stack RAM = SSH: SSL (16 locations by 32 bits)

Address Operands

ea Effective Address

eax Effective Address for X Bus

eay Effective Address for Y Bus

xxxxxx Absolute or Long Displacement Address (24 bits)

xxx Short or Short Displacement Jump Address (12 bits)

xxx Short Displacement Jump Address (9 bits)

aaa Short Displacement Address (7 bits, sign-extended)

aa Absolute Short Address (6 bits, zero-extended)

pp High I/O Short Address (6 bits, ones-extended)

qq Low I/O Short Address (6 bits)

<. . .> Specifies the Contents of the Specified Address

X: X Memory Reference

Y: Y Memory Reference

Table 12-10. Instruction Description Notation (Continued)

Symbol Meaning
Motorola Guide to the Instruction Set 12-15

Guide to Instruction Descriptions
L: Long Memory Reference = X Concatenated with Y

P: Program Memory Reference

Miscellaneous Operands

S, Sn Source Operand Register

D, Dn Destination Operand Register

D [n] Bit n of D Destination Operand Register

#n Immediate Short Data (5 bits)

#xx Immediate Short Data (8 bits)

#xxx Immediate Short Data (12 bits)

#xxxxxx Immediate Data (24 bits)

r Rounding Constant

#bbbbb Operand Bit Select (5 bits)

Unary Operands

– Negation Operator

— Logical NOT Operator (Overbar)

PUSH Push Specified Value onto the System Stack (SS) Operator

PULL Pull Specified Value from the SS Operator

READ Read the Top of the SS Operator

PURGE Delete the Top Value on the SS Operator

|| Absolute Value Operator

Binary Operands

+ Addition Operator

– Subtraction Operator

* Multiplication Operator

÷, / Division Operator

+ Logical Inclusive OR Operator

• Logical AND Operator

⊕ Logical Exclusive OR Operator

Table 12-10. Instruction Description Notation (Continued)

Symbol Meaning
12-16 DSP56300 Family Manual Motorola

Guide to Instruction Descriptions
⇒ “Is Transferred To” Operator

: Concatenation Operator

Addressing Mode Operators

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator

#< Immediate Short Addressing Mode Force Operator

Mode Register Symbols

LF Loop Flag Bit Indicating When a DO Loop is in Progress

DM Double-Precision Multiply bit indicating whether the chip is in Double-Precision Multiply
mode

SB Sixteen-Bit Arithmetic Mode

RM Rounding Mode

S1, S0 Scaling Mode Bits Indicating the Current Scaling Mode

I1, I0 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols

S Block Floating Point Scaling Bit Indicating Data Growth Detection

L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting

E Extension Bit Indicating if the Integer Portion of Data ALU result is in Use

U Unnormalized Bit Indicating if the Data ALU Result is Unnormalized

N Negative Bit Indicating if Bit 55 of the Data ALU Result is Set

Z Zero Bit Indicating if the Data ALU Result Equals Zero

V Overflow Bit Indicating whether Arithmetic Overflow occurred in Data ALU

C Carry Bit Indicating if a Carry or Borrow occurred in Data ALU Result

() Optional Letter, Operand, or Operation

(…) Any Arithmetic or Logical Instruction that Allows Parallel Moves

Table 12-10. Instruction Description Notation (Continued)

Symbol Meaning
Motorola Guide to the Instruction Set 12-17

Guide to Instruction Descriptions

eight

 are
ver

e

12.4.2 Condition Code Computation

The Condition Code Register (CCR) portion of the Status Register (SR) consists of
bits (seeFigure 12-6). The E, U, N, Z, V, and C bits are true condition code bits that
reflect the condition of the result of a Data ALU operation. These condition code bits
not “sticky” and are not affected by Address ALU calculations or by data transfers o
the XDB, YDB, or GDB. The L bit is a “sticky” overflow bit that indicates an overflow in
the Data ALU or data limiting when the contents of the A and/or B accumulators are
moved. The S bit is a “sticky” bit used in block floating-point operations to indicate th
need to scale the number in A or B.

Figure 12-6. Condition Code Register (CCR)

EXT Extension Register Portion of an Accumulator (A2 or B2)

LS Least Significant

LSP Least Significant Portion of an Accumulator (A0 or B0)

MS Most Significant

MSP Most Significant Portion of a n Accumulator (A1 or B1)

S/L Shifting and/or Limiting on a Data ALU Register

Sign Ext Sign Extension of a Data ALU Register

Zero Zeroing of a Data ALU Register

Address ALU Registers Operands

Rn Address Registers R0–R7 (24 bits)

Nn Address Offset Registers N0–N7 (24 bits)

Mn Address Modifier Registers M0–M7 (24 bits)

Table 12-10. Instruction Description Notation (Continued)

Symbol Meaning

CCR

S — Scaling bit
L — Limit bit
E — Extension bit
U — Unnormalized bit

N — Negative bit
Z — Zero bit
V — Overflow bit
C — Carry bit

CS L E U N VZ

07 6 5 4 3 12
12-18 DSP56300 Family Manual Motorola

Guide to Instruction Descriptions

ous
nt
Every instruction contains an illustration showing how the instruction affects the vari
condition codes. An instruction can affect a condition code according to three differe
rules, as described inTable 12-11.

Table 12-11. Instruction Effect on Condition Code

Standard Mark Effect on the Condition Code

— This bit is unchanged by the instruction.

√ This bit is changed by the instruction, according to the standard definition of the condition
code.

* This bit is changed by the instruction, according to a special definition of the condition
code depicted as part of the instruction description.

Table 12-12. Condition Code Register (CCR) Bit Definitions

Bit Number Bit Name Reset Value Description

7 S 0 Scaling
Computed, according to the logical equations shown here when an
instruction or a parallel move reads the contents of accumulator A or B
to XDB or YDB. The S bit is a “sticky” bit, cleared only by an instruction
that specifically clears it or by hardware reset.

S0 S1 Scaling Mode S Bit Equation

0 0 No scaling S = (A46 XOR A45) OR (B46 XOR
B45) OR S (previous)

0 1 Scale up S = (A47 XOR A46) OR (B47 XOR
B46) OR S (previous)

1 0 Scale down S = (A45 XOR A44) OR (B45 XOR
B44) OR S (previous)

1 1 Reserved S undefined

7 cont. S 0 Scaling cont.
The S bit detects data growth, which is required in Block Floating-Point
FFT operation. The S bit is set if the absolute value in the accumulator,
before scaling, is greater than or equal to 0.25 and smaller than 0.75.
Typically, the bit is tested after each pass of a radix 2
decimation-in-time FFT and, if it is set, the appropriate scaling mode
should be activated in the next pass. The Block Floating-Point FFT
algorithm is described in the Motorola application note APR4/D,
Implementation of Fast Fourier Transforms on Motorola’s
DSP56000/DSP56001 and DSP96002 Digital Signal Processors.
Motorola Guide to the Instruction Set 12-19

Guide to Instruction Descriptions
6 L 0 Limit
Set if the Overflow bit (V) is set or if an instruction or a parallel move
causes the data shifter/limiters to perform a limiting operation while
reading the contents of accumulator A or B to the XDB or YDB bus. In
Arithmetic Saturation mode, the limit bit is also set when an arithmetic
saturation occurs in the Data ALU result. Not affected otherwise. The L
bit is “sticky” and must be cleared only by an instruction that specifically
clears it or by hardware reset.

5 E 0 Extension
Cleared if all the bits of the signed integer portion of the Data ALU
result are the same (i.e., the bit patterns are either 00. . . 00 or 11. . .
11). Otherwise, this bit is set. The signed integer portion is defined by
the scaling mode, as shown here.

S0 S1 Scaling Mode S Bit Equation

0 0 No scaling Bits 55, 54..............48, 47

0 1 Scale down Bits 55, 54..............49, 48

1 0 Scale up Bits 55, 54..............47.46

The signed integer portion of an accumulator is not necessarily the
same as its extension register portion. It consists of the most significant
8, 9, or 10 bits of that accumulator, depending on the scaling mode.
The extension register portion of an accumulator (A2 or B2) is always
the eight Most Significant Bits of that accumulator. The E bit refers to
the signed integer portion of an accumulator and not the extension
register portion of that accumulator. For example, if the current scaling
mode is set for no scaling (S1 = S0 = 0), the signed integer portion of
the A or B accumulator consists of bits 47 through 55. If the A
accumulator contained the signed 56-bit value $00:800000:000000 as
a result of a Data ALU operation, the E bit would be set (E = 1) since
the 9 Most Significant Bits of that accumulator are not all the same (i.e.,
neither 00...00 nor 11...11). Thus, data limiting occurs if that 56-bit
value is specified as a source operand in a move-type operation. This
limiting operation results in either a positive or negative 24-bit or 48-bit
saturation constant stored in the specified destination. The signed
integer portion of an accumulator and the extension register portion of
an accumulator are the same only in the “Scale Down” scaling mode
(i.e., S1 = 0 and S0 = 1).

Table 12-12. Condition Code Register (CCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
12-20 DSP56300 Family Manual Motorola

Guide to Instruction Descriptions
4 U 0 Unnormalized
Set if the two Most Significant Bits of the Most Significant Portion
(MSP) of the Data ALU result are the same. This bit is cleared
otherwise. The MSP is defined by the scaling mode. The U bit is
computed as shown here. The result of calculating the U bit in this
fashion is that the definition of a positive normalized number p is 0.5 ≤
p < 1.0 and the definition of negative normalized number n is –1.0 ≤ n <
–0.5.

S1 S0 Scaling Mode U Bit Computation

0 0 No Scaling U = (Bit 47 xor Bit 46)

0 1 Scale Down U = (Bit 48 xor Bit 47)

1 0 Scale Up U = (Bit 46 xor Bit 45)

3 N 0 Negative
Set if the MS bit (Bit 55 in arithmetic instructions or Bit 47 in logical
instructions) of the Data ALU result is set. Otherwise, this bit is cleared.

2 Z 0 Zero
Set if the Data ALU result equals 0. Otherwise, this bit is cleared.

1 V 0 Overflow
Set if an arithmetic overflow occurs in the 56-bit Data ALU result.
Otherwise, this bit is cleared. This indicates that the result cannot be
represented in the 56-bit accumulator, so the accumulator overflows. In
Arithmetic Saturation mode, an arithmetic overflow occurs if the Data
ALU result is not representable in the accumulator without the
extension part (i.e., 48-bit accumulator; 32-bit in the Sixteen Bit mode).

0 C 0 Carry
Set if a carry is generated out of the MSB of the Data ALU result of an
addition or if a borrow is generated out of the MSB of the Data ALU
result of a subtraction. Otherwise, this bit is cleared. The carry or
borrow is generated out of Bit 55 of the Data ALU result. The C bit is
also affected by bit manipulation, rotate, shift, and compare
instructions. The C bit is not affected by Arithmetic Saturation mode.

Table 12-12. Condition Code Register (CCR) Bit Definitions (Continued)

Bit Number Bit Name Reset Value Description
Motorola Guide to the Instruction Set 12-21

Instruction Partial Encoding

se
12.5 Instruction Partial Encoding

This section gives the encodings for the following:

■ Various groupings of registers used in the instruction encodings

■ Condition Code combinations

■ Addressing

■ Addressing modes

The symbols used in decoding the various fields of an instruction are identical to tho
used in the Opcode section of the individual instruction descriptions.

12.5.1 Partial Encodings for Use in Instruction Encoding

Table 12-13. Partial Encodings for Use in Instruction Encoding

Destination Accumulator
Encoding

Data ALU Operands Encoding 1
Data ALU Source Operands

Encoding

D/S d/S/D S J S JJ

A 0 X 0 X0 00

B 1 Y 1 Y0 01

X1 10

Y1 11

Program Control Unit Register
Encoding

Data ALU Operands Encoding 2
Effective Addressing Mode

Encoding 1

Register EE S JJJ (Rn)–Nn 0 0 0 r r r

MR 00 B/A* 0 0 1 (Rn)+Nn 0 0 1 r r r

CCR 01 X 0 1 0 (Rn)– 0 1 0 r r r

COM 10 Y 0 1 1 (Rn)+ 0 1 1 r r r

EOM 11 X0 1 0 0 (Rn) 1 0 0 r r r

Y0 1 0 1 (Rn+Nn) 1 0 1 r r r

X1 1 1 0 –(Rn) 1 1 1 r r r

Y1 1 1 1 Absolute
address

1 1 0 0 0 0

* The source accumulator is B if the
destination accumulator (selected by
the d bit in the opcode) is A, or A if
the destination accumulator is B.

Immediate data 1 1 0 1 0 0

“r r r” refers to an address register
R0–R7
12-22 DSP56300 Family Manual Motorola

Instruction Partial Encoding
Data ALU Operands Encoding 3

SSS/sss S,D qqq S,D ggg S,D

000 reserved 000 reserved 000 B/A*

001 reserved 001 reserved 001 reserved

010 A1 010 A0 010 reserved

011 B1 011 B0 011 reserved

100 X0 100 X0 100 X0

101 Y0 101 Y0 101 Y0

110 X1 110 X1 110 X1

111 Y1 111 Y1 111 Y1

* The selected accumulator is B if the source two accumulator (selected by the d bit in the opcode) is A, or A if the
source two accumulator is B.

Memory/Peripheral Space
Effective Addressing Mode

Encoding 2
Effective Addressing Mode

Encoding 3

Space S Mode MMMRRR Mode MMMRRR

X Memory 0 (Rn)–Nn 0 0 0 r r r (Rn)–Nn 0 0 0 r r r

Y Memory 1 (Rn)+Nn 0 0 1 r r r (Rn)+Nn 0 0 1 r r r

(Rn)– 0 1 0 r r r (Rn)– 0 1 0 r r r

(Rn)+ 0 1 1 r r r (Rn)+ 0 1 1 r r r

(Rn) 1 0 0 r r r (Rn) 1 0 0 r r r

(Rn+Nn) 1 0 1 r r r (Rn+Nn) 1 0 1 r r r

–(Rn) 1 1 1 r r r –(Rn) 1 1 1 r r r

Absolute
address

1 10 0 0 0

“r r r” refers to an address register R0–R7

Effective Addressing Mode
Encoding 4

Six-Bit Encoding for All On-Chip Registers

Mode MMRRR Destination Register
D D D D D D /

d d d d d d

(Rn)–Nn 0 0 r r r 4 registers in Data ALU 0 0 0 1 D D

(Rn)+Nn 0 1 r r r 8 accumulators in Data ALU 0 0 1 D D D

(Rn)– 1 0 r r r 8 address registers in AGU 0 1 0 T T T

(Rn)+ 1 1 r r r 8 address offset registers in AGU 0 1 1 N N N

“r r r” refers to an address register
R0–R7

8 address modifier registers in AGU 1 0 0 F F F

1 address register in AGU 1 0 1 E E E

2 program controller register 1 1 0 V V V

8 program controller registers 1 1 1 G G G

See Table 12-14 for the specific encodings.

Table 12-13. Partial Encodings for Use in Instruction Encoding
Motorola Guide to the Instruction Set 12-23

Instruction Partial Encoding
Table 12-14. Triple-Bit Register Encoding

Code 1DD DDD TTT NNN FFF EEE VVV GGG

000 — A0 R0 N0 M0 — VBA SZ

001 — B0 R1 N1 M1 — SC SR

010 — A2 R2 N2 M2 EP — OMR

011 — B2 R3 N3 M3 — — SP

100 X0 A1 R4 N4 M4 — — SSH

101 X1 B1 R5 N5 M5 — — SSL

110 Y0 A R6 N6 M6 — — LA

111 Y1 B R7 N7 M7 — — LC

Table 12-15. Long Move Register Encoding

S S1 S2
S

S/L
D D1 D2

D
Sign Ext

D
Zero

LLL

A10 A1 A0 no A10 A1 A0 no no 0 0 0

B10 B1 B0 no B10 B1 B0 no no 0 0 1

X X1 X0 no X X1 X0 no no 0 1 0

Y Y1 Y0 no Y Y1 Y0 no no 0 1 1

A A1 A0 yes A A1 A0 A2 no 1 0 0

B B1 B0 yes B B1 B0 B2 no 1 0 1

AB A B yes AB A B A2,B2 A0,B0 1 1 0

BA B A yes BA B A B2,A2 B0,A0 1 1 1

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

Data ALU Source Registers
Encoding

AGU Address and Offset Registers Encoding

S JJJ Destination Address Register D dddd

B/A* 000 R0-R7 onnn

X0 100 N0-N7 1nnn

Y0 101

X1 110

Y1 111
12-24 DSP56300 Family Manual Motorola

Instruction Partial Encoding
Data ALU Multiply Operands Encoding 1
Data ALU Multiply Operands

Encoding 2

S1 * S2 Q Q Q S1 * S2 Q Q Q S Q Q

X0,X0 0 0 0 X0,Y1 1 0 0 Y1 0 0

Y0,Y0 0 0 1 Y0,X0 1 0 1 X0 0 1

X1,X0 0 1 0 X1,Y0 1 1 0 Y0 1 0

Y1,Y0 0 1 1 Y1,X1 1 1 1 X1 1 1

NOTE: Only the indicated S1 * S2 combinations are valid. X1 * X1 and Y1 *
Y1 are not valid.

Data ALU Multiply Operands
Encoding 3

Data ALU Multiply Operands Encoding 4

S qq S1*S2 Q Q Q Q S1*S2 Q Q Q Q

X0 0 0 X0,X0 0 0 0 0 X0,Y1 0 1 0 0

Y0 0 1 Y0,Y0 0 0 0 1 Y0,X0 0 1 0 1

X1 1 0 X1,X0 0 0 1 0 X1,Y0 0 1 1 0

Y1 1 1 Y1,Y0 0 0 1 1 Y1,X1 0 1 1 1

Data ALU Multiply Sign Encoding X1,X1 1 0 0 0 Y1,X0 1 1 0 0

Sign k Y1,Y1 1 0 0 1 X0,Y0 1 1 0 1

+ 0 X0,X1 1 0 1 0 Y0,X1 1 1 1 0

– 1 Y0,Y1 1 0 1 1 X1,Y1 1 1 1 1

Five-Bit Register Encoding 1 Write Control Encoding

D/S ddddd / eeeee D/S ddddd / eeeee Operation W

X0 0 0 1 0 0 B2 0 1 0 1 1 Read Register or
Peripheral

0

X1 0 0 1 0 1 A1 0 1 1 0 0 Write Register or
Peripheral

1

Y0 0 0 1 1 0 B1 0 1 1 0 1 ALU Registers Encoding

Y1 0 0 1 1 1 A 0 1 1 1 0 Destination
Register

D D D D

A0 0 1 0 0 0 B 0 1 1 1 1 4 registers in
Data ALU

0 1 D D

B0 0 1 0 0 1 R0-R7 1 0 r r r 8 accumulators
in Data ALU

1 D D D

A2 0 1 0 1 0 N0-N7 1 1 n n n See Table 12-14 , “Triple-Bit
Register Encoding,” on page 12-24
for the specific encodings.

“r r r” = Rn number, “n n n” = Nn number

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2
Motorola Guide to the Instruction Set 12-25

Instruction Partial Encoding
Immediate Data ALU Operand Encoding Write Control Encoding

n ssss constant Operation W

1 00001 010000000000000000000000 Read Register or
Peripheral

0

2 00010 001000000000000000000000 Write Register or
Peripheral

1

3 00011 000100000000000000000000 ALU Registers Encoding

4 00100 000010000000000000000000 Destination
Register

D D D D

5 00101 000001000000000000000000 4 registers in
Data ALU

0 1 D D

6 00110 000000100000000000000000 8 accumulators
in Data ALU

1 D D D

7 00111 000000010000000000000000 See Table 12-14 on page 12-24 for
the specific encodings.

8 01000 000000001000000000000000 X:Y: Move Operands Encoding

9 01001 000000000100000000000000 X Effective
Addressing

Mode
MMRRR

10 01010 000000000010000000000000 (Rn)+Nn 0 1 s s s

11 01011 000000000001000000000000 (Rn)– 1 0 s s s

12 01100 000000000000100000000000 (Rn)+ 1 1 s s s

13 01101 000000000000010000000000 (Rn) 0 0 s s s

14 01110 000000000000001000000000
Y Effective
Addressing

Mode
mmrr

15 01111 00000000000000010000000000 (Rn)+Nn 0 1 t t

16 10000 00000000000000001000000000 (Rn)– 1 0 t t

17 10001 000000000000000001000000 (Rn)+ 1 1 t t

18 10010 000000000000000000100000 (Rn) 0 0 t t

19 10011 000000000000000000010000 where the following apply:
“s s s” refers to an address register
R0–R7 and “t t” refers to an address
register R4–R7 or R0–R3 in the
opposite address register bank from
that used in the X effective address

20 10100 000000000000000000001000

21 10101 000000000000000000000100

22 10110 000000000000000000000010

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2
12-26 DSP56300 Family Manual Motorola

Instruction Partial Encoding
X:R Operand Registers Encoding
Signed/Unsigned Partial

Encoding 1

S1,D1 f f D2 F ss/su/uu ss

X0 0 0 Y0 0 ss 00

X1 0 1 Y1 1 su 10

A 1 0 uu 11

B 1 1 (Reserved) 01

R:Y Operand Registers Encoding
Signed/Unsigned Partial

Encoding 2

D1 e S2,D2 f f su/uu s

X0 0 Y0 0 0 su 0

X1 1 Y1 0 1 uu 1

A 1 0

B 1 1

Single-Bit Special Register Encoding Five-Bit Register Encoding 2

d
X:R Class II

Opcode
R:Y Class II

Opcode
S1,D1 ddddd

0 A → X:<ea> , X0
→ A

Y0 → A , A →
Y:<ea>

M0-M7 00nnn

1 B → X:<ea> , X0
→ B

Y0 → B , B →
Y:<ea>

EP 01010

Move Operand Encoding VBA 10000

S1,D1 e e S2,D2 f f SC 10001

X0 0 0 Y0 0 0 SZ 11000

X1 0 1 Y1 0 1 SR 11001

A 1 0 A 1 0 OMR 11010

B 1 1 B 1 1 SP 11011

SSH 11100

SSL 11101

LA 11110

LC 11111

where “n n n” = Mn number (M0–M7)

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2
Motorola Guide to the Instruction Set 12-27

Instruction Partial Encoding
Table 12-17. Condition Code Computation Equation

“cc” Mnemonic Condition

CC(HS) Carry Clear (higher or same) C = 0

CS(LO) Carry Set (lower) C = 1

EC Extension Clear E = 0

EQ Equal Z = 1

ES Extension Set E=1

GE Greater than or Equal N ⊕ V=0

GT Greater Than Z+(N ⊕ V)=0

LC Limit Clear L=0

LE Less than or Equal Z+(N ⊕ V)=1

LS Limit Set L=1

LT Less Than N ⊕ V=1

MI Minus N=1

NE Not Equal Z=0

NR Normalized Z+(U•E)=1

PL Plus N=0

NN Not Normalized Z+(U•E)=0

NOTES:
U denotes the logical complement of U.

+ denotes the logical OR operator.

• denotes the logical AND operator.

⊕ denotes the logical Exclusive OR operator.

Table 12-18. Condition Codes Encoding

Mnemonic C C C C Mnemonic C C C C

CC(HS) 0 0 0 0 CS(LO) 1 0 0 0

GE 0 0 0 1 LT 1 0 0 1

NE 0 0 1 0 EQ 1 0 1 0

PL 0 0 1 1 MI 1 0 1 1
12-28 DSP56300 Family Manual Motorola

Instruction Partial Encoding

 into
ns.

nt
12.5.2 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions that allow parallel moves is divided
the multiply and non-multiply instruction encodings shown in the following subsectio

12.5.2.1 Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has differe
fields than the non-multiply instruction operation code. The 8-bit operation code =1QQQ
dkkk where

■ QQQ =selects the inputs to the multiplier (seeTable 12-17, “Condition Code
Computation Equation,” on page 12-28)

■ kkk = three unencoded bits k2, k1, k0

■ d = destination accumulator
d = 0→ A
d = 1→ B

NN 0 1 0 0 NR 1 1 0 0

EC 0 1 0 1 ES 1 1 0 1

LC 0 1 1 0 LS 1 1 1 0

GT 0 1 1 1 LE 1 1 1 1

The condition code computation equations are listed in Table 12-17.
on page 12-28.

Table 12-19. Operation Code K0–2 Decode

Code k2 k1 k0

0 positive mpy only don’t round

1 negative mpy and acc round

Table 12-18. Condition Codes Encoding (Continued)

Mnemonic C C C C Mnemonic C C C C
Motorola Guide to the Instruction Set 12-29

Instruction Partial Encoding

lds
12.5.2.2 Non-Multiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fie
defining which instruction the operation code represents and one bit defining the
destination accumulator register. The 8-bit operation code =0 J J J D k k k where

■ J J J = 1/2 instruction number

■ k k k = 1/2 instruction number

■ D = 0 → A
D = 1 → B

Table 12-20. Non-Multiply Instruction Encoding

J J J
D = 0
Src

Oper

D = 1
Src

Oper

k k k

0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

0 0 0 B A MOVE1 TFR ADDR TST * CMP SUBR CMPM

0 0 1 B A ADD RND ADDL CLR SUB * SUBL NOT

0 1 0 B A — — ASR LSR — — ABS ROR

0 1 1 B A — — ASL LSL — — NEG ROL

0 1 0 X1 X0 X1 X0 ADD ADC — — SUB SBC — —

0 1 1 Y1 Y0 Y1 Y0 ADD ADC — — SUB SBC — —

1 0 0 X0_0 X0_0 ADD TFR OR EOR SUB CMP AND CMPM

1 0 1 Y0_0 Y0_0 ADD TFR OR EOR SUB CMP AND CMPM

1 1 0 X1_0 X1_0 ADD TFR OR EOR SUB CMP AND CMPM

1 1 1 Y1_0 Y1_0 ADD TFR OR EOR SUB CMP AND CMPM

NOTES:
1. Special case 1.
2. * = Reserved

Table 12-21. Special Case1

 O P E R C O D E Operation

 0 0 0 0 0 0 0 0 MOVE

 0 0 0 0 1 0 0 0 reserved
12-30 DSP56300 Family Manual Motorola

	Chapter 12 Guide to the Instruction Set
	This chapter presents the DSP56300 instruction format as well as partial encodings for use in ins...
	12.1 Instruction Formats and Syntax
	The DSP56300 core instructions consist of one or two 24-bit words—an operation word and an option...
	Figure 12-1. General Formats of an Instruction Word

	The Data Bus Movement field provides the operand reference type, which selects the type of memory...
	The Opcode field of the operation word specifies the Data ALU operation or the Program Control Un...
	The instruction syntax has two formats—parallel and non-parallel, as Table 12-1 and Table 12-2 sh...
	Table 12-1. Parallel Instruction Format

	Example 1
	MAC
	X0,Y0,A
	X:(R0)+,X0
	Y:(R4)+,Y0
	Example 2
	MOVE
	X:-(R1),X1
	Example 3
	MAC
	X1,Y1,B
	Example 4
	MPY
	X0,Y0,A
	IFeq
	Assembly-language source codes for some typical one-word instructions are shown in Table 12-1. Be...
	A non-parallel instruction is organized into two columns: opcode and operands. Assembly-language ...
	Table 12-2. Non-Parallel Instruction Format

	Example 1:
	JEQ
	(R5)
	Example 2:
	MOVEP
	#data,X:ipr
	Example 3:
	RTS
	12.2 Operand Lengths
	Operand lengths are defined as follows: a byte is 8 bits, a word is 16 bits, a long word is 48 bi...
	Figure 12-2. Operand Lengths

	In Sixteen-Bit Arithmetic mode the operand lengths are as follows: a byte is 8 bits, a word is 16...
	Figure 12-3. Operand Lengths in Sixteen-Bit Mode

	Table 12-3 shows the operand lengths supported by the registers of the DSP56300 core.
	Table 12-3. Register Operand Lengths

	10
	8
	8
	8
	1
	1
	1
	1
	1
	12.2.1 Data ALU Registers
	The eight main data registers are 24 bits wide. Word operands occupy one register; long-word oper...
	The two accumulator extension registers are 8 bits wide. When an accumulator extension register i...
	When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator value is o...
	Figure 12-4. Reading and Writing the ALU Extension Registers

	When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit source dat...

	12.2.2 AGU Registers
	The twenty-four 24-bit AGU registers can be accessed as word operands for address, address offset...

	12.2.3 Program Control Registers
	Within the 24-bit Operating Mode Register (OMR), the Chip Operating Mode (COM) register occupies ...
	Within the 24-bit SR, the user condition code register (CCR) occupies the low-order 8 bits, the s...
	Figure 12-5. Reading and Writing Control Registers

	12.2.4 Data Organization in Memory
	The 24-bit program memory can store both 24-bit instruction words and instruction extension words...

	12.3 Instruction Groups
	The instruction set is divided into the following groups:
	Arithmetic
	Logical
	Bit Manipulation
	Loop
	Move
	Program Control

	Each instruction group is described in the following paragraphs.
	12.3.1 Arithmetic Instructions
	The arithmetic instructions perform all of the arithmetic operations within the Data ALU. These i...
	Table 12-4. Arithmetic Instructions (Continued)

	ABS
	÷
	ADC
	÷
	ADD
	÷
	ADD (imm.)
	ADDL
	÷
	ADDR
	÷
	ASL
	÷
	ASL (mb.)
	ASL (mb., imm.)
	ASR
	÷
	ASR (mb.)
	ASR (mb., imm.)
	CLR
	÷
	CMP
	÷
	CMP (imm.)
	CMPM
	÷
	CMPU
	DEC
	DIV
	DMAC
	INC
	MAC
	÷
	MAC (su,uu)
	MACI
	MACR
	÷
	MACRI
	MAX
	÷
	MAXM
	÷
	MPY
	÷
	MPY (su,uu)
	MPYI
	MPYR
	÷
	MPYRI
	NEG
	÷
	NORMF
	RND
	÷
	SBC
	÷
	SUB
	÷
	SUB (imm.)
	SUBL
	÷
	SUBR
	÷
	Tcc
	TFR
	÷
	TST
	÷
	12.3.2 Logical Instructions
	The logical instructions execute in one instruction cycle and perform all logical operations with...
	Table 12-5. Logical Instructions (Continued) (Continued)

	AND
	÷
	AND (imm.)
	ANDI
	CLB
	EOR
	÷
	EOR (imm.)
	EXTRACT
	EXTRACT (imm.)
	EXTRACTU
	EXTRACTU (imm.)
	INSERT
	INSERT (imm.)
	LSL
	÷
	LSL (mb.)
	LSL (mb., imm.)
	LSR
	÷
	LSR (mb.)
	LSR (mb.,imm.)
	MERGE
	NOT
	÷
	OR
	÷
	OR (imm.)
	ORI
	ROL
	÷
	ROR
	÷
	12.3.3 Bit Manipulation Instructions
	The bit manipulation instructions test the state of any single bit in a memory location and then ...
	Table 12-6. Bit Manipulation Instructions �

	BCHG
	BCLR
	BSET
	BTST
	12.3.4 Loop Instructions
	The hardware DO loop executes with no overhead cycles—that is, it runs as fast as straight-line c...
	Table 12-7. Loop Instructions �

	BRKcc
	DO
	DO FOREVER
	ENDDO
	12.3.5 Move Instructions
	The move instructions perform data movement over the XDB and YDB or over the GDB. Move instructio...
	Table 12-8. Move Instructions �

	LUA
	LRA
	MOVE
	÷
	MOVEC
	MOVEM
	MOVEP
	U MOVE
	÷
	VSL
	12.3.6 Program Control Instructions
	The program control instructions include jumps, conditional jumps, and other instructions affecti...
	Table 12-9. Program Control Instructions (Continued)

	IFcc.U
	IFcc
	Bcc
	BRA
	BScc
	BSR
	DEBUGcc
	DEBUG
	Jcc
	JMP
	JCLR
	JSET
	JScc
	JSR
	JSCLR
	JSSET
	NOP
	REP
	RESET
	RTI
	RTS
	STOP
	TRAPcc
	TRAP
	WAIT
	12.4 Guide to Instruction Descriptions
	The following information is included in each instruction description:
	Name and Mnemonic: Highlighted in bold type for easy reference.
	Assembler Syntax and Operation: The syntax line for each instruction symbolically describes the c...
	Description: Includes any special cases and/or condition code anomalies.
	Condition Codes: The Status Register (SR) is depicted with the condition code bits that can be af...
	Instruction Format: The instruction fields, the instruction opcode, and the instruction extension...

	12.4.1 Notation
	Each instruction description contains symbols to abbreviate certain operands and operations. Tabl...
	Table 12-10. Instruction Description Notation (Continued)

	Xn
	Yn
	An
	Bn
	X
	Y
	A
	B
	AB
	BA
	A10
	B10
	PC
	MR
	CCR
	SR
	EOM
	COM
	OMR
	SZ
	SC
	VBA
	LA
	LC
	SP
	SSH
	SSL
	SS
	ea
	eax
	eay
	xxxxxx
	xxx
	xxx
	aaa
	aa
	pp
	qq
	<. . .>
	X:
	Y:
	L:
	P:
	S, Sn
	D, Dn
	D [n]
	#n
	#xx
	#xxx
	#xxxxxx
	r
	#bbbbb
	–
	—
	PUSH
	PULL
	READ
	PURGE
	| |
	+
	–
	*
	¸, /
	+
	•
	Å
	ﬁ
	:
	<<
	<
	>
	#
	#>
	#<
	LF
	DM
	SB
	RM
	S1, S0
	I1, I0
	S
	L
	E
	U
	N
	Z
	V
	C
	()
	(º)
	EXT
	LS
	LSP
	MS
	MSP
	S/L
	Sign Ext
	Zero
	Rn
	Nn
	Mn
	12.4.2 Condition Code Computation
	The Condition Code Register (CCR) portion of the Status Register (SR) consists of eight bits (see...
	Figure 12-6. Condition Code Register (CCR)

	Every instruction contains an illustration showing how the instruction affects the various condit...
	Table 12-11. Instruction Effect on Condition Code

	—
	÷
	*
	Table 12-12. Condition Code Register (CCR) Bit Definitions (Continued)

	7
	S
	0
	0
	0
	0
	1
	1
	0
	1
	1
	7 cont.
	S
	0
	6
	L
	0
	5
	E
	0
	0
	0
	0
	1
	1
	0
	4
	U
	0
	0
	0
	No Scaling
	U = (Bit 47 xor Bit 46)
	0
	1
	Scale Down
	U = (Bit 48 xor Bit 47)
	1
	0
	Scale Up
	U = (Bit 46 xor Bit 45)
	3
	N
	0
	2
	Z
	0
	1
	V
	0
	0
	C
	0
	12.5 Instruction Partial Encoding
	This section gives the encodings for the following:
	Various groupings of registers used in the instruction encodings
	Condition Code combinations
	Addressing
	Addressing modes

	The symbols used in decoding the various fields of an instruction are identical to those used in ...
	12.5.1 Partial Encodings for Use in Instruction Encoding
	Table 12-13. Partial Encodings for Use in Instruction Encoding

	A
	0
	X
	0
	X0
	00
	B
	1
	Y
	1
	Y0
	01
	X1
	10
	Y1
	11
	(Rn)–Nn
	0 0 0 r r r
	MR
	00
	B/A*
	0 0 1
	(Rn)+Nn
	0 0 1 r r r
	CCR
	01
	X
	0 1 0
	(Rn)–
	0 1 0 r r r
	COM
	10
	Y
	0 1 1
	(Rn)+
	0 1 1 r r r
	EOM
	11
	X0
	1 0 0
	(Rn)
	1 0 0 r r r
	Y0
	1 0 1
	(Rn+Nn)
	1 0 1 r r r
	X1
	1 1 0
	–(Rn)
	1 1 1 r r r
	Y1
	1 1 1
	Absolute address
	1 1 0 0 0 0
	Immediate data
	1 1 0 1 0 0
	000
	reserved
	000
	reserved
	000
	B/A*
	001
	reserved
	001
	reserved
	001
	reserved
	010
	A1
	010
	A0
	010
	reserved
	011
	B1
	011
	B0
	011
	reserved
	100
	X0
	100
	X0
	100
	X0
	101
	Y0
	101
	Y0
	101
	Y0
	110
	X1
	110
	X1
	110
	X1
	111
	Y1
	111
	Y1
	111
	Y1
	X Memory
	0
	(Rn)–Nn
	0 0 0 r r r
	(Rn)–Nn
	0 0 0 r r r
	Y Memory
	1
	(Rn)+Nn
	0 0 1 r r r
	(Rn)+Nn
	0 0 1 r r r
	(Rn)–
	0 1 0 r r r
	(Rn)–
	0 1 0 r r r
	(Rn)+
	0 1 1 r r r
	(Rn)+
	0 1 1 r r r
	(Rn)
	1 0 0 r r r
	(Rn)
	1 0 0 r r r
	(Rn+Nn)
	1 0 1 r r r
	(Rn+Nn)
	1 0 1 r r r
	–(Rn)
	1 1 1 r r r
	–(Rn)
	1 1 1 r r r
	Absolute address
	1 10 0 0 0
	(Rn)–Nn
	0 0 r r r
	(Rn)+Nn
	0 1 r r r
	(Rn)–
	1 0 r r r
	(Rn)+
	1 1 r r r
	Table 12-14. Triple-Bit Register Encoding �

	000
	—
	A0
	R0
	N0
	M0
	—
	VBA
	SZ
	001
	—
	B0
	R1
	N1
	M1
	—
	SC
	SR
	010
	—
	A2
	R2
	N2
	M2
	EP
	—
	OMR
	011
	—
	B2
	R3
	N3
	M3
	—
	—
	SP
	100
	X0
	A1
	R4
	N4
	M4
	—
	—
	SSH
	101
	X1
	B1
	R5
	N5
	M5
	—
	—
	SSL
	110
	Y0
	A
	R6
	N6
	M6
	—
	—
	LA
	111
	Y1
	B
	R7
	N7
	M7
	—
	—
	LC
	Table 12-15. Long Move Register Encoding �

	A10
	A1
	A0
	no
	A10
	A1
	A0
	no
	no
	0 0 0
	B10
	B1
	B0
	no
	B10
	B1
	B0
	no
	no
	0 0 1
	X
	X1
	X0
	no
	X
	X1
	X0
	no
	no
	0 1 0
	Y
	Y1
	Y0
	no
	Y
	Y1
	Y0
	no
	no
	0 1 1
	A
	A1
	A0
	yes
	A
	A1
	A0
	A2
	no
	1 0 0
	B
	B1
	B0
	yes
	B
	B1
	B0
	B2
	no
	1 0 1
	AB
	A
	B
	yes
	AB
	A
	B
	A2,B2
	A0,B0
	1 1 0
	BA
	B
	A
	yes
	BA
	B
	A
	B2,A2
	B0,A0
	1 1 1
	Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

	B/A*
	000
	R0-R7
	onnn
	X0
	100
	N0-N7
	1nnn
	Y0
	101
	X1
	110
	Y1
	111
	X0,X0
	0 0 0
	X0,Y1
	1 0 0
	Y1
	0 0
	Y0,Y0
	0 0 1
	Y0,X0
	1 0 1
	X0
	0 1
	X1,X0
	0 1 0
	X1,Y0
	1 1 0
	Y0
	1 0
	Y1,Y0
	0 1 1
	Y1,X1
	1 1 1
	X1
	1 1
	X0
	0 0
	X0,X0
	0 0 0 0
	X0,Y1
	0 1 0 0
	Y0
	0 1
	Y0,Y0
	0 0 0 1
	Y0,X0
	0 1 0 1
	X1
	1 0
	X1,X0
	0 0 1 0
	X1,Y0
	0 1 1 0
	Y1
	1 1
	Y1,Y0
	0 0 1 1
	Y1,X1
	0 1 1 1
	X1,X1
	1 0 0 0
	Y1,X0
	1 1 0 0
	Y1,Y1
	1 0 0 1
	X0,Y0
	1 1 0 1
	+
	0
	X0,X1
	1 0 1 0
	Y0,X1
	1 1 1 0
	–
	1
	Y0,Y1
	1 0 1 1
	X1,Y1
	1 1 1 1
	X0
	0 0 1 0 0
	B2
	0 1 0 1 1
	X1
	0 0 1 0 1
	A1
	0 1 1 0 0
	Y0
	0 0 1 1 0
	B1
	0 1 1 0 1
	Y1
	0 0 1 1 1
	A
	0 1 1 1 0
	A0
	0 1 0 0 0
	B
	0 1 1 1 1
	0 1 D D
	B0
	0 1 0 0 1
	R0-R7
	1 0 r r r
	1 D D D
	A2
	0 1 0 1 0
	N0-N7
	1 1 n n n
	1
	00001
	010000000000000000000000
	0
	2
	00010
	001000000000000000000000
	1
	3
	00011
	000100000000000000000000
	4
	00100
	000010000000000000000000
	5
	00101
	000001000000000000000000
	0 1 D D
	6
	00110
	000000100000000000000000
	1 D D D
	7
	00111
	000000010000000000000000
	8
	01000
	000000001000000000000000
	9
	01001
	000000000100000000000000
	10
	01010
	000000000010000000000000
	(Rn)+Nn
	0 1 s s s
	11
	01011
	000000000001000000000000
	(Rn)–
	1 0 s s s
	12
	01100
	000000000000100000000000
	(Rn)+
	1 1 s s s
	13
	01101
	000000000000010000000000
	(Rn)
	0 0 s s s
	14
	01110
	000000000000001000000000
	15
	01111
	00000000000000010000000000
	(Rn)+Nn
	0 1 t t
	16
	10000
	00000000000000001000000000
	(Rn)–
	1 0 t t
	17
	10001
	000000000000000001000000
	(Rn)+
	1 1 t t
	18
	10010
	000000000000000000100000
	(Rn)
	0 0 t t
	19
	10011
	000000000000000000010000
	20
	10100
	000000000000000000001000
	21
	10101
	000000000000000000000100
	22
	10110
	000000000000000000000010
	X0
	0 0
	Y0
	0
	ss
	00
	X1
	0 1
	Y1
	1
	su
	10
	A
	1 0
	uu
	11
	B
	1 1
	(Reserved)
	01
	D1
	e
	S2,D2
	f f
	X0
	0
	Y0
	0 0
	su
	0
	X1
	1
	Y1
	0 1
	uu
	1
	A
	1 0
	B
	1 1
	0
	A Æ X:<ea> , X0 Æ A
	Y0 Æ A , A Æ Y:<ea>
	M0-M7
	00nnn
	1
	B Æ X:<ea> , X0 Æ B
	Y0 Æ B , B Æ Y:<ea>
	EP
	01010
	VBA
	10000
	S1,D1
	e e
	S2,D2
	f f
	SC
	10001
	X0
	0 0
	Y0
	0 0
	SZ
	11000
	X1
	0 1
	Y1
	0 1
	SR
	11001
	A
	1 0
	A
	1 0
	OMR
	11010
	B
	1 1
	B
	1 1
	SP
	11011
	SSH
	11100
	SSL
	11101
	LA
	11110
	LC
	11111
	Table 12-17. Condition Code Computation Equation�

	CC(HS)
	Carry Clear (higher or same)
	C = 0
	CS(LO)
	Carry Set (lower)
	C = 1
	EC
	Extension Clear
	E = 0
	EQ
	Equal
	Z = 1
	ES
	Extension Set
	E=1
	GE
	Greater than or Equal
	N Å V=0
	GT
	Greater Than
	Z+(N Å V)=0
	LC
	Limit Clear
	L=0
	LE
	Less than or Equal
	Z+(N Å V)=1
	LS
	Limit Set
	L=1
	LT
	Less Than
	N Å V=1
	MI
	Minus
	N=1
	NE
	Not Equal
	Z=0
	NR
	Normalized
	Z+(U·E)=1
	PL
	Plus
	N=0
	NN
	Not Normalized
	Z+(U·E)=0
	Å denotes the logical Exclusive OR operator.
	Table 12-18. Condition Codes Encoding (Continued)

	NN
	0 1 0 0
	NR
	1 1 0 0
	EC
	0 1 0 1
	ES
	1 1 0 1
	LC
	0 1 1 0
	LS
	1 1 1 0
	GT
	0 1 1 1
	LE
	1 1 1 1
	12.5.2 Parallel Instruction Encoding of the Operation Code
	The operation code encoding for the instructions that allow parallel moves is divided into the mu...
	12.5.2.1 Multiply Instruction Encoding
	The 8-bit operation code for multiply instructions allowing parallel moves has different fields t...
	QQQ =selects the inputs to the multiplier (see Table�12-17, “Condition Code Computation Equation,...
	kkk = three unencoded bits k2, k1, k0
	d = destination accumulator d = 0 Æ A d = 1 Æ B
	Table 12-19. Operation Code K0–2 Decode �

	0
	positive
	mpy only
	don’t round
	1
	negative
	mpy and acc
	round
	12.5.2.2 Non-Multiply Instruction Encoding
	The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields defin...
	J J J = 1/2 instruction number
	k k k = 1/2 instruction number
	D = 0 Æ A D = 1 Æ B
	Table 12-20. Non-Multiply Instruction Encoding �

	0 0 0
	B
	A
	MOVE1
	TFR
	ADDR
	TST
	*
	CMP
	SUBR
	CMPM
	0 0 1
	B
	A
	ADD
	RND
	ADDL
	CLR
	SUB
	*
	SUBL
	NOT
	0 1 0
	B
	A
	—
	—
	ASR
	LSR
	—
	—
	ABS
	ROR
	0 1 1
	B
	A
	—
	—
	ASL
	LSL
	—
	—
	NEG
	ROL
	0 1 0
	X1 X0
	X1 X0
	ADD
	ADC
	—
	—
	SUB
	SBC
	—
	—
	0 1 1
	Y1 Y0
	Y1 Y0
	ADD
	ADC
	—
	—
	SUB
	SBC
	—
	—
	1 0 0
	X0_0
	X0_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 0 1
	Y0_0
	Y0_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 1 0
	X1_0
	X1_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 1 1
	Y1_0
	Y1_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	Table 12-21. Special Case1

	0 0 0 0 0 0 0 0
	MOVE
	0 0 0 0 1 0 0 0
	reserved

