Chapter 12
Guide to the Instruction Set

This chapter presents the DSP56300 instruction format as well as partial encodings for use
in instruction encoding. The alphabetical instruction descriptions are presented in
Appendix B, Instruction SetThe complete range of instruction capabilities combined

with the flexible DSP56300 addressing modes provide a very powerful assembly language
for implementing DSP algorithms. The instruction set allows efficient coding for DSP
high-level language compilers, such as the C Compiler. Hardware looping capabilities, an
instruction pipeline, and parallel moves minimize execution time.

12.1 Instruction Formats and Syntax

The DSP56300 core instructions consist of one or two 24-bit words—an operation word
and an optional extension word. This extension word can be either an effective address
extension word or an immediate data extension word. While the extension word occupies
the full 24-bit width of the program memory, only the sixteen Least Significant Bits
(LSBs) are relevant for effective address extension or for immediate data. Therefore, the
extension word is effectively sixteen bits widggure 12-1shows the general formats of

the instruction word. Most instructions specify data movement on the X Data Bus (XDB),

Y Data Bus (YDB), and Data ALU operations in the same operation word. The DSP56300
core performs each of these operations in parallel.

23 8 7 0
OPCODE

XXX XXX [x]x

Optional Effective Address Extension

Data Bus Movement

23 8 7 0
OPCODE

XXX XX [x[x]x

Optional Immediate Data Extension

Data Bus Movement

23 0

Non-parallel Operation Code

Optional Effective Address Extension

Figure 12-1. General Formats of an Instruction Word

Motorola DSP56300 Family Manual 12-1

Instruction Formats and Syntax

The Data Bus Movement field provides the operand reference type, which selects the type
of memory or register reference to be made, the direction of transfer, and the effective
address(es) for data movement on the XDB and/or YDB. This field may require additional
information to fully specify the operand for certain addressing modes. An extension word
following the operation word is used to provide immediate data, absolute address or
address displacement, if required. Examples of operations that may include the extension
word include move operation such as MOVE X:$100,X0.

The Opcode field of the operation word specifies the Data ALU operation or the Program
Control Unit (PCU) operation to be performed.

The instruction syntax has two formats—parallel and non-parall€glss 12-1and

Table 12-2show. A parallel instruction is organized into five columns: opcode, operands,
two optional parallel-move fields, and an optional condition field. The condition field
disables the execution of the opcode if the condition is not true, and it cannot be used in
conjunction with the parallel move fields.

Table 12-1. Parallel Instruction Format

Opcode | Operands | XDB YDB Condition
Example 1 MAC X0,Y0,A X:(RO)+,X0 Y:(R4)+,YO0
Example 2 MOVE X:-(R1),X1
Example 3 MAC X1,Y1l,B
Example 4 MPY X0,Y0,A IFeq

Assembly-language source codes for some typical one-word instructions are shown in
Table 12-1 Because of the multiple bus structure and the parallelism of the DSP56300
core, as many as three data transfers can be specified in the instruction word—one on the
XDB, one on the YDB, and one within the Data ALU. These transfers are explicitly
specified. A fourth data transfer is implied and occurs in the PCU (instruction word
prefetch, program looping control, etc.). The opcode column indicates the Data ALU
operation to be performed, but may be excluded if only a MOVE operation is needed. The
operands column specifies the operands to be used by the opcode. The XDB and YDB
columns specify optional data transfers over the XDB and YDB and the associated
addressing modes. The address space qualifiers (X:, Y:, and L:) indicate which address
space is being referenced.

A non-parallel instruction is organized into two columns: opcode and operands.
Assembly-language source codes for some typical one-word instructions are shown in
Table 12-2 Non-parallel instructions include all the program control, looping, and
peripherals read/write instructions. They also include some Data ALU instructions that are
impossible to encode in the Opcode field of the parallel format.

12-2 DSP56300 Family Manual Motorola

Operand Lengths

Table 12-2. Non-Parallel Instruction Format

Opcode | Operands
Example 1: JEQ (R5)
Example 2: MOVEP #data, X:ipr
Example 3: RTS

12.2 Operand Lengths

Operand lengths are defined as follows: a byte is 8 bits, a word is 16 bits, a long word is 48
bits, and an accumulator is 56 bits, as showkignre 12-2 The operand size for each
instruction is either explicitly encoded in the instruction or implicitly defined by the
instruction operation.

7 0
[] Bye
15 0
[| word

48 0
| | Long Word

56 0
| | Accumulator

Figure 12-2. Operand Lengths

In Sixteen-Bit Arithmetic mode the operand lengths are as follows: a byte is 8 bits, a word
is 16 bits, a long word is 32 bits, and an accumulator is 40 bits.

7 0
[] oBye
23 0
| | | Word

47 0

| | | | | Long Word
55 0
|

Accumulator

Figure 12-3. Operand Lengths in Sixteen-Bit Mode

Table 12-3shows the operand lengths supported by the registers of the DSP56300 core.

Motorola Guide to the Instruction Set 12-3

Operand Lengths

Table 12-3. Register Operand Lengths

. Number of . .
Registers Registers Operand Lengths Supported Sixteen-Bit Mode
ALU 10 8- or 24-bit data 16-bit data
With concatenation: 48- or 56-bit data With concatenation: 32- or

40-bit data

AGU address 8 24-bit address or data No

registers

AGU offset registers 8 24-bit offsets or 24-bit address or data No

AGU modifier 8 24-bit modifiers or 24-bit address or data | No

registers

Program Counter 1 24-bit address No

(PC)

Status Register (SR) 1 8- or 24-bit data 16-bit data

Operating Mode 1 8- or 24-bit data 16-bit data

Register (OMR)

Loop Counter (LC) 1 24-bit address No

Loop Address (LA) 1 24-bit address No

12.2.1 Data ALU Registers

The eight main data registers are 24 bits wide. Word operands occupy one register;
long-word operands occupy two concatenated registers. The Least Significant Bit (LSB) is
the right-most bit (Bit 0) and the Most Significant Bit (MSB) is the left-most bit (bit 23 for
word operands and bit 47 for long-word operands). In Sixteen-Bit mode, the LSB is bit 8
and bits 24 to 31 are ignored for long-word operands. The MSB is the leftmost bit.

The two accumulator extension registers are 8 bits wide. When an accumulator extension
register is a source operand, it occupies the low-order portion (bits 0-7) of the word; the
high-order portion (bits 8-23) is sign-extended (Sigeire 12-5. As a destination

operand, this register receives the low-order portion of the word, and the high-order
portion is not used. Accumulator operands occupy an entire group of three registers (e.g.,
A2:A1:A0 or B2:B1:B0). The LSB is the right-most bit (bit O in 24-bit mode and bit 8 for
16-bit mode), and the MSB is the leftmost bit (bit 55).

When a 56-bit accumulator (A or B) is specified a®arceoperand S, the accumulator
value is optionally shifted according to the Scaling mode bits SO and S1 in the Mode
Register (MR). If the data out of the shifter indicates that the accumulator extension
register is in use and the data is to be moved into a 24-bit destination, the value stored in
the destination is limited to a maximum positive or negative saturation constant to
minimize truncation error. Limiting does not occur if an individual 24-bit accumulator
register (Al, AO, B1, or BO) is specified as a source operand instead of the full 56-bit

12-4 DSP56300 Family Manual Motorola

Operand Lengths

accumulator (A or B). This limiting feature allows block floating-point operations to be
performed with error detection since the L bit in the Condition Code Register (CCR) is
latched.

15 87 0
Bus
—_
Register A2, B2 used q LSB Of
as a destination Not use Y word y
15 87 0
Register A2, B2 Not used A2/B2 Register A2, B2
used as a source
Y
15 87 0
Sign extension Contents Bus
of A2/B2 Of A2/b2

Figure 12-4. Reading and Writing the ALU Extension Registers

When a 56-bit accumulator (A or B) is specified akestinationoperand D, any 24-bit

source data to be moved into that accumulator is automatically extended to 56 bits by
sign-extending the MSB of the source operand (Bit 23) and appending the source operand
with twenty-four Os in the LSBs. For 24-bit source operands, both the automatic sign
extension and zeroing features can be disabled by specifying the destination register to be
one of the individual 24-bit accumulator registers (Al or B1).

12.2.2 AGU Registers

The twenty-four 24-bit AGU registers can be accessed as word operands for address,
address offset, address modifier, and data storage. The Rn notation designates one of the
eight address registers, RO—R7. The Nn notation designates one of the eight address offset
registers, NO-N7. The Mn notation designates one of the eight address modifier registers,
MO-M7.

12.2.3 Program Control Registers

Within the 24-bit Operating Mode Register (OMR), the Chip Operating Mode (COM)
register occupies the low-order 8 bits, the Extended chip Operating Mode (EOM) register
occupies the middle-order 8 bits, and the System Stack Control Status (SCS) register
occupies the high-order 8 bits. The OMR and the Vector Base Address (VBA) are
accessed as word operands; however, not all of their bits are defined. Reserved bits are
read as zero and should be written with zero for future compatibility.

Motorola Guide to the Instruction Set 12-5

Instruction Groups

Within the 24-bit SR, the user condition code register (CCR) occupies the low-order 8
bits, the system Mode Register (MR) occupies the middle-order 8 bits, and the Extended
Mode Register (EMR) occupies the high-order 8 bits. The SR can be accessed as a word
operand. The MR and CCR can be accessed individually as word operarfigisee

12-5). The Loop Counter (LC), Loop Last Address (LA), stack Size (SZ), System Stack
High (SSH), and System Stack Low (SSL) registers are 24 bits wide and are accessed as
word operands. The system Stack Pointer (SP) is a 24-bit register that is accessed as a
word operand. The PC, a special 24-bit-wide Program Counter register, is generally
referenced implicitly as a word operand, but it can also be referenced explicitly (by all
PC-relative operation codes) as a word operandHggeree 12-5.

23 87 0
Bus
— —— _
MR, CCR and COM
as a Destination Not Used Y LSB Y
MR, CCR and COM MR, CCR and COM
as a Source
23 g7V oy
Zero Fill Bus

Figure 12-5. Reading and Writing Control Registers

12.2.4 Data Organization in Memory

The 24-bit program memory can store both 24-bit instruction words and instruction
extension words. The 48-bit System Stack (SS) can store the concatenated PC and SR
registers (PC:SR) for subroutine calls, interrupts, and program looping. The SS also
supports the concatenated LA and LC registers (LA:LC) for program looping. The
16-bit-wide X and Y memories can store word and byte operands. Byte operands, which
usually occupy the low-order portion of the X or Y memory word, are either zero
extended or sign-extended on the XDB or YDB.

12.3 Instruction Groups
The instruction set is divided into the following groups:

= Arithmetic
= Logical

12-6 DSP56300 Family Manual Motorola

Instruction Groups

= Bit Manipulation
= Loop
= Move
= Program Control

Each instruction group is described in the following paragraphs.

12.3.1 Arithmetic Instructions

The arithmetic instructions perform all of the arithmetic operations within the Data ALU.
These instructions may affect all of the CCR bits. Arithmetic instructions are
register-based (register direct addressing modes used for operands), so that the Data ALU
operation indicated by the instruction does not use the XDB, the YDB, or the Global Data
Bus (GDB). Optional data transfers may be specified with most arithmetic instructions,
which allows for parallel data movement over the XDB and YDB or over the GDB during

a Data ALU operation. This parallel movement allows new data to be prefetched for use in
subsequent instructions and results calculated in previous instructions to be stored. The
move operation that can be specified in parallel to the instruction marked is one of the
parallel instructions listed imable 12-8 “Move Instructions,” on page 12-12. Arithmetic
instructions can be executed conditionally, based on the condition codes generated by the
previous instructions. Conditional arithmetic instructions do not allow parallel data
movement over the various data bu3eble 12-4lists the arithmetic instructions.

Table 12-4. Arithmetic Instructions

Mnemonic Description In;i:;lilEL*
* AV in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
ABS Absolute Value v
ADC Add Long with Carry v
ADD Add v
ADD (imm.) Add (immediate operand)
ADDL Shift Left and Add v
ADDR Shift Right and Add v
ASL Arithmetic Shift Left v
ASL (mb.) Arithmetic Shift Left (multi-bit)
ASL (mb., imm.) Arithmetic Shift Left (multi-bit, immediate operand)

Motorola Guide to the Instruction Set 12-7

Instruction Groups

Table 12-4. Arithmetic Instructions (Continued)

Parallel

Mnemonic Description -
Instruction

* AV in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

ASR Arithmetic Shift Right v

ASR (mb.) Arithmetic Shift Right (multi-bit)

ASR (mb., imm.) Arithmetic Shift Right (multi-bit, immediate operand)

CLR Clear an Operand v
CMP Compare v
CMP (imm.) Compare (immediate operand)
CMPM Compare Magnitude v
CMPU Compare Unsigned
DEC Decrement Accumulator
DIV Divide Iteration
DMAC Double Precision Multiply-Accumulate
INC Increment Accumulator
MAC Signed Multiply-Accumulate v
MAC (su,uu) Mixed Multiply-Accumulate
MACI Signed Multiply-Accumulate (immediate operand)
MACR Signed Multiply-Accumulate and Round v
MACRI Signed Multiply-Accumulate and Round
(immediate operand)
MAX Transfer By Signed Value v
MAXM Transfer By Magnitude v
MPY Signed Multiply v
MPY (su,uu) Mixed Multiply
MPYI Signed Multiply (immediate operand)
MPYR Signed Multiply and Round v
MPYRI Signed Multiply and Round (immediate operand)
NEG Negate Accumulator v
NORMF Fast Accumulator Normalize

12-8 DSP56300 Family Manual Motorola

Instruction Groups

Table 12-4. Arithmetic Instructions (Continued)

Mnemonic Description In;f:;lilEL*
* AV in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
RND Round v
SBC Subtract Long with Carry v
SUB Subtract v
SUB (imm.) Subtract (immediate operand)
SUBL Shift Left and Subtract v
SUBR Shift Right and Subtract v
Tcc Transfer Conditionally
TFR Transfer Data ALU Register v
TST Test an Operand v

12.3.2 Logical Instructions

The logical instructions execute in one instruction cycle and perform all logical operations
within the Data ALU (except ANDI and ORI). They can affect all of the CCR bits and,

like the arithmetic instructions, are register-based. Optional data transfers can be specified
with most logical instructions, allowing parallel data movement over the XDB and YDB

or over the GDB during a Data ALU operation. This parallel movement allows new data
to be prefetched for use in subsequent instructions and results calculated in previous
instructions to be stored.The move operation that can be specified in parallel to the
instruction marked is one of the parallel instructions listeéfainle 12-8 “Move

Instructions,” on page 12-1Zable 12-5lists the logical instructions.

Table 12-5. Logical Instructions

Parallel

Mnemonic Description .
P Instruction*

* AV in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

AND Logical AND v
AND (imm.) Logical AND (immediate operand)

ANDI AND Immediate to Control Register

CLB Count Leading Bits

Motorola Guide to the Instruction Set 12-9

Instruction Groups

Table 12-5. Logical Instructions (Continued) (Continued)

Mnemonic Description IH;SJSJEL*
* AV in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
EOR Logical Exclusive OR v
EOR (imm.) Logical Exclusive OR (immediate operand)
EXTRACT Extract Bit Field
EXTRACT (imm.) Extract Bit Field (immediate operand)
EXTRACTU Extract Unsigned Bit Field
EXTRACTU (imm.) Extract Unsigned Bit Field (immediate operand)
INSERT INSERT Bit Field
INSERT (imm.) INSERT Bit Field (immediate operand)
LSL Logical Shift Left v
LSL (mb.) Logical Shift Left (multi-bit)
LSL (mb., imm.) Logical Shift Left (multi-bit, immediate operand)
LSR Logical Shift Right v
LSR (mb.) Logical Shift Right (multi-bit)
LSR (mb.,imm.) Logical Shift Right (multi-bit, immediate operand)
MERGE Merge Two Half Words
NOT Logical Complement v
OR Logical Inclusive OR v
OR (imm.) Logical Inclusive OR (immediate operand)
ORI OR Immediate to Control Register
ROL Rotate Left v
ROR Rotate Right v

12.3.3 Bit Manipulation Instructions

The bit manipulation instructions test the state of any single bit in a memory location and
then optionally set, clear, or invert the bit. The carry bit of the CCR contains the result of
the bit testTable 12-6lists the bit manipulation instructions.

12-10 DSP56300 Family Manual Motorola

Instruction Groups

Table 12-6. Bit Manipulation Instructions

Mnemonic Description Parallel Instruction*

* AV in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

BCHG Bit Test and Change
BCLR Bit Test and Clear
BSET Bit Test and Set
BTST Bit Test

12.3.4 Loop Instructions

The hardware DO loop executes with no overhead cycles—that is, it runs as fast as
straight-line code. Replacing straight-line code with DO loops can significantly reduce
program memory usage. The loop instructions control hardware looping either by
Initiating a program loop and establishing looping parameters or by restoring the registers
by pulling the SS when terminating a loop. Initialization includes saving registers used by

a program loop (LA and LC) on the SS so that program loops can nest The address of the
first instruction in a program loop is also saved to allow no-overhead looping. The
ENDDO instruction is not used for normal termination of a DO loop; it terminates a DO
loop before the LC is decremented td &ble 12-7lists the loop instructions.

Table 12-7. Loop Instructions

Parallel

Mnemonic Description -
Instruction

* AV in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.

BRKcc Conditionally Break the current Hardware Loop
DO Start Hardware Loop
DO FOREVER Start Forever Hardware Loop
ENDDO Abort and Exit from Hardware Loop

12.3.5 Move Instructions

The move instructions perform data movement over the XDB and YDB or over the GDB.
Move instructions, most of which allow Data ALU opcode in parallel, do not affect the
CCR, except the limit bit L, if limiting is performed when reading a Data ALU
accumulator registef.able 12-8lists the move instructions.

Motorola Guide to the Instruction Set 12-11

Instruction Groups

Table 12-8. Move Instructions

Mnemonic Description Parallel Instruction
* AV in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
LUA Load Updated Address
LRA Load PC-Relative Address
MOVE Move Data Register v
MOVEC Move Control Register
MOVEM Move Program Memory
MOVEP Move Peripheral Data
U MOVE Update Move v
VSL Viterbi Shift Left

12.3.6 Program Control Instructions

The program control instructions include jumps, conditional jumps, and other instructions
affecting the PC and SS. Program control instructions may affect the CCR bits as
specified in the instruction. Optional data transfers over the XDB and YDB may be
specified in some of the program control instructiohable 12-9lists the program control
instructions.

Table 12-9. Program Control Instructions

Mnemonic Description Parallel Instruction*
* AV in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
IFcc.U Execute Conditionally and Update CCR
IFcc Execute Conditionally
Bcc Branch Conditionally
BRA Branch Always
BScc Branch to Subroutine Conditionally
BSR Branch to Subroutine Always
DEBUGcc Enter into the Debug Mode Conditionally
DEBUG Enter into the Debug Mode Always

12-12 DSP56300 Family Manual Motorola

Guide to Instruction Descriptions

Table 12-9. Program Control Instructions (Continued)

Mnemonic Description Parallel Instruction*
* A in the “Parallel Instruction” column means that the instruction is a parallel instruction. A blank table cell
indicates that the instruction is not a parallel instruction.
Jcc Jump Conditionally
JMP Jump Always
JCLR Jump if Bit Clear
JSET Jump if Bit Set
JScc Jump to Subroutine Conditionally
JSR Jump to Subroutine Always
JSCLR Jump to Subroutine if Bit Clear
JSSET Jump to Subroutine if Bit Set
NOP No Operation
REP Repeat Next Instruction
RESET Reset On-Chip Peripheral Devices
RTI Return from Interrupt
RTS Return from Subroutine
STOP Stop Processing (Low-Power Standby)
TRAPcc Trap Conditionally
TRAP Trap Always
WAIT Wait for Interrupt (Low-Power Standby)

12.4 Guide to Instruction Descriptions
The following information is included in each instruction description:

= Name and Mnemonididighlighted inbold type for easy reference.

= Assembler Syntax and Operatidme syntax line for each instruction symbolically
describes the corresponding operation. If several operations are indicated on a
single line in the operation field, those operations may not occur in the order
shown, but are generally assumed to occur in parallel. Any parallel data move is
indicated in parentheses in both the assembler syntax and operation fields. An
optional letter in the mnemonic appears in parentheses in the assembler syntax
field.

Motorola Guide to the Instruction Set 12-13

Guide to Instruction Descriptions

= Description:Includes any special cases and/or condition code anomalies.

= Condition CodesThe Status Register (SR) is depicted with the condition code bits
that can be affected by the instruction. Not all bits in the SR are used. Reserved bits
are indicated with gray boxes.

= Instruction Format:The instruction fields, the instruction opcode, and the
instruction extension word are specified in the instruction syntax. Optional
extension words are so indicated. The values that can be assumed by each of the
variables in the various instruction fields are shown under the instruction field
heading.

12.4.1 Notation

Each instruction description contains symbols to abbreviate certain operands and
operationsTable 12-10lists the symbols and their respective meanings. Depending on
the context, registers refer either to the register itself or to the contents of the register.

Table 12-10. Instruction Description Notation

Symbol Meaning
Data ALU Registers Operands
Xn Input Register X1 or X0 (24 bits)
Yn Input Register Y1 or YO (24 bits)
An Accumulator Registers A2, A1, AO (A2—8 bits, A1 and A0O—24 bits)
Bn Accumulator Registers B2, B1, BO (B2—8 bits, B1 and BO—24 bits)
X Input Register X = X1: X0 (48 bits)
Y Input Register Y = Y1: YO 48 bits)
A Accumulator A = A2: Al: AO (56 bits)
B Accumulator B = B2: B1: BO (56 bits)
AB Accumulators A and B = Al: B1 (48 bits)
BA Accumulators B and A = B1: Al (48 bits)
A10 Accumulator A = Al: AO (48 bits)
B10 Accumulator B = B1:B0 (48 bits)
Program Control Unit Registers Operands
PC Program Counter Register (24 bits)
MR Mode Register (8 hits)

12-14 DSP56300 Family Manual Motorola

Guide to Instruction Descriptions

Table 12-10. Instruction Description Notation (Continued)
Symbol Meaning
CCR Condition Code Register (8 bits)
SR Status Register = EMR:MR:CCR (24 bits)
EOM Extended Chip Operating Mode Register (8 bits)
COM Chip Operating Mode Register (8 bits)
OMR Operating Mode Register = EOM:COM (24 bits)
SZ System Stack Size Register (24 bits)
SC System Stack Counter Register (5 bits)
VBA Vector Base Address (24 bits, eight set to 0)
LA Hardware Loop Address Register (24 bits)
LC Hardware Loop Counter Register (24 bits)
SP System Stack Pointer Register (24 bits)
SSH Upper Portion of the Current Top of the Stack (24 bits)
SSL Lower Portion of the Current Top of the Stack (24 bits)
SS System Stack RAM = SSH: SSL (16 locations by 32 hits)
Address Operands
ea Effective Address
eax Effective Address for X Bus
eay Effective Address for Y Bus
XXXXXX Absolute or Long Displacement Address (24 bits)
XXX Short or Short Displacement Jump Address (12 bits)
XXX Short Displacement Jump Address (9 bits)
aaa Short Displacement Address (7 bits, sign-extended)
aa Absolute Short Address (6 bits, zero-extended)
pp High 1/O Short Address (6 bits, ones-extended)
qaq Low I/O Short Address (6 bits)
<...> Specifies the Contents of the Specified Address
X: X Memory Reference
Y: Y Memory Reference
Motorola Guide to the Instruction Set 12-15

Guide to Instruction Descriptions

Table 12-10. Instruction Description Notation (Continued)

Symbol Meaning
L: Long Memory Reference = X Concatenated with Y
P: Program Memory Reference
Miscellaneous Operands
S, Sn Source Operand Register
D, Dn Destination Operand Register
D [n] Bit n of D Destination Operand Register
#n Immediate Short Data (5 bits)
#XX Immediate Short Data (8 bits)
H#XXX Immediate Short Data (12 bits)
HXXXXXX Immediate Data (24 bits)
r Rounding Constant
#bbbbb Operand Bit Select (5 bits)
Unary Operands
- Negation Operator
— Logical NOT Operator (Overbar)
PUSH Push Specified Value onto the System Stack (SS) Operator
PULL Pull Specified Value from the SS Operator
READ Read the Top of the SS Operator
PURGE Delete the Top Value on the SS Operator
Il Absolute Value Operator
Binary Operands
+ Addition Operator
- Subtraction Operator
* Multiplication Operator
+ Division Operator
+ Logical Inclusive OR Operator
. Logical AND Operator
ad Logical Exclusive OR Operator

12-16

DSP56300 Family Manual

Motorola

Guide to Instruction Descriptions

Table 12-10. Instruction Description Notation (Continued)

Symbol Meaning

O “Is Transferred To” Operator

Concatenation Operator

Addressing Mode Operators

<< I/O Short Addressing Mode Force Operator

< Short Addressing Mode Force Operator

> Long Addressing Mode Force Operator

Immediate Addressing Mode Operator

#> Immediate Long Addressing Mode Force Operator
#< Immediate Short Addressing Mode Force Operator

Mode Register Symbols

LF Loop Flag Bit Indicating When a DO Loop is in Progress
DM Double-Precision Multiply bit indicating whether the chip is in Double-Precision Multiply
mode
SB Sixteen-Bit Arithmetic Mode
RM Rounding Mode
S1, S0 Scaling Mode Bits Indicating the Current Scaling Mode
11,10 Interrupt Mask Bits Indicating the Current Interrupt Priority Level

Condition Code Register (CCR) Symbols

S Block Floating Point Scaling Bit Indicating Data Growth Detection
L Limit Bit Indicating Arithmetic Overflow and/or Data Shifting/Limiting
E Extension Bit Indicating if the Integer Portion of Data ALU result is in Use
U Unnormalized Bit Indicating if the Data ALU Result is Unnormalized
N Negative Bit Indicating if Bit 55 of the Data ALU Result is Set
z Zero Bit Indicating if the Data ALU Result Equals Zero
\% Overflow Bit Indicating whether Arithmetic Overflow occurred in Data ALU
C Carry Bit Indicating if a Carry or Borrow occurred in Data ALU Result
) Optional Letter, Operand, or Operation
(...) Any Arithmetic or Logical Instruction that Allows Parallel Moves

Motorola Guide to the Instruction Set 12-17

Guide to Instruction Descriptions

Table 12-10. Instruction Description Notation (Continued)

Symbol Meaning
EXT Extension Register Portion of an Accumulator (A2 or B2)
LS Least Significant
LSP Least Significant Portion of an Accumulator (A0 or B0)
MS Most Significant
MSP Most Significant Portion of a n Accumulator (A1 or B1)
S/L Shifting and/or Limiting on a Data ALU Register
Sign Ext Sign Extension of a Data ALU Register
Zero Zeroing of a Data ALU Register
Address ALU Registers Operands
Rn Address Registers RO-R7 (24 bits)
Nn Address Offset Registers NO-N7 (24 bits)
Mn Address Modifier Registers MO-M7 (24 bits)

12.4.2 Condition Code Computation

The Condition Code Register (CCR) portion of the Status Register (SR) consists of eight
bits (sedrigure 12-6. The E, U, N, Z, V, and C bits are true condition code bits that
reflect the condition of the result of a Data ALU operation. These condition code bits are
not “sticky” and are not affected by Address ALU calculations or by data transfers over
the XDB, YDB, or GDB. The L bit is a “sticky” overflow bit that indicates an overflow in

the Data ALU or data limiting when the contents of the A and/or B accumulators are
moved. The S bit is a “sticky” bit used in block floating-point operations to indicate the

need to scale the number in A or B.

7 6 5 4 3 2 1 0
S L E U N Z Y, C
CCR
S — Scaling bit N — Negative bit

L — Limit bit Z — Zero bit
E — Extension bit V — Overflow bit
U — Unnormalized bit C — Carry bit

Figure 12-6. Condition Code Register (CCR)

12-18

DSP56300 Family Manual

Guide to Instruction Descriptions

Every instruction contains an illustration showing how the instruction affects the various
condition codes. An instruction can affect a condition code according to three different
rules, as described fable 12-11

Table 12-11. Instruction Effect on Condition Code

Standard Mark Effect on the Condition Code

— This bit is unchanged by the instruction.

v This bit is changed by the instruction, according to the standard definition of the condition
code.
* This bit is changed by the instruction, according to a special definition of the condition

code depicted as part of the instruction description.

Table 12-12. Condition Code Register (CCR) Bit Definitions

Bit Number Bit Name Reset Value Description

7 S 0 Scaling

Computed, according to the logical equations shown here when an
instruction or a parallel move reads the contents of accumulator A or B
to XDB or YDB. The S bit is a “sticky” bit, cleared only by an instruction
that specifically clears it or by hardware reset.

S0 S1 | Scaling Mode S Bit Equation

0 0 |No scaling S = (A46 XOR A45) OR (B46 XOR
B45) OR S (previous)

0 1 |[Scaleup S = (A47 XOR A46) OR (B47 XOR
B46) OR S (previous)

1 0 |Scaledown |S=(A45XOR A44) OR (B45 XOR
B44) OR S (previous)

1 1 Reserved S undefined

7 cont. S 0 Scaling cont.

The S bit detects data growth, which is required in Block Floating-Point
FFT operation. The S bit is set if the absolute value in the accumulator,
before scaling, is greater than or equal to 0.25 and smaller than 0.75.
Typically, the bit is tested after each pass of a radix 2
decimation-in-time FFT and, if it is set, the appropriate scaling mode
should be activated in the next pass. The Block Floating-Point FFT
algorithm is described in the Motorola application note APR4/D,
Implementation of Fast Fourier Transforms on Motorola’s
DSP56000/DSP56001 and DSP96002 Digital Signal Processors.

Motorola Guide to the Instruction Set 12-19

Guide to Instruction Descriptions

Table 12-12.

Condition Code Register (CCR) Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

0

Limit

Set if the Overflow bit (V) is set or if an instruction or a parallel move
causes the data shifter/limiters to perform a limiting operation while
reading the contents of accumulator A or B to the XDB or YDB bus. In
Arithmetic Saturation mode, the limit bit is also set when an arithmetic
saturation occurs in the Data ALU result. Not affected otherwise. The L
bit is “sticky” and must be cleared only by an instruction that specifically
clears it or by hardware reset.

Extension

Cleared if all the bits of the signed integer portion of the Data ALU
result are the same (i.e., the bit patterns are either 00. .. 00 or 11. . .
11). Otherwise, this bit is set. The signed integer portion is defined by
the scaling mode, as shown here.

SO S1 | Scaling Mode S Bit Equation

0 0 No scaling Bits 55, 54.............. 48, 47
0 1 Scale down Bits 55, 54.............. 49, 48
1 0 Scale up Bits 55, 54.............. 47.46

The signed integer portion of an accumulator is not necessarily the
same as its extension register portion. It consists of the most significant
8, 9, or 10 bhits of that accumulator, depending on the scaling mode.
The extension register portion of an accumulator (A2 or B2) is always
the eight Most Significant Bits of that accumulator. The E bit refers to
the signed integer portion of an accumulator and not the extension
register portion of that accumulator. For example, if the current scaling
mode is set for no scaling (S1 = SO = 0), the signed integer portion of
the A or B accumulator consists of bits 47 through 55. If the A
accumulator contained the signed 56-bit value $00:800000:000000 as
a result of a Data ALU operation, the E bit would be set (E = 1) since
the 9 Most Significant Bits of that accumulator are not all the same (i.e.,
neither 00...00 nor 11...11). Thus, data limiting occurs if that 56-bit
value is specified as a source operand in a move-type operation. This
limiting operation results in either a positive or negative 24-bit or 48-bit
saturation constant stored in the specified destination. The signed
integer portion of an accumulator and the extension register portion of
an accumulator are the same only in the “Scale Down” scaling mode
(i,e., S1=0and S0 =1).

12-20

DSP56300 Family Manual

Motorola

Guide to Instruction Descriptions

Table 12-12.

Condition Code Register (CCR) Bit Definitions (Continued)

Bit Number

Bit Name

Reset Value

Description

4

u

0

Unnormalized

Set if the two Most Significant Bits of the Most Significant Portion
(MSP) of the Data ALU result are the same. This bit is cleared
otherwise. The MSP is defined by the scaling mode. The U bit is
computed as shown here. The result of calculating the U bit in this
fashion is that the definition of a positive normalized number p is 0.5 <
p < 1.0 and the definition of negative normalized number nis-1.0<n <
-0.5.

S1 SO0 | Scaling Mode U Bit Computation

0 0 No Scaling U = (Bit 47 xor Bit 46)

0 1 Scale Down U = (Bit 48 xor Bit 47)

1 0 Scale Up U = (Bit 46 xor Bit 45)

Negative
Set if the MS bit (Bit 55 in arithmetic instructions or Bit 47 in logical
instructions) of the Data ALU result is set. Otherwise, this bit is cleared.

Zero
Set if the Data ALU result equals 0. Otherwise, this bit is cleared.

Overflow

Set if an arithmetic overflow occurs in the 56-bit Data ALU result.
Otherwise, this bit is cleared. This indicates that the result cannot be
represented in the 56-bit accumulator, so the accumulator overflows. In
Arithmetic Saturation mode, an arithmetic overflow occurs if the Data
ALU result is not representable in the accumulator without the
extension part (i.e., 48-bit accumulator; 32-bit in the Sixteen Bit mode).

Carry

Set if a carry is generated out of the MSB of the Data ALU result of an
addition or if a borrow is generated out of the MSB of the Data ALU
result of a subtraction. Otherwise, this bit is cleared. The carry or
borrow is generated out of Bit 55 of the Data ALU result. The C bit is
also affected by bit manipulation, rotate, shift, and compare
instructions. The C bit is not affected by Arithmetic Saturation mode.

Motorola

Guide to the Instruction Set 12-21

Instruction Partial Encoding

12.5 Instruction Partial Encoding

This section gives the encodings for the following:

= Various groupings of registers used in the instruction encodings
= Condition Code combinations

= Addressing

= Addressing modes

The symbols used in decoding the various fields of an instruction are identical to those

used in the Opcode section of the individual instruction descriptions.

1251

Partial Encodings for Use in Instruction Encoding

Table 12-13.

Partial Encodings for Use in Instruction Encoding

Destination Accumulator

Data ALU Operands Encoding 1

Data ALU Source Operands

Encoding Encoding
D/S d/S/D S J S JJ
A 0 0 X0 00
B 1 1 YO 01
X1 10
Y1l 11

Program Control Unit Register

Data ALU Operands Encoding 2

Effective Addressing Mode

Encoding Encoding 1
Register EE S JJJ (Rn)-Nn 000rrr
MR 00 B/A* 001 (Rn)+Nn 001rrr
CCR 01 X 010 (Rn)-— 010rrr
COM 10 Y 011 (Rn)+ O1lrrr
EOM 11 X0 100 (Rn) 100rrr
YO 101 (Rn+Nn) 101rrr
X1 110 —(Rn) 111rrr
Y1 111 Absolute 110000
address
* The source accumulator is B if the Immediate data 110100
destination accumulator (selected by “r 11" refers to an address reqister
the d bit in the opcode) is A, or A if g
L . RO-R7
the destination accumulator is B.

12-22

DSP56300 Family Manual

Motorola

Instruction Partial Encoding

Table 12-13. Partial Encodings for Use in Instruction Encoding

Data ALU Operands Encoding 3

SSS/sss S,D qqq S,D ggag S,D
000 reserved 000 reserved 000 B/A*
001 reserved 001 reserved 001 reserved
010 Al 010 A0 010 reserved
011 Bl 011 BO 011 reserved
100 X0 100 X0 100 X0
101 YO 101 YO 101 YO
110 X1 110 X1 110 X1
111 Y1 111 Y1 111 Y1

* The selected accumulator is B if the
source two accumulator is B.

source two accumulator (selected by the d bit in the opcode) is A, or A if the

Memory/Peripheral Space

Effective Addressing Mode

Effective Addressing Mode

Encoding 2 Encoding 3
Space Mode MMMRRR Mode MMMRRR
X Memory (Rn)-Nn 00O0rrr (Rn)-Nn 00O0rrr
Y Memory (Rn)+Nn 001rrr (Rn)+Nn 0021rrr
(Rn)— 01O0rrr (Rn)— 01O0rrr
(Rn)+ O1llrrr (Rn)+ O1llrrr
(Rn) 100rrr (Rn) 100rrr
(Rn+Nn) 101rrr (Rn+Nn) 101rrr
—(Rn) 112rrr —(Rn) 111rrr
Absolute 110000
address
“r r r” refers to an address register RO—R7
Effective Addre_ssing Mode Six-Bit Encoding for All On-Chip Registers
Encoding 4
Mode MMRRR Destination Register DdDd% 2 dDdD /
(Rn)—-Nn 0O0rrr 4 registers in Data ALU 0001DD
(Rn)+Nn Olrrr 8 accumulators in Data ALU 001DDD
(Rn)— 10rrr 8 address registers in AGU O10TTT
(Rn)+ 1lrrr 8 address offset registers in AGU O11INNN
“r r r" refers to an address register 8 address modifier registers in AGU 100FFF
RO-R7
1 address register in AGU 101EEE
2 program controller register 110VVVv
8 program controller registers 111GGG

See Table 12-14 for the specific encodings.

Motorola

Guide to the Instruction Set

12-23

Instruction Partial Encoding

Table 12-14. Triple-Bit Register Encoding
Code 1DD DDD TTT NNN FFF EEE VVWV GGG
000 — AO RO NO MO — VBA Sz
001 — BO R1 N1 M1 — SC SR
010 — A2 R2 N2 M2 EP — OMR
011 — B2 R3 N3 M3 — — SP
100 X0 Al R4 N4 M4 — — SSH
101 X1 B1 R5 N5 M5 — —_ SSL
110 YO A R6 N6 M6 — — LA
111 Y1 B R7 N7 M7 — — LC
Table 12-15. Long Move Register Encoding
S S1 S2 S?L D D1 D2 SigrE)Ext Zgro LLL
A10 Al AO no A10 Al AO no no 000
B10 Bl BO no B10 Bl BO no no 001
X X1 X0 no X X1 X0 no no 010
Y Y1 YO no Y1 YO no no 011
A Al A0 yes Al A0 A2 no 100
B B1 BO yes B1 BO B2 no 101
AB A yes AB A A2,B2 A0,BO 110
BA A yes BA B A B2,A2 BO,AO 111
Table 12-16. Partial Encodings for Use in Instructions Encoding, 2
Data ALU Sourge Registers AGU Address and Offset Registers Encoding
Encoding
S JJJ Destination Address Register D dddd
B/A* 000 RO-R7 onnn
X0 100 NO-N7 1nnn
YO 101
X1 110
Y1 111
12-24 DSP56300 Family Manual Motorola

Instruction Partial Encoding

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

Data ALU Multiply Operands Encoding 1

Data ALU Multiply Operands

Encoding 2
S1*S2 QQQ S1*8S2 QQQ S QQ
X0,X0 000 X0,Y1 100 Y1 00
Y0,YO 001 Y0,X0 101 X0 01
X1,X0 010 X1,Y0 110 YO 10
Y1,Y0 011 Y1,X1 111 X1 11
NOTE: Only the indicated S1 * S2 combinations are valid. X1 * X1 and Y1 *
Y1 are not valid.

Data ALU Multiply Operands

Data ALU Multiply Operands Encoding 4

Encoding 3
S qd S1*82 QQQQ S1*S82 QQQQ
X0 00 X0,X0 0000 X0,Y1 0100
YO 01 YO0,YO0 0001 Y0,X0 0101
X1 10 X1,X0 0010 X1,Y0 0110
Y1 11 Y1,Y0 0011 Y1,X1 0111
Data ALU Multiply Sign Encoding X1,X1 1000 Y1,X0 1100
Sign k Y1,Y1 1001 X0,Y0 1101
+ 0 X0,X1 1010 YO0,X1 1110
- 1 YO0,Y1 1011 X1,Y1 1111
Five-Bit Register Encoding 1 Write Control Encoding
D/S ddddd / eeeee D/S ddddd / eeeee Operation W
X0 00100 B2 01011 Read Registeror | 0
Peripheral
X1 00101 Al 01100 Write Registeror | 1
Peripheral
YO 00110 Bl 01101 ALU Registers Encoding
Y1 00111 A 01110 inati
Destlr?atlon DDDD
Register
AO 01000 B 01111 4 registers in 01DD
Data ALU
BO 01001 RO-R7 10rrr 8 accumulators 1DDD
in Data ALU
A2 01010 NO-N7 11nnn See Table 12-14, “Triple-Bit
Register Encoding,” on page 12-24
for the specific encodings.

“r r = Rn number, “n n n” = Nn number

Motorola

Guide to the Instruction Set

12-25

Instruction Partial Encoding

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

Immediate Data ALU Operand Encoding

Write Control Encoding

n SSSS constant Operation W
1 00001 010000000000000000000000 Read Register or 0
Peripheral
2 00010 001000000000000000000000 Write Register or 1
Peripheral
3 00011 000100000000000000000000 ALU Registers Encoding
4 00100 000010000000000000000000 Destination
. DDDD
Register
5 00101 000001000000000000000000 4 registers in 01DD
Data ALU
6 00110 000000100000000000000000 8 accumulators 1DDD
in Data ALU
7 00111 000000010000000000000000 See Table 12-14 on page 12-24 for
the specific encodings.
8 01000 000000001000000000000000 X:Y: Move Operands Encoding
9 01001 000000000100000000000000 X Effective
Addressing MMRRR
Mode
10 01010 000000000010000000000000 (Rn)+Nn Olsss
11 01011 000000000001000000000000 (Rn)— 10sss
12 01100 000000000000100000000000 (Rn)+ l1sss
13 01101 000000000000010000000000 (Rn) 00sss
14 01110 000000000000001000000000
Y Effective
Addressing mmrr
Mode
15 01111 00000000000000010000000000 (Rn)+Nn 01tt
16 10000 00000000000000001000000000 (Rn)— 10tt
17 10001 000000000000000001000000 (Rn)+ 11tt
18 10010 000000000000000000100000 (Rn) 0O0tt
19 10011 000000000000000000010000 where the following apply:
“s s s” refers to an address register
RO-R7 and “t t” refers to an address
register R4—R7 or RO-R3 in the
opposite address register bank from
that used in the X effective address
20 10100 000000000000000000001000
21 10101 000000000000000000000100
22 10110 000000000000000000000010

12-26

DSP56300 Family Manual

Motorola

Instruction Partial Encoding

Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

X:R Operand Registers Encoding Signed:ELIqu;igir:qzleartial
S1,D1 ff D2 F ss/su/uu Ss
X0 00 YO 0 ss 00
X1 01 Y1 1 su 10
A 10 uu 11
B 11 (Reserved) 01
R:Y Operand Registers Encoding SignedéL:]r;iigirr]]egdzPartial
D1 e S2,D2 ff su/uu s
X0 0 YO 00 su 0
X1 1 Y1 01 uu 1
A 10
B 11
Single-Bit Special Register Encoding Five-Bit Register Encoding 2
d X'gp%'c‘;"dsz ! Rgpifj: ! s1,01 ddddd
0 A - Xi<ea>, X0 YO L A,A L MO-M7 00nnn
- A Y:<ea>
1 B _ X:i<ea>, X0 YO _.B,B . EP 01010
- B Y:<ea>
Move Operand Encoding VBA 10000
S1,D1 ee S2,D2 ff SC 10001
X0 00 YO 00 Sz 11000
X1 01 Y1 01 SR 11001
A 10 10 OMR 11010
B 11 B 11 SP 11011
SSH 11100
SSL 11101
LA 11110
LC 11111
where “n n n” = Mn number (M0-M7)
Motorola Guide to the Instruction Set 12-27

Instruction Partial Encoding

Table 12-17. Condition Code Computation Equation

“cc” Mnemonic Condition
CC(HS) Carry Clear (higher or same) Cc=0
CS(LO) Carry Set (lower) c=1
EC Extension Clear E=0
EQ Equal z=1
ES Extension Set E=1
GE Greater than or Equal N [v=0
GT Greater Than Z+(N] V)=0
LC Limit Clear L=0
LE Less than or Equal Z+(N] V)=1
LS Limit Set L=1
LT Less Than N []v=1
Mi Minus N=1
NE Not Equal Z=0
NR Normalized Z+(U®E)=1
PL Plus N=0
NN Not Normalized Z+(U®E)=0
NOTES:

U denotes the logical complement of U.

+ denotes the logical OR operator.

® denotes the logical AND operator.

[] denotes the logical Exclusive OR operator.

Table 12-18. Condition Codes Encoding

Mnemonic CcCcCcC Mnemonic cccc
CC(HS) 0000 CS(LO) 1000
GE 0001 LT 1001
NE 0010 EQ 1010

PL 0011 Ml 1011

12-28

DSP56300 Family Manual

Motorola

Instruction Partial Encoding

Table 12-18. Condition Codes Encoding (Continued)
Mnemonic cccc Mnemonic cccc
NN 0100 NR 1100
EC 0101 ES 1101
LC 0110 LS 1110
GT 0111 LE 1111
The condition code computation equations are listed in Table 12-17.
on page 12-28.

12.5.2 Parallel Instruction Encoding of the Operation Code

The operation code encoding for the instructions that allow parallel moves is divided into
the multiply and non-multiply instruction encodings shown in the following subsections.

12.5.2.1 Multiply Instruction Encoding

The 8-bit operation code for multiply instructions allowing parallel moves has different
fields than the non-multiply instruction operation code. The 8-bit operation cAd@3Q

dkkk where

= QQQ =selects the inputs to the multiplier (Sedle 12-17 “Condition Code
Computation Equation,” on page 12-28)

= kkk = three unencoded bits k2, k1, kO
= d = destination accumulator

d=0- A
d=1-B
Table 12-19. Operation Code KO-2 Decode
Code k2 k1 kO
0 positive mpy only don’t round
1 negative mpy and acc round
Motorola Guide to the Instruction Set 12-29

Instruction Partial Encoding

12.5.2.2 Non-Multiply Instruction Encoding

The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields
defining which instruction the operation code represents and one bit defining the
destination accumulator register. The 8-bit operation ca@gld 3 J D k k k where

= JJJ=1/2instruction number

s k k k=1/2 instruction number

[| D = O — A
D=1-B
Table 12-20. Non-Multiply Instruction Encoding
D=0 D=1 k k k
JJJ Src Src
Oper Oper 000 001 010 011 100 101 110 111
*
000 B A MOVEl TFR ADDR TST CMP SUBR CMPM
001 B A ADD RND ADDL CLR SuUB * SUBL NOT
010 B A — — ASR LSR — — ABS ROR
011 B A — — ASL LSL — — NEG ROL
010 X1 X0 X1 X0 ADD ADC — — SUB SBC — —
011 Y1YO Y1YO0 ADD ADC — — SUB SBC — —
100 X0_0 X0_0 ADD TFR OR EOR SUB CMP AND CMPM
101 Y0_O Y0_O ADD TFR OR EOR SUB CMP AND CMPM
110 X1 0 X1 0 ADD TFR OR EOR SUB CMP AND CMPM
111 Y1 0 Y1 0 ADD TFR OR EOR SUB CMP AND CMPM
NOTES:
1. Special case 1.
2. * = Reserved

Table 12-21. Special Casel

OPERCODE Operation
00000000 MOVE
00001000 reserved

12-30 DSP56300 Family Manual Motorola

	Chapter 12 Guide to the Instruction Set
	This chapter presents the DSP56300 instruction format as well as partial encodings for use in ins...
	12.1 Instruction Formats and Syntax
	The DSP56300 core instructions consist of one or two 24-bit words—an operation word and an option...
	Figure 12-1. General Formats of an Instruction Word

	The Data Bus Movement field provides the operand reference type, which selects the type of memory...
	The Opcode field of the operation word specifies the Data ALU operation or the Program Control Un...
	The instruction syntax has two formats—parallel and non-parallel, as Table 12-1 and Table 12-2 sh...
	Table 12-1. Parallel Instruction Format

	Example 1
	MAC
	X0,Y0,A
	X:(R0)+,X0
	Y:(R4)+,Y0
	Example 2
	MOVE
	X:-(R1),X1
	Example 3
	MAC
	X1,Y1,B
	Example 4
	MPY
	X0,Y0,A
	IFeq
	Assembly-language source codes for some typical one-word instructions are shown in Table 12-1. Be...
	A non-parallel instruction is organized into two columns: opcode and operands. Assembly-language ...
	Table 12-2. Non-Parallel Instruction Format

	Example 1:
	JEQ
	(R5)
	Example 2:
	MOVEP
	#data,X:ipr
	Example 3:
	RTS
	12.2 Operand Lengths
	Operand lengths are defined as follows: a byte is 8 bits, a word is 16 bits, a long word is 48 bi...
	Figure 12-2. Operand Lengths

	In Sixteen-Bit Arithmetic mode the operand lengths are as follows: a byte is 8 bits, a word is 16...
	Figure 12-3. Operand Lengths in Sixteen-Bit Mode

	Table 12-3 shows the operand lengths supported by the registers of the DSP56300 core.
	Table 12-3. Register Operand Lengths

	10
	8
	8
	8
	1
	1
	1
	1
	1
	12.2.1 Data ALU Registers
	The eight main data registers are 24 bits wide. Word operands occupy one register; long-word oper...
	The two accumulator extension registers are 8 bits wide. When an accumulator extension register i...
	When a 56-bit accumulator (A or B) is specified as a source operand S, the accumulator value is o...
	Figure 12-4. Reading and Writing the ALU Extension Registers

	When a 56-bit accumulator (A or B) is specified as a destination operand D, any 24-bit source dat...

	12.2.2 AGU Registers
	The twenty-four 24-bit AGU registers can be accessed as word operands for address, address offset...

	12.2.3 Program Control Registers
	Within the 24-bit Operating Mode Register (OMR), the Chip Operating Mode (COM) register occupies ...
	Within the 24-bit SR, the user condition code register (CCR) occupies the low-order 8 bits, the s...
	Figure 12-5. Reading and Writing Control Registers

	12.2.4 Data Organization in Memory
	The 24-bit program memory can store both 24-bit instruction words and instruction extension words...

	12.3 Instruction Groups
	The instruction set is divided into the following groups:
	Arithmetic
	Logical
	Bit Manipulation
	Loop
	Move
	Program Control

	Each instruction group is described in the following paragraphs.
	12.3.1 Arithmetic Instructions
	The arithmetic instructions perform all of the arithmetic operations within the Data ALU. These i...
	Table 12-4. Arithmetic Instructions (Continued)

	ABS
	÷
	ADC
	÷
	ADD
	÷
	ADD (imm.)
	ADDL
	÷
	ADDR
	÷
	ASL
	÷
	ASL (mb.)
	ASL (mb., imm.)
	ASR
	÷
	ASR (mb.)
	ASR (mb., imm.)
	CLR
	÷
	CMP
	÷
	CMP (imm.)
	CMPM
	÷
	CMPU
	DEC
	DIV
	DMAC
	INC
	MAC
	÷
	MAC (su,uu)
	MACI
	MACR
	÷
	MACRI
	MAX
	÷
	MAXM
	÷
	MPY
	÷
	MPY (su,uu)
	MPYI
	MPYR
	÷
	MPYRI
	NEG
	÷
	NORMF
	RND
	÷
	SBC
	÷
	SUB
	÷
	SUB (imm.)
	SUBL
	÷
	SUBR
	÷
	Tcc
	TFR
	÷
	TST
	÷
	12.3.2 Logical Instructions
	The logical instructions execute in one instruction cycle and perform all logical operations with...
	Table 12-5. Logical Instructions (Continued) (Continued)

	AND
	÷
	AND (imm.)
	ANDI
	CLB
	EOR
	÷
	EOR (imm.)
	EXTRACT
	EXTRACT (imm.)
	EXTRACTU
	EXTRACTU (imm.)
	INSERT
	INSERT (imm.)
	LSL
	÷
	LSL (mb.)
	LSL (mb., imm.)
	LSR
	÷
	LSR (mb.)
	LSR (mb.,imm.)
	MERGE
	NOT
	÷
	OR
	÷
	OR (imm.)
	ORI
	ROL
	÷
	ROR
	÷
	12.3.3 Bit Manipulation Instructions
	The bit manipulation instructions test the state of any single bit in a memory location and then ...
	Table 12-6. Bit Manipulation Instructions �

	BCHG
	BCLR
	BSET
	BTST
	12.3.4 Loop Instructions
	The hardware DO loop executes with no overhead cycles—that is, it runs as fast as straight-line c...
	Table 12-7. Loop Instructions �

	BRKcc
	DO
	DO FOREVER
	ENDDO
	12.3.5 Move Instructions
	The move instructions perform data movement over the XDB and YDB or over the GDB. Move instructio...
	Table 12-8. Move Instructions �

	LUA
	LRA
	MOVE
	÷
	MOVEC
	MOVEM
	MOVEP
	U MOVE
	÷
	VSL
	12.3.6 Program Control Instructions
	The program control instructions include jumps, conditional jumps, and other instructions affecti...
	Table 12-9. Program Control Instructions (Continued)

	IFcc.U
	IFcc
	Bcc
	BRA
	BScc
	BSR
	DEBUGcc
	DEBUG
	Jcc
	JMP
	JCLR
	JSET
	JScc
	JSR
	JSCLR
	JSSET
	NOP
	REP
	RESET
	RTI
	RTS
	STOP
	TRAPcc
	TRAP
	WAIT
	12.4 Guide to Instruction Descriptions
	The following information is included in each instruction description:
	Name and Mnemonic: Highlighted in bold type for easy reference.
	Assembler Syntax and Operation: The syntax line for each instruction symbolically describes the c...
	Description: Includes any special cases and/or condition code anomalies.
	Condition Codes: The Status Register (SR) is depicted with the condition code bits that can be af...
	Instruction Format: The instruction fields, the instruction opcode, and the instruction extension...

	12.4.1 Notation
	Each instruction description contains symbols to abbreviate certain operands and operations. Tabl...
	Table 12-10. Instruction Description Notation (Continued)

	Xn
	Yn
	An
	Bn
	X
	Y
	A
	B
	AB
	BA
	A10
	B10
	PC
	MR
	CCR
	SR
	EOM
	COM
	OMR
	SZ
	SC
	VBA
	LA
	LC
	SP
	SSH
	SSL
	SS
	ea
	eax
	eay
	xxxxxx
	xxx
	xxx
	aaa
	aa
	pp
	qq
	<. . .>
	X:
	Y:
	L:
	P:
	S, Sn
	D, Dn
	D [n]
	#n
	#xx
	#xxx
	#xxxxxx
	r
	#bbbbb
	–
	—
	PUSH
	PULL
	READ
	PURGE
	| |
	+
	–
	*
	¸, /
	+
	•
	Å
	ﬁ
	:
	<<
	<
	>
	#
	#>
	#<
	LF
	DM
	SB
	RM
	S1, S0
	I1, I0
	S
	L
	E
	U
	N
	Z
	V
	C
	()
	(º)
	EXT
	LS
	LSP
	MS
	MSP
	S/L
	Sign Ext
	Zero
	Rn
	Nn
	Mn
	12.4.2 Condition Code Computation
	The Condition Code Register (CCR) portion of the Status Register (SR) consists of eight bits (see...
	Figure 12-6. Condition Code Register (CCR)

	Every instruction contains an illustration showing how the instruction affects the various condit...
	Table 12-11. Instruction Effect on Condition Code

	—
	÷
	*
	Table 12-12. Condition Code Register (CCR) Bit Definitions (Continued)

	7
	S
	0
	0
	0
	0
	1
	1
	0
	1
	1
	7 cont.
	S
	0
	6
	L
	0
	5
	E
	0
	0
	0
	0
	1
	1
	0
	4
	U
	0
	0
	0
	No Scaling
	U = (Bit 47 xor Bit 46)
	0
	1
	Scale Down
	U = (Bit 48 xor Bit 47)
	1
	0
	Scale Up
	U = (Bit 46 xor Bit 45)
	3
	N
	0
	2
	Z
	0
	1
	V
	0
	0
	C
	0
	12.5 Instruction Partial Encoding
	This section gives the encodings for the following:
	Various groupings of registers used in the instruction encodings
	Condition Code combinations
	Addressing
	Addressing modes

	The symbols used in decoding the various fields of an instruction are identical to those used in ...
	12.5.1 Partial Encodings for Use in Instruction Encoding
	Table 12-13. Partial Encodings for Use in Instruction Encoding

	A
	0
	X
	0
	X0
	00
	B
	1
	Y
	1
	Y0
	01
	X1
	10
	Y1
	11
	(Rn)–Nn
	0 0 0 r r r
	MR
	00
	B/A*
	0 0 1
	(Rn)+Nn
	0 0 1 r r r
	CCR
	01
	X
	0 1 0
	(Rn)–
	0 1 0 r r r
	COM
	10
	Y
	0 1 1
	(Rn)+
	0 1 1 r r r
	EOM
	11
	X0
	1 0 0
	(Rn)
	1 0 0 r r r
	Y0
	1 0 1
	(Rn+Nn)
	1 0 1 r r r
	X1
	1 1 0
	–(Rn)
	1 1 1 r r r
	Y1
	1 1 1
	Absolute address
	1 1 0 0 0 0
	Immediate data
	1 1 0 1 0 0
	000
	reserved
	000
	reserved
	000
	B/A*
	001
	reserved
	001
	reserved
	001
	reserved
	010
	A1
	010
	A0
	010
	reserved
	011
	B1
	011
	B0
	011
	reserved
	100
	X0
	100
	X0
	100
	X0
	101
	Y0
	101
	Y0
	101
	Y0
	110
	X1
	110
	X1
	110
	X1
	111
	Y1
	111
	Y1
	111
	Y1
	X Memory
	0
	(Rn)–Nn
	0 0 0 r r r
	(Rn)–Nn
	0 0 0 r r r
	Y Memory
	1
	(Rn)+Nn
	0 0 1 r r r
	(Rn)+Nn
	0 0 1 r r r
	(Rn)–
	0 1 0 r r r
	(Rn)–
	0 1 0 r r r
	(Rn)+
	0 1 1 r r r
	(Rn)+
	0 1 1 r r r
	(Rn)
	1 0 0 r r r
	(Rn)
	1 0 0 r r r
	(Rn+Nn)
	1 0 1 r r r
	(Rn+Nn)
	1 0 1 r r r
	–(Rn)
	1 1 1 r r r
	–(Rn)
	1 1 1 r r r
	Absolute address
	1 10 0 0 0
	(Rn)–Nn
	0 0 r r r
	(Rn)+Nn
	0 1 r r r
	(Rn)–
	1 0 r r r
	(Rn)+
	1 1 r r r
	Table 12-14. Triple-Bit Register Encoding �

	000
	—
	A0
	R0
	N0
	M0
	—
	VBA
	SZ
	001
	—
	B0
	R1
	N1
	M1
	—
	SC
	SR
	010
	—
	A2
	R2
	N2
	M2
	EP
	—
	OMR
	011
	—
	B2
	R3
	N3
	M3
	—
	—
	SP
	100
	X0
	A1
	R4
	N4
	M4
	—
	—
	SSH
	101
	X1
	B1
	R5
	N5
	M5
	—
	—
	SSL
	110
	Y0
	A
	R6
	N6
	M6
	—
	—
	LA
	111
	Y1
	B
	R7
	N7
	M7
	—
	—
	LC
	Table 12-15. Long Move Register Encoding �

	A10
	A1
	A0
	no
	A10
	A1
	A0
	no
	no
	0 0 0
	B10
	B1
	B0
	no
	B10
	B1
	B0
	no
	no
	0 0 1
	X
	X1
	X0
	no
	X
	X1
	X0
	no
	no
	0 1 0
	Y
	Y1
	Y0
	no
	Y
	Y1
	Y0
	no
	no
	0 1 1
	A
	A1
	A0
	yes
	A
	A1
	A0
	A2
	no
	1 0 0
	B
	B1
	B0
	yes
	B
	B1
	B0
	B2
	no
	1 0 1
	AB
	A
	B
	yes
	AB
	A
	B
	A2,B2
	A0,B0
	1 1 0
	BA
	B
	A
	yes
	BA
	B
	A
	B2,A2
	B0,A0
	1 1 1
	Table 12-16. Partial Encodings for Use in Instructions Encoding, 2

	B/A*
	000
	R0-R7
	onnn
	X0
	100
	N0-N7
	1nnn
	Y0
	101
	X1
	110
	Y1
	111
	X0,X0
	0 0 0
	X0,Y1
	1 0 0
	Y1
	0 0
	Y0,Y0
	0 0 1
	Y0,X0
	1 0 1
	X0
	0 1
	X1,X0
	0 1 0
	X1,Y0
	1 1 0
	Y0
	1 0
	Y1,Y0
	0 1 1
	Y1,X1
	1 1 1
	X1
	1 1
	X0
	0 0
	X0,X0
	0 0 0 0
	X0,Y1
	0 1 0 0
	Y0
	0 1
	Y0,Y0
	0 0 0 1
	Y0,X0
	0 1 0 1
	X1
	1 0
	X1,X0
	0 0 1 0
	X1,Y0
	0 1 1 0
	Y1
	1 1
	Y1,Y0
	0 0 1 1
	Y1,X1
	0 1 1 1
	X1,X1
	1 0 0 0
	Y1,X0
	1 1 0 0
	Y1,Y1
	1 0 0 1
	X0,Y0
	1 1 0 1
	+
	0
	X0,X1
	1 0 1 0
	Y0,X1
	1 1 1 0
	–
	1
	Y0,Y1
	1 0 1 1
	X1,Y1
	1 1 1 1
	X0
	0 0 1 0 0
	B2
	0 1 0 1 1
	X1
	0 0 1 0 1
	A1
	0 1 1 0 0
	Y0
	0 0 1 1 0
	B1
	0 1 1 0 1
	Y1
	0 0 1 1 1
	A
	0 1 1 1 0
	A0
	0 1 0 0 0
	B
	0 1 1 1 1
	0 1 D D
	B0
	0 1 0 0 1
	R0-R7
	1 0 r r r
	1 D D D
	A2
	0 1 0 1 0
	N0-N7
	1 1 n n n
	1
	00001
	010000000000000000000000
	0
	2
	00010
	001000000000000000000000
	1
	3
	00011
	000100000000000000000000
	4
	00100
	000010000000000000000000
	5
	00101
	000001000000000000000000
	0 1 D D
	6
	00110
	000000100000000000000000
	1 D D D
	7
	00111
	000000010000000000000000
	8
	01000
	000000001000000000000000
	9
	01001
	000000000100000000000000
	10
	01010
	000000000010000000000000
	(Rn)+Nn
	0 1 s s s
	11
	01011
	000000000001000000000000
	(Rn)–
	1 0 s s s
	12
	01100
	000000000000100000000000
	(Rn)+
	1 1 s s s
	13
	01101
	000000000000010000000000
	(Rn)
	0 0 s s s
	14
	01110
	000000000000001000000000
	15
	01111
	00000000000000010000000000
	(Rn)+Nn
	0 1 t t
	16
	10000
	00000000000000001000000000
	(Rn)–
	1 0 t t
	17
	10001
	000000000000000001000000
	(Rn)+
	1 1 t t
	18
	10010
	000000000000000000100000
	(Rn)
	0 0 t t
	19
	10011
	000000000000000000010000
	20
	10100
	000000000000000000001000
	21
	10101
	000000000000000000000100
	22
	10110
	000000000000000000000010
	X0
	0 0
	Y0
	0
	ss
	00
	X1
	0 1
	Y1
	1
	su
	10
	A
	1 0
	uu
	11
	B
	1 1
	(Reserved)
	01
	D1
	e
	S2,D2
	f f
	X0
	0
	Y0
	0 0
	su
	0
	X1
	1
	Y1
	0 1
	uu
	1
	A
	1 0
	B
	1 1
	0
	A Æ X:<ea> , X0 Æ A
	Y0 Æ A , A Æ Y:<ea>
	M0-M7
	00nnn
	1
	B Æ X:<ea> , X0 Æ B
	Y0 Æ B , B Æ Y:<ea>
	EP
	01010
	VBA
	10000
	S1,D1
	e e
	S2,D2
	f f
	SC
	10001
	X0
	0 0
	Y0
	0 0
	SZ
	11000
	X1
	0 1
	Y1
	0 1
	SR
	11001
	A
	1 0
	A
	1 0
	OMR
	11010
	B
	1 1
	B
	1 1
	SP
	11011
	SSH
	11100
	SSL
	11101
	LA
	11110
	LC
	11111
	Table 12-17. Condition Code Computation Equation�

	CC(HS)
	Carry Clear (higher or same)
	C = 0
	CS(LO)
	Carry Set (lower)
	C = 1
	EC
	Extension Clear
	E = 0
	EQ
	Equal
	Z = 1
	ES
	Extension Set
	E=1
	GE
	Greater than or Equal
	N Å V=0
	GT
	Greater Than
	Z+(N Å V)=0
	LC
	Limit Clear
	L=0
	LE
	Less than or Equal
	Z+(N Å V)=1
	LS
	Limit Set
	L=1
	LT
	Less Than
	N Å V=1
	MI
	Minus
	N=1
	NE
	Not Equal
	Z=0
	NR
	Normalized
	Z+(U·E)=1
	PL
	Plus
	N=0
	NN
	Not Normalized
	Z+(U·E)=0
	Å denotes the logical Exclusive OR operator.
	Table 12-18. Condition Codes Encoding (Continued)

	NN
	0 1 0 0
	NR
	1 1 0 0
	EC
	0 1 0 1
	ES
	1 1 0 1
	LC
	0 1 1 0
	LS
	1 1 1 0
	GT
	0 1 1 1
	LE
	1 1 1 1
	12.5.2 Parallel Instruction Encoding of the Operation Code
	The operation code encoding for the instructions that allow parallel moves is divided into the mu...
	12.5.2.1 Multiply Instruction Encoding
	The 8-bit operation code for multiply instructions allowing parallel moves has different fields t...
	QQQ =selects the inputs to the multiplier (see Table�12-17, “Condition Code Computation Equation,...
	kkk = three unencoded bits k2, k1, k0
	d = destination accumulator d = 0 Æ A d = 1 Æ B
	Table 12-19. Operation Code K0–2 Decode �

	0
	positive
	mpy only
	don’t round
	1
	negative
	mpy and acc
	round
	12.5.2.2 Non-Multiply Instruction Encoding
	The 8-bit operation code for instructions allowing parallel moves contains two 3-bit fields defin...
	J J J = 1/2 instruction number
	k k k = 1/2 instruction number
	D = 0 Æ A D = 1 Æ B
	Table 12-20. Non-Multiply Instruction Encoding �

	0 0 0
	B
	A
	MOVE1
	TFR
	ADDR
	TST
	*
	CMP
	SUBR
	CMPM
	0 0 1
	B
	A
	ADD
	RND
	ADDL
	CLR
	SUB
	*
	SUBL
	NOT
	0 1 0
	B
	A
	—
	—
	ASR
	LSR
	—
	—
	ABS
	ROR
	0 1 1
	B
	A
	—
	—
	ASL
	LSL
	—
	—
	NEG
	ROL
	0 1 0
	X1 X0
	X1 X0
	ADD
	ADC
	—
	—
	SUB
	SBC
	—
	—
	0 1 1
	Y1 Y0
	Y1 Y0
	ADD
	ADC
	—
	—
	SUB
	SBC
	—
	—
	1 0 0
	X0_0
	X0_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 0 1
	Y0_0
	Y0_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 1 0
	X1_0
	X1_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	1 1 1
	Y1_0
	Y1_0
	ADD
	TFR
	OR
	EOR
	SUB
	CMP
	AND
	CMPM
	Table 12-21. Special Case1

	0 0 0 0 0 0 0 0
	MOVE
	0 0 0 0 1 0 0 0
	reserved

