
MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-1

Chapter 6
ASSEMBLER SIGNIFICANT CHARACTERS AND DIRECTIVES

6.1 INTRODUCTION

This chapter describes the directives that are recognized by the Motorola DSP Assem-
bler. The Assembler directives are instructions to the Assembler rather than instructions
to be directly translated into object code. In addition, this chapter describes special char-
acters that are considered significant to the Assembler.

6.2 ASSEMBLER SIGNIFICANT CHARACTERS

There are several one and two character sequences that are significant to the Assembler.
Some have multiple meanings depending on the context in which they are used. Special
characters associated with expression evaluation are described in Chapter 3. Other As-
sembler-significant characters are:

; - Comment delimiter
;; - Unreported comment delimiter
\ - Line continuation character or

Macro dummy argument concatenation operator
? - Macro value substitution operator
% - Macro hex value substitution operator
^ - Macro local label override operator
" - Macro string delimiter or

Quoted string DEFINE expansion character
@ - Function delimiter
* - Location counter substitution
++ - String concatenation operator
[] - Substring delimiter
<< - I/O short addressing mode force operator
< - Short addressing mode force operator
> - Long addressing mode force operator
- Immediate addressing mode operator

Assembler Significant Characters And Directives
Assembler Directives

6-2 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

#< - Immediate short addressing mode force operator
#> - Immediate long addressing mode force operator

6.3 ASSEMBLER DIRECTIVES

Assembler directives can be grouped by function into seven types:

1. Assembly control
2. Symbol definition
3. Data definition/storage allocation
4. Listing control and options
5. Object file control
6. Macros and conditional assembly
7. Structured programming

6.3.1 Assembly Control

The directives used for assembly control are:

COMMENT - Start comment lines
DEFINE - Define substitution string
END - End of source program
FAIL - Programmer generated error message
FORCE - Set operand forcing mode
HIMEM - Set high memory bounds
INCLUDE - Include secondary file
LOMEM - Set low memory bounds
MODE - Change relocation mode
MSG - Programmer generated message
ORG - Initialize memory space and location counters
RADIX - Change input radix for constants
RDIRECT - Remove directive or mnemonic from table
SCSJMP - Set structured control branching mode
SCSREG - Reassign structured control statement registers
UNDEF - Undefine DEFINE symbol
WARN - Programmer generated warning

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-3

6.3.2 Symbol Definition

The directives used to control symbol definition are:

ENDSEC - End section
EQU - Equate symbol to a value
GLOBAL - Global section symbol declaration
GSET - Set global symbol to a value
LOCAL - Local section symbol declaration
SECTION - Start section
SET - Set symbol to a value
XDEF - External section symbol definition
XREF - External section symbol reference

6.3.3 Data Definition/Storage Allocation

The directives used to control constant data definition and storage allocation are:

BADDR - Set buffer address
BSB - Block storage bit-reverse
BSC - Block storage of constant
BSM - Block storage modulo
BUFFER - Start buffer
DC - Define constant
DCB - Define constant byte
DS - Define storage
DSM - Define modulo storage
DSR - Define reverse carry storage
ENDBUF - End buffer

6.3.4 Listing Control and Options

The directives used to control the output listing are:

LIST - List the assembly
LSTCOL - Set listing field widths
NOLIST - Stop assembly listing
OPT - Assembler options
PAGE - Top of page/size page
PRCTL - Send control string to printer
STITLE - Initialize program subtitle
TABS - Set listing tab stops
TITLE - Initialize program title

Assembler Significant Characters And Directives
Assembler Directives

6-4 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

6.3.5 Object File Control

The directives used for control of the object file are:

COBJ - Comment object code
IDENT - Object code identification record
SYMOBJ - Write symbol information to object file

6.3.6 Macros and Conditional Assembly

The directives used for macros and conditional assembly are:

DUP - Duplicate sequence of source lines
DUPA - Duplicate sequence with arguments
DUPC - Duplicate sequence with characters
DUPF - Duplicate sequence in loop
ENDIF - End of conditional assembly
ENDM - End of macro definition
EXITM - Exit macro
IF - Conditional assembly directive
MACLIB - Macro library
MACRO - Macro definition
PMACRO - Purge macro definition

6.3.7 Structured Programming

The directives used for structured programming are:

.BREAK - Exit from structured loop construct

.CONTINUE - Continue next iteration of structured loop

.ELSE - Perform following statements when .IF false

.ENDF - End of .FOR loop

.ENDI - End of .IF condition

.ENDL - End of hardware loop

.ENDW - End of .WHILE loop

.FOR - Begin .FOR loop

.IF - Begin .IF condition

.LOOP - Begin hardware loop

.REPEAT - Begin .REPEAT loop

.UNTIL - End of .REPEAT loop

.WHILE - Begin .WHILE loop

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-5

Individual descriptions of each of the Assembler special characters and directives follow.
They include usage guidelines, functional descriptions, and examples. Structured pro-
gramming directives are discussed separately in Chapter 7.

Some directives require a label field, while in many cases a label is optional. If the descrip-
tion of an Assembler directive does not indicate a mandatory or optional label field, then
a label is not allowed on the same line as the directive. In general, it is disallowed to use
the label field of a data directive (such as DS, BSC, or buffer directives) in an expression
used to define the space being allocated. This is because in some cases the label value
cannot be determined until the operand field is fully evaluated. For example:

BADDS DS BADDS

The line above is invalid because the label BADDS cannot reasonably be determined in
this context.

Assembler Significant Characters And Directives
Assembler Directives

6-6 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

;
Comment Delimiter Character

Any number of characters preceded by a semicolon (;), but not part of a literal string, is
considered a comment. Comments are not significant to the Assembler, but they can be
used to document the source program. Comments will be reproduced in the Assembler
output listing. Comments are normally preserved in macro definitions, but this option can
be turned off (see the OPT directive, this chapter).

Comments can occupy an entire line, or can be placed after the last Assembler-significant
field in a source statement. A comment starting in the first column of the source file will
be aligned with the label field in the listing file. Otherwise, the comment will be shifted right
and aligned with the comment field in the listing file.

EXAMPLE:

; THIS COMMENT BEGINS IN COLUMN 1 OF THE SOURCE FILE

LOOP JSR COMPUTE ; THIS IS A TRAILING COMMENT
; THESE TWO COMMENTS ARE PRECEDED
; BY A TAB IN THE SOURCE FILE

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-7

;;
 Unreported Comment Delimiter Characters

Unreported comments are any number of characters preceded by two consecutive semi-
colons (;;) that are not part of a literal string. Unreported comments are not considered
significant by the Assembler, and can be included in the source statement, following the
same rules as normal comments. However, unreported comments are never reproduced
on the Assembler output listing, and are never saved as part of macro definitions.

EXAMPLE:

;; THESE LINES WILL NOT BE REPRODUCED
;; IN THE SOURCE LISTING

Assembler Significant Characters And Directives
Assembler Directives

6-8 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

\
Line Continuation Character or

Macro Argument Concatenation Character

Line Continuation

The backslash character (\), if used as the last character on a line, indicates to the Assem-
bler that the source statement is continued on the following line. The continuation line will
be concatenated to the previous line of the source statement, and the result will be pro-
cessed by the Assembler as if it were a single line source statement. The maximum
source statement length (the first line and any continuation lines) is 512 characters.

EXAMPLE:

; THIS COMMENT \
EXTENDS OVER \
THREE LINES

Macro Argument Concatenation

The backslash (\) is also used to cause the concatenation of a macro dummy argument
with other adjacent alphanumeric characters. For the macro processor to recognize dum-
my arguments, they must normally be separated from other alphanumeric characters by
a non-symbol character. However, sometimes it is desirable to concatenate the argument
characters with other characters. If an argument is to be concatenated in front of or be-
hind some other symbol characters, then it must be followed by or preceded by the back-
slash, respectively.

EXAMPLE:

Suppose the source input file contained the following macro definition:

SWAP_REG MACRO REG1,REG2 ;swap REG1,REG2 using D4.L as temp
MOVE R\REG1,D4.L
MOVE R\REG2,R\REG1
MOVE D4.L,R\REG2
ENDM

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-9

The concatenation operator (\) indicates to the macro processor that the substitution char-
acters for the dummy arguments are to be concatenated in both cases with the character
R. If this macro were called with the following statement,

SWAP_REG 0,1

the resulting expansion would be:

MOVE R0,D4.L
MOVE R1,R0
MOVE D4.L,R1

Assembler Significant Characters And Directives
Assembler Directives

6-10 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

?
Return Value of Symbol Character

The ?<symbol> sequence, when used in macro definitions, will be replaced by an ASCII
string representing the value of <symbol>. This operator may be used in association with
the backslash (\) operator. The value of <symbol> must be an integer (not floating point).

EXAMPLE:

Consider the following macro definition:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1

 MOVE D4.L,R\?REG2
ENDM

If the source file contained the following SET statements and macro call,

AREG SET 0
BREG SET 1

SWAP_SYM AREG,BREG

the resulting expansion as it would appear on the source listing would be:

MOVE R0,D4.L
MOVE R1,R0
MOVE D4.L,R1

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-11

%
Return Hex Value of Symbol Character

The %<symbol> sequence, when used in macro definitions, will be replaced by an ASCII
string representing the hexadecimal value of <symbol>. This operator may be used in as-
sociation with the backslash (\) operator. The value of <symbol> must be an integer (not
floating point).

EXAMPLE:

Consider the following macro definition:

GEN_LAB MACRO LAB,VAL,STMT
LAB\%VAL STMT

ENDM

If this macro were called as follows,

NUM SET 10
GEN_LAB HEX,NUM,'NOP'

The resulting expansion as it would appear in the listing file would be:

HEXA NOP

Assembler Significant Characters And Directives
Assembler Directives

6-12 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

^
Macro Local Label Override

The circumflex (^), when used as a unary expression operator in a macro expansion, will
cause any local labels in its associated term to be evaluated at normal scope rather than
macro scope. This means that any underscore labels in the expression term following the
circumflex will not be searched for in the macro local label list. The operator has no effect
on normal labels or outside of a macro expansion. The circumflex operator is useful for
passing local labels as macro arguments to be used as referents in the macro. Note that
the circumflex is also used as the binary exclusive OR operator.

EXAMPLE:

Consider the following macro definition:

LOAD MACRO ADDR
MOVE P:^ADDR,R0
ENDM

If this macro were called as follows,

_LOCAL
LOAD _LOCAL

the Assembler would ordinarily issue an error since _LOCAL is not defined within the body
of the macro. With the override operator the Assembler recognizes the _LOCAL symbol
outside the macro expansion and uses that value in the MOVE instruction.

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-13

"
Macro String Delimiter or

Quoted String DEFINE Expansion Character

Macro String

The double quote ("), when used in macro definitions, is transformed by the macro pro-
cessor into the string delimiter, the single quote ('). The macro processor examines the
characters between the double quotes for any macro arguments. This mechanism allows
the use of macro arguments as literal strings.

EXAMPLE:

Using the following macro definition,

CSTR MACRO STRING
DC "STRING"
ENDM

and a macro call,

CSTR ABCD

the resulting macro expansion would be:

DC 'ABCD'

Quoted String DEFINE Expansion

A sequence of characters which matches a symbol created with a DEFINE directive will
not be expanded if the character sequence is contained within a quoted string. Assembler
strings generally are enclosed in single quotes ('). If the string is enclosed in double

Assembler Significant Characters And Directives
Assembler Directives

6-14 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

quotes (") then DEFINE symbols will be expanded within the string. In all other respects
usage of double quotes is equivalent to that of single quotes.

EXAMPLE:

Consider the source fragment below:

DEFINE LONG 'short'
STR_MAC MACRO STRING

MSG 'This is a LONG STRING'
MSG "This is a LONG STRING"
ENDM

If this macro were invoked as follows,

STR_MAC sentence

then the resulting expansion would be:

MSG 'This is a LONG STRING'
MSG 'This is a short sentence'

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-15

@
Function Delimiter

All Assembler built-in functions start with the @ symbol. See Section 3.8 for a full discus-
sion of these functions.

EXAMPLE:

SVAL EQU @SQT(FVAL) ; OBTAIN SQUARE ROOT

Assembler Significant Characters And Directives
Assembler Directives

6-16 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

*
Location Counter Substitution

When used as an operand in an expression, the asterisk represents the current integer
value of the runtime location counter.

EXAMPLE:

ORG X:$100

XBASE EQU *+$20 ; XBASE = $120

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-17

++
String Concatenation Operator

Any two strings can be concatenated with the string concatenation operator (++). The two
strings must each be enclosed by single or double quotes, and there must be no interven-
ing blanks between the string concatenation operator and the two strings.

EXAMPLE:

'ABC'++'DEF' = 'ABCDEF'

Assembler Significant Characters And Directives
Assembler Directives

6-18 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

[]
Substring Delimiter

[<string>,<offset><length>]

Square brackets delimit a substring operation. The <string> argument is the source
string. <offset> is the substring starting position within <string>. <length> is the length of
the desired substring. <string> may be any legal string combination, including another
substring. An error is issued if either <offset> or <length> exceed the length of <string>.

EXAMPLE:

DEFINE ID ['DSP56000',3,5] ; ID = '56000'

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-19

<<
I/O Short Addressing Mode Force Operator

Many DSP instructions allow an I/O short form of addressing. If the value of an absolute
address is known to the Assembler on pass one, then the Assembler will always pick the
shortest form of addressing consistent with the instruction format. If the absolute address
is not known to the Assembler on pass one (that is, the address is a forward or external
reference), then the Assembler will pick the long form of addressing by default. If this is
not desired, then the I/O short form of addressing can be forced by preceding the absolute
address by the I/O short addressing mode force operator (<<).

EXAMPLE:

Since the symbol IOPORT is a forward reference in the following sequence of source
lines, the Assembler would pick the long absolute form of addressing by default:

BTST #4,Y:IOPORT
IOPORT EQU Y:$FFF3

Because the long absolute addressing mode would cause the instruction to be two words
long instead of one word for the I/O short absolute addressing mode, it would be desirable
to force the I/O short absolute addressing mode as shown below:

BTST #4,Y:<<IOPORT
IOPORT EQU Y:$FFF3

Assembler Significant Characters And Directives
Assembler Directives

6-20 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

<
Short Addressing Mode Force Operator

Many DSP instructions allow a short form of addressing. If the value of an absolute ad-
dress is known to the Assembler on pass one, or the FORCE SHORT directive is active,
then the Assembler will always pick the shortest form of addressing consistent with the
instruction format. If the absolute address is not known to the Assembler on pass one
(that is, the address is a forward or external reference), then the Assembler will pick the
long form of addressing by default. If this is not desired, then the short absolute form of
addressing can be forced by preceding the absolute address by the short addressing
mode force operator (<).

See also: FORCE

EXAMPLE:

Since the symbol DATAST is a forward reference in the following sequence of source
lines, the Assembler would pick the long absolute form of addressing by default:

MOVE D0.L,Y:DATAST
DATAST EQU Y:$23

Because the long absolute addressing mode would cause the instruction to be two words
long instead of one word for the short absolute addressing mode, it would be desirable to
force the short absolute addressing mode as shown below:

MOVE D0.L,Y:<DATAST
DATAST EQU Y:$23

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-21

>
Long Addressing Mode Force Operator

Many DSP instructions allow a long form of addressing. If the value of an absolute ad-
dress is known to the Assembler on pass one, then the Assembler will always pick the
shortest form of addressing consistent with the instruction format, unless the FORCE
LONG directive is active. If this is not desired, then the long absolute form of addressing
can be forced by preceding the absolute address by the long addressing mode force op-
erator (>).

See also: FORCE

EXAMPLE:

Since the symbol DATAST is a not a forward reference in the following sequence of
source lines, the Assembler would pick the short absolute form of addressing:

DATAST EQU Y:$23
MOVE D0.L,Y:DATAST

If this is not desirable, then the long absolute addressing mode can be forced as shown
below:

DATAST EQU Y:$23
MOVE D0.L,Y:>DATAST

Assembler Significant Characters And Directives
Assembler Directives

6-22 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

#
Immediate Addressing Mode

The pound sign (#) is used to indicate to the Assembler to use the immediate addressing
mode.

EXAMPLE:

CNST EQU $5
MOVE #CNST,D0.L

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-23

#<
Immediate Short Addressing Mode Force Operator

Many DSP instructions allow a short immediate form of addressing. If the immediate data
is known to the Assembler on pass one (not a forward or external reference), or the
FORCE SHORT directive is active, then the Assembler will always pick the shortest form
of immediate addressing consistent with the instruction. If the immediate data is a forward
or external reference, then the Assembler will pick the long form of immediate addressing
by default. If this is not desired, then the short form of addressing can be forced using the
immediate short addressing mode force operator (#<).

See also: FORCE

EXAMPLE:

In the following sequence of source lines, the symbol CNST is not known to the Assembler
on pass one, and therefore, the Assembler would use the long immediate addressing form
for the MOVE instruction.

MOVE #CNST,D0.L
CNST EQU $5

Because the long immediate addressing mode makes the instruction two words long in-
stead of one word for the immediate short addressing mode, it may be desirable to force
the immediate short addressing mode as shown below:

MOVE #<CNST,D0.L
CNST EQU $5

Assembler Significant Characters And Directives
Assembler Directives

6-24 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

#>
Immediate Long Addressing Mode Force Operator

Many DSP instructions allow a long immediate form of addressing. If the immediate data
is known to the Assembler on pass one (not a forward or external reference), then the As-
sembler will always pick the shortest form of immediate addressing consistent with the in-
struction, unless the FORCE LONG directive is active. If this is not desired, then the long
form of addressing can be forced using the immediate long addressing mode force oper-
ator (#>).

See also: FORCE

EXAMPLE:

In the following sequence of source lines, the symbol CNST is known to the Assembler
on pass one, and therefore, the Assembler would use the short immediate addressing
form for the MOVE instruction.

CNST EQU $5
MOVE #CNST,D0.L

If this is not desirable, then the long immediate form of addressing can be forced as shown
below:

CNST EQU $5
MOVE #>CNST,D0.L

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-25

BADDR
Set Buffer Address

BADDR <M | R>,<expression>

The BADDR directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in words is equal to the value of <expression>. The buffer
type may be either Modulo or Reverse-carry. If the runtime location counter is not zero,
this directive first advances the runtime location counter to a base address that is a mul-
tiple of 2k, where 2k >= <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Unlike other buffer allocation directives, the
runtime location counter is not advanced by the value of the integer expression in the op-
erand field; the location counter remains at the buffer base address. The block of memory
intended for the buffer is not initialized to any value.

The result of <expression> may have any memory space attribute but must be an abso-
lute integer greater than zero and cannot contain any forward references (symbols that
have not yet been defined). If a Modulo buffer is specified, the expression must fall within
the range 2 <= <expression> <= m, where m is the maximum address of the target DSP.
If a Reverse-carry buffer is designated and <expression> is not a power of two a warning
will be issued.

A label is not allowed with this directive.

See also: BSM, BSB , BUFFER, DSM, DSR

EXAMPLE:

ORG X:$100
M_BUF BADDR M,24 ; CIRCULAR BUFFER MOD 24

Assembler Significant Characters And Directives
Assembler Directives

6-26 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

BSB
Block Storage Bit-Reverse

[<label>] BSB <expression>[,<expression>]

The BSB directive causes the Assembler to allocate and initialize a block of words for a
reverse-carry buffer. The number of words in the block is given by the first expression,
which must evaluate to an absolute integer. Each word is assigned the initial value of the
second expression. If there is no second expression, an initial value of zero is assumed.
If the runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2k, where 2k is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references) or if the expression has a value of less than
or equal to zero. Also, if the first expression is not a power of two a warning will be gener-
ated. Both expressions can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

Only one word of object code will be shown on the listing, regardless of how large the first
expression is. However, the runtime location counter will be advanced by the number of
words generated.

See also: BSC, BSM, DC

EXAMPLE:

BUFFER BSB BUFSIZ ; INITIALIZE BUFFER TO ZEROS

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-27

BSC
Block Storage of Constant

[<label>] BSC <expression>[,<expression>]

The BSC directive causes the Assembler to allocate and initialize a block of words. The
number of words in the block is given by the first expression, which must evaluate to an
absolute integer. Each word is assigned the initial value of the second expression. If
there is no second expression, an initial value of zero is assumed. If the first expression
contains symbols that are not yet defined (forward references) or if the expression has a
value of less than or equal to zero, an error will be generated. Both expressions can have
any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

Only one word of object code will be shown on the listing, regardless of how large the first
expression is. However, the runtime location counter will be advanced by the number of
words generated.

See also: BSM, BSB , DC

EXAMPLE:

UNUSED BSC $2FFF-@LCV(R),$FFFFFFFF ; FILL UNUSED EPROM

Assembler Significant Characters And Directives
Assembler Directives

6-28 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

BSM
Block Storage Modulo

[<label>] BSM <expression>[,<expression>]

The BSM directive causes the Assembler to allocate and initialize a block of words for a
modulo buffer. The number of words in the block is given by the first expression, which
must evaluate to an absolute integer. Each word is assigned the initial value of the second
expression. If there is no second expression, an initial value of zero is assumed. If the
runtime location counter is not zero, this directive first advances the runtime location
counter to a base address that is a multiple of 2k, where 2k is greater than or equal to the
value of the first expression. An error will occur if the first expression contains symbols
that are not yet defined (forward references), has a value of less than or equal to zero, or
falls outside the range 2 <= <expression> <= m, where m is the maximum address of the
target DSP. Both expressions can have any memory space attribute.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

Only one word of object code will be shown on the listing, regardless of how large the first
expression is. However, the runtime location counter will be advanced by the number of
words generated.

See also: BSC, BSB , DC

EXAMPLE:

BUFFER BSM BUFSIZ,$FFFFFFFF ; INITIALIZE BUFFER TO ALL ONES

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-29

BUFFER
Start Buffer

 BUFFER <M | R>,<expression>

The BUFFER directive indicates the start of a buffer of the given type. Data is allocated
for the buffer until an ENDBUF directive is encountered. Instructions and most data def-
inition directives may appear between the BUFFER and ENDBUF pair, although BUFF-
ER directives may not be nested and certain types of directives such as MODE, ORG,
SECTION, and other buffer allocation directives may not be used. The <expression> rep-
resents the buffer size. If less data is allocated than the size of the buffer, the remaining
buffer locations will be uninitialized. If more data is allocated than the specified size of the
buffer, an error is issued.

The BUFFER directive sets the runtime location counter to the address of a buffer of the
given type, the length of which in words is equal to the value of <expression>. The buffer
type may be either Modulo or Reverse-carry. If the runtime location counter is not zero,
this directive first advances the runtime location counter to a base address that is a mul-
tiple of 2k, where 2k >= <expression>. An error will be issued if there is insufficient memory
remaining to establish a valid base address. Unlike other buffer allocation directives, the
runtime location counter is not advanced by the value of the integer expression in the op-
erand field; the location counter remains at the buffer base address.

The result of <expression> may have any memory space attribute but must be an abso-
lute integer greater than zero and cannot contain any forward references (symbols that
have not yet been defined). If a Modulo buffer is specified, the expression must fall within
the range 2 <= <expression> <= m, where m is the maximum address of the target DSP.
If a Reverse-carry buffer is designated and <expression> is not a power of two a warning
will be issued.

A label is not allowed with this directive.

See also: BADDR , BSM, BSB , DSM, DSR, ENDBUF

EXAMPLE:

ORG X:$100
BUFFER M,24 ; CIRCULAR BUFFER MOD 24

M_BUF DC 0.5,0.5,0.5,0.5
DS 20 ; REMAINDER UNINITIALIZED
ENDBUF

Assembler Significant Characters And Directives
Assembler Directives

6-30 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

COBJ
Comment Object File

COBJ <string>

The COBJ directive is used to place a comment in the object code file. The <string> will
be put in the object file as a comment (refer to the object format description in Appendix
E).

A label is not allowed with this directive.

See also: IDENT

EXAMPLE:

COBJ 'Start of filter coefficients'

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-31

COMMENT
Start Comment Lines

COMMENT <delimiter>
.
.
<delimiter>

The COMMENT directive is used to define one or more lines as comments. The first non-
blank character after the COMMENT directive is the comment delimiter. The two delimit-
ers are used to define the comment text. The line containing the second comment delim-
iter will be considered the last line of the comment. The comment text can include any
printable characters and the comment text will be reproduced in the source listing as it ap-
pears in the source file.

A label is not allowed with this directive.

EXAMPLE:

COMMENT + This is a one line comment +
COMMENT * This is a multiple line

comment. Any number of lines
can be placed between the two delimiters.

 *

Assembler Significant Characters And Directives
Assembler Directives

6-32 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

DC
Define Constant

[<label>] DC <arg>[,<arg>,...,<arg>]

The DC directive allocates and initializes a word of memory for each <arg> argument.
<arg> may be a numeric constant, a single or multiple character string constant, a symbol,
or an expression. The DC directive may have one or more arguments separated by com-
mas. Multiple arguments are stored in successive address locations. If multiple argu-
ments are present, one or more of them can be null (two adjacent commas), in which case
the corresponding address location will be filled with zeros. If the DC directive is used in
L memory, the arguments will be evaluated and stored as long word quantities. Other-
wise, an error will occur if the evaluated argument value is too large to represent in a sin-
gle DSP word.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

Integer arguments are stored as is; floating point numbers are converted to binary values.
Single and multiple character strings are handled in the following manner:

1. Single character strings are stored in a word whose lower seven bits repre-
sent the ASCII value of the character.

EXAMPLE: 'R' = $000052

2. Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of
characters is not an even multiple of the number of bytes per DSP word, then the
last word will have the remaining characters left aligned and the rest of the word
will be zero-filled. If the NOPS option is given, each character in the string is stored
in a word whose lower seven bits represent the ASCII value of the character.

EXAMPLE:

'ABCD' = $414243
$440000

See also: BSC, DCB

EXAMPLE:

TABLE DC 1426,253,$2662,'ABCD'
CHARS DC 'A','B','C','D'

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-33

DCB
Define Constant Byte

[<label>] DCB <arg>[,<arg>,...,<arg>]

The DCB directive allocates and initializes a byte of memory for each <arg> argument.
<arg> may be a byte integer constant, a single or multiple character string constant, a
symbol, or a byte expression. The DCB directive may have one or more arguments sep-
arated by commas. Multiple arguments are stored in successive byte locations. If multi-
ple arguments are present, one or more of them can be null (two adjacent commas), in
which case the corresponding byte location will be filled with zeros.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

Integer arguments are stored as is, but must be byte values (e.g. within the range 0-255);
floating point numbers are not allowed. Single and multiple character strings are handled
in the following manner:

1. Single character strings are stored in a word whose lower seven bits repre-
sent the ASCII value of the character.

EXAMPLE: 'R' = $000052

2. Multiple character strings represent words whose bytes are composed of
concatenated sequences of the ASCII representation of the characters in the string
(unless the NOPS option is specified; see the OPT directive). If the number of
characters is not an even multiple of the number of bytes per DSP word, then the
last word will have the remaining characters left aligned and the rest of the word
will be zero-filled. If the NOPS option is given, each character in the string is stored
in a word whose lower seven bits represent the ASCII value of the character.

EXAMPLE:

'AB',,'CD' = $414200
$434400

See also: BSC, DC

EXAMPLE:

TABLE DCB 'two',0,'strings',0
CHARS DCB 'A','B','C','D'

Assembler Significant Characters And Directives
Assembler Directives

6-34 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

DEFINE
Define Substitution String

DEFINE <symbol> <string>

The DEFINE directive is used to define substitution strings that will be used on all follow-
ing source lines. All succeeding lines will be searched for an occurrence of <symbol>,
which will be replaced by <string>. This directive is useful for providing better documen-
tation in the source program. <symbol> must adhere to the restrictions for non-local la-
bels. That is, it cannot exceed 512 characters, the first of which must be alphabetic, and
the remainder of which must be either alphanumeric or the underscore(_). A warning will
result if a new definition of a previously defined symbol is attempted. The Assembler out-
put listing will show lines after the DEFINE directive has been applied and therefore rede-
fined symbols will be replaced by their substitution strings (unless the NODXL option in
effect; see the OPT directive).

Macros represent a special case. DEFINE directive translations will be applied to the
macro definition as it is encountered. When the macro is expanded any active DEFINE
directive translations will again be applied.

DEFINE directive symbols that are defined within a section will only apply to that section.
See the SECTION directive.

A label is not allowed with this directive.

See also: UNDEF

EXAMPLE:

If the following DEFINE directive occurred in the first part of the source program:

DEFINE ARRAYSIZ '10 * SAMPLSIZ'

then the source line below:

DS ARRAYSIZ

would be transformed by the Assembler to the following:

DS 10 * SAMPLSIZ

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-35

DS
Define Storage

[<label>] DS <expression>

The DS directive reserves a block of memory the length of which in words is equal to the
value of <expression>. This directive causes the runtime location counter to be advanced
by the value of the absolute integer expression in the operand field. <expression> can
have any memory space attribute. The block of memory reserved is not initialized to any
value. The expression must be an integer greater than zero and cannot contain any for-
ward references (symbols that have not yet been defined).

<label>, if present, will be assigned the value of the runtime location counter at the start
of the directive processing.

See also: DSM, DSR

EXAMPLE:

S_BUF DS 12 ; SAMPLE BUFFER

Assembler Significant Characters And Directives
Assembler Directives

6-36 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

DSM
Define Modulo Storage

[<label>] DSM <expression>

The DSM directive reserves a block of memory the length of which in words is equal to
the value of <expression>. If the runtime location counter is not zero, this directive first
advances the runtime location counter to a base address that is a multiple of 2k, where
2k >= <expression>. An error will be issued if there is insufficient memory remaining to es-
tablish a valid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved is not initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any for-
ward references (symbols that have not yet been defined). The expression also must fall
within the range 2 <= <expression> <= m, where m is the maximum address of the target
DSP.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

See also: DS, DSR

EXAMPLE:

ORG X:$100
M_BUF DSM 24 ; CIRCULAR BUFFER MOD 24

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-37

DSR
Define Reverse Carry Storage

[<label>] DSR <expression>

The DSR directive reserves a block of memory the length of which in words is equal to the
value of <expression>. If the runtime location counter is not zero, this directive first ad-
vances the runtime location counter to a base address that is a multiple of 2k, where
2k >= <expression>. An error will be issued if there is insufficient memory remaining to
establish a valid base address. Next the runtime location counter is advanced by the value
of the integer expression in the operand field. <expression> can have any memory space
attribute. The block of memory reserved is not initialized to any given value. The result of
<expression> must be an absolute integer greater than zero and cannot contain any for-
ward references (symbols that have not yet been defined). Since the DSR directive is use-
ful mainly for generating FFT buffers, if <expression> is not a power of two a warning will
be generated.

<label>, if present, will be assigned the value of the runtime location counter after a valid
base address has been established.

See also: DS, DSM

EXAMPLE:

ORG X:$100
R_BUF DSR 8 ; REVERSE CARRY BUFFER FOR 16 POINT FFT

Assembler Significant Characters And Directives
Assembler Directives

6-38 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

DUP
Duplicate Sequence of Source Lines

[<label>] DUP <expression>
 .
 .
 ENDM

The sequence of source lines between the DUP and ENDM directives will be duplicated
by the number specified by the integer <expression>. <expression> can have any mem-
ory space attribute. If the expression evaluates to a number less than or equal to 0, the
sequence of lines will not be included in the Assembler output. The expression result
must be an absolute integer and cannot contain any forward references (symbols that
have not already been defined). The DUP directive may be nested to any level.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUP directive processing.

See also: DUPA, DUPC, DUPF, ENDM, MACRO

EXAMPLE:

The sequence of source input statements,

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR D0
ENDM

would generate the following in the source listing:

COUNT SET 3
DUP COUNT ; ASR BY COUNT
ASR D0
ASR D0
ASR D0
ENDM

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-39

Note that the lines

DUP COUNT ;ASR BY COUNT
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

ASR D0
ASR D0
ASR D0

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.

Assembler Significant Characters And Directives
Assembler Directives

6-40 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

DUPA
Duplicate Sequence With Arguments

[<label>] DUPA <dummy>,<arg>[<,<arg>,...,<arg>]
.
.
ENDM

The block of source statements defined by the DUPA and ENDM directives will be repeat-
ed for each argument. For each repetition, every occurrence of the dummy parameter
within the block is replaced with each succeeding argument string. If the argument string
is a null, then the block is repeated with each occurrence of the dummy parameter re-
moved. If an argument includes an embedded blank or other Assembler-significant char-
acter, it must be enclosed with single quotes.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUPA directive processing.

See also: DUP, DUPC, DUPF, ENDM, MACRO

EXAMPLE:

If the input source file contained the following statements,

DUPA VALUE,12,32,34
DC VALUE
ENDM

then the assembled source listing would show

DUPA VALUE,12,32,34
DC 12
DC 32
DC 34
ENDM

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-41

Note that the lines

DUPA VALUE,12,32,34
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 12
DC 32
DC 34

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.

Assembler Significant Characters And Directives
Assembler Directives

6-42 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

DUPC
Duplicate Sequence With Characters

[<label>] DUPC <dummy>,<string>
 .
 .
 ENDM

The block of source statements defined by the DUPC and ENDM directives will be repeat-
ed for each character of <string>. For each repetition, every occurrence of the dummy
parameter within the block is replaced with each succeeding character in the string. If the
string is null, then the block is skipped.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUPC directive processing.

See also: DUP, DUPA, DUPF, ENDM, MACRO

EXAMPLE:

If input source file contained the following statements,

DUPC VALUE,'123'
DC VALUE
ENDM

then the assembled source listing would show:

DUPC VALUE,'123'
DC 1
DC 2
DC 3
ENDM

Note that the lines

DUPC VALUE,'123'
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

DC 1
DC 2
DC 3

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-43

DUPF
Duplicate Sequence In Loop

[<label>] DUPF <dummy>,[<start>],<end>[,<increment>]
 .
 .
 ENDM

The block of source statements defined by the DUPF and ENDM directives will be repeat-
ed in general (<end> - <start>) + 1 times when <increment> is 1. <start> is the starting
value for the loop index; <end> represents the final value. <increment> is the increment
for the loop index; it defaults to 1 if omitted (as does the <start> value). The <dummy>
parameter holds the loop index value and may be used within the body of instructions.

<label>, if present, will be assigned the value of the runtime location counter at the start
of the DUPF directive processing.

See also: DUP, DUPA, DUPC, ENDM, MACRO

EXAMPLE:

If input source file contained the following statements,

DUPF NUM,0,7
MOVE #0,R\NUM
ENDM

then the assembled source listing would show:

DUPF NUM,0,7
MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7
ENDM

Assembler Significant Characters And Directives
Assembler Directives

6-44 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Note that the lines

DUPF NUM,0,7
ENDM

will only be shown on the source listing if the MD option is enabled. The lines

MOVE #0,R0
MOVE #0,R1
MOVE #0,R2
MOVE #0,R3
MOVE #0,R4
MOVE #0,R5
MOVE #0,R6
MOVE #0,R7

will only be shown on the source listing if the MEX option is enabled.

See the OPT directive in this chapter for more information on the MD and MEX options.

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-45

END
End of Source Program

END [<expression>]

The optional END directive indicates that the logical end of the source program has been
encountered. Any statements following the END directive are ignored. The optional ex-
pression in the operand field can be used to specify the starting execution address of the
program. <expression> may be absolute or relocatable, but must have a memory space
attribute of Program or None. The END directive cannot be used in a macro expansion.

A label is not allowed with this directive.

EXAMPLE:

END BEGIN ; BEGIN is the starting execution address

Assembler Significant Characters And Directives
Assembler Directives

6-46 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

ENDBUF
End Buffer

ENDBUF

The ENDBUF directive is used to signify the end of a buffer block. The runtime location
counter will remain just beyond the end of the buffer when the ENDBUF directive is en-
countered.

A label is not allowed with this directive.

See also: BUFFER

EXAMPLE:

ORG X:$100
BUF BUFFER R,64 ; uninitialized reverse-carry buffer

ENDBUF

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-47

ENDIF
End of Conditional Assembly

ENDIF

The ENDIF directive is used to signify the end of the current level of conditional assembly.
Conditional assembly directives can be nested to any level, but the ENDIF directive al-
ways refers to the most previous IF directive.

A label is not allowed with this directive.

See also: IF

EXAMPLE:

IF @REL()
SAVEPC SET * ; Save current program counter

ENDIF

Assembler Significant Characters And Directives
Assembler Directives

6-48 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

ENDM
End of Macro Definition

ENDM

Every MACRO, DUP, DUPA, and DUPC directive must be terminated by an ENDM direc-
tive.

A label is not allowed with this directive.

See also: DUP, DUPA, DUPC, MACRO

EXAMPLE:

SWAP_SYM MACRO REG1,REG ;swap REG1,REG2 using D4.L as temp
MOVE R\?REG1,D4.L
MOVE R\?REG2,R\?REG1

 MOVE D4.L,R\?REG2
ENDM

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-49

ENDSEC
End Section

ENDSEC

Every SECTION directive must be terminated by an ENDSEC directive.

A label is not allowed with this directive.

See also: SECTION

EXAMPLE:

SECTION COEFF
ORG Y:

VALUES BSC $100 ; Initialize to zero
ENDSEC

Assembler Significant Characters And Directives
Assembler Directives

6-50 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

EQU
Equate Symbol to a Value

<label> EQU [{X: | Y: | L: | P: | E:}]<expression>

The EQU directive assigns the value and memory space attribute of <expression> to the
symbol <label>. If <expression> has a memory space attribute of None, then it can op-
tionally be preceded by any of the indicated memory space qualifiers to force a memory
space attribute. An error will occur if the expression has a memory space attribute other
than None and it is different than the forcing memory space attribute. The optional forcing
memory space attribute is useful to assign a memory space attribute to an expression that
consists only of constants but is intended to refer to a fixed address in a memory space.

The EQU directive is one of the directives that assigns a value other than the program
counter to the label. The label cannot be redefined anywhere else in the program (or sec-
tion, if SECTION directives are being used). The <expression> may be relative or abso-
lute, but cannot include a symbol that is not yet defined (no forward references are
allowed).

See also: SET

EXAMPLE:

A_D_PORT EQU X:$4000

This would assign the value $4000 with a memory space attribute of X to the symbol
A_D_PORT.

COMPUTE EQU @LCV(L)

@LCV(L) is used to refer to the value and memory space attribute of the load location
counter. This value and memory space attribute would be assigned to the symbol COM-
PUTE.

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-51

EXITM
Exit Macro

EXITM

The EXITM directive will cause immediate termination of a macro expansion. It is useful
when used with the conditional assembly directive IF to terminate macro expansion when
error conditions are detected.

A label is not allowed with this directive.

See also: DUP, DUPA, DUPC, MACRO

EXAMPLE:

CALC MACRO XVAL,YVAL
IF XVAL<0
FAIL 'Macro parameter value out of range'
EXITM ; Exit macro
ENDIF
.
.
.
ENDM

Assembler Significant Characters And Directives
Assembler Directives

6-52 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

FAIL
Programmer Generated Error

FAIL [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The FAIL directive will cause an error message to be output by the Assembler. The total
error count will be incremented as with any other error. The FAIL directive is normally
used in conjunction with conditional assembly directives for exceptional condition check-
ing. The assembly proceeds normally after the error has been printed. An arbitrary num-
ber of strings and expressions, in any order but separated by commas with no intervening
white space, can be specified optionally to describe the nature of the generated error.

A label is not allowed with this directive.

See also: MSG, WARN

EXAMPLE:

FAIL 'Parameter out of range'

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-53

FORCE
Set Operand Forcing Mode

FORCE {SHORT | LONG | NONE}

The FORCE directive causes the Assembler to force all immediate, memory, and address
operands to the specified mode as if an explicit forcing operator were used. Note that if
a relocatable operand value forced short is determined to be too large for the instruction
word, an error will occur at link time, not during assembly. Explicit forcing operators over-
ride the effect of this directive.

A label is not allowed with this directive.

See also: <, >, #<, #>

EXAMPLE:

FORCE SHORT ; force operands short

Assembler Significant Characters And Directives
Assembler Directives

6-54 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

GLOBAL
Global Section Symbol Declaration

GLOBAL <symbol>[,<symbol>,...,<symbol>]

The GLOBAL directive is used to specify that the list of symbols is defined within the cur-
rent section, and that those definitions should be accessible by all sections. This directive
is only valid if used within a program block bounded by the SECTION and ENDSEC di-
rectives. If the symbols that appear in the operand field are not defined in the section, an
error will be generated.

A label is not allowed with this directive.

See also: SECTION, XDEF, XREF

EXAMPLE:

SECTION IO
GLOBAL LOOPA ; LOOPA will be globally accessible by other sections
.
.
.
ENDSEC

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-55

GSET
Set Global Symbol to a Value

<label> GSET <expression>

GSET <label> <expression>

The GSET directive is used to assign the value of the expression in the operand field to
the label. The GSET directive functions somewhat like the EQU directive. However, labels
defined via the GSET directive can have their values redefined in another part of the pro-
gram (but only through the use of another GSET or SET directive). The GSET directive is
useful for resetting a global SET symbol within a section, where the SET symbol would
otherwise be considered local. The expression in the operand field of a GSET must be
absolute and cannot include a symbol that is not yet defined (no forward references are
allowed).

See also: EQU, SET

EXAMPLE:

COUNT GSET 0 ; INITIALIZE COUNT

Assembler Significant Characters And Directives
Assembler Directives

6-56 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

HIMEM
Set High Memory Bounds

HIMEM <mem>[<rl>]:<expression>[,...]

The HIMEM directive establishes an absolute high memory bound for code and data gen-
eration. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl> is one
of the letters R for runtime counter or L for load counter. The <expression> is an absolute
integer value within the address range of the machine. If during assembly the specified
location counter exceeds the value given by <expression>, a warning is issued.

A label is not allowed with this directive.

See also: LOMEM

EXAMPLE:

HIMEM XR:$7FFF,YR:$7FFF ; SET X/Y RUN HIGH MEM
BOUNDS

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-57

IDENT
Object Code Identification Record

[<label>] IDENT <expression1>,<expression2>

The IDENT directive is used to create an identification record for the object module. If <la-
bel> is specified, it will be used as the module name. If <label> is not specified, then the
filename of the source input file is used as the module name. <expression1> is the ver-
sion number; <expression2> is the revision number. The two expressions must each
evaluate to an integer result. The comment field of the IDENT directive will also be passed
on to the object module.

See also: COBJ

EXAMPLE:

If the following line was included in the source file,

FFILTER IDENT 1,2 ; FIR FILTER MODULE

then the object module identification record would include the module name (FFILTER),
the version number (1), the revision number (2), and the comment field (; FIR FILTER
MODULE).

Assembler Significant Characters And Directives
Assembler Directives

6-58 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

IF
Conditional Assembly Directive

IF <expression>
.
.
[ELSE] (the ELSE directive is optional)
.
.
ENDIF

 Part of a program that is to be conditionally assembled must be bounded by an IF-ENDIF
directive pair. If the optional ELSE directive is not present, then the source statements
following the IF directive and up to the next ENDIF directive will be included as part of the
source file being assembled only if the <expression> has a nonzero result. If the <expres-
sion> has a value of zero, the source file will be assembled as if those statements be-
tween the IF and the ENDIF directives were never encountered. If the ELSE directive is
present and <expression> has a nonzero result, then the statements between the IF and
ELSE directives will be assembled, and the statements between the ELSE and ENDIF di-
rectives will be skipped. Alternatively, if <expression> has a value of zero, then the state-
ments between the IF and ELSE directives will be skipped, and the statements between
the ELSE and ENDIF directives will be assembled.

The <expression> must have an absolute integer result and is considered true if it has a
nonzero result. The <expression> is false only if it has a result of 0. Because of the nature
of the directive, <expression> must be known on pass one (no forward references al-
lowed). IF directives can be nested to any level. The ELSE directive will always refer to
the nearest previous IF directive as will the ENDIF directive.

A label is not allowed with this directive.

See also: ENDIF

EXAMPLE:

IF @LST>0
DUP @LST ; Unwind LIST directive stack
NOLIST
ENDM
ENDIF

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-59

INCLUDE
Include Secondary File

INCLUDE <string> | <<string>>

This directive is inserted into the source program at any point where a secondary file is to
be included in the source input stream. The string specifies the filename of the secondary
file. The filename must be compatible with the operating system and can include a direc-
tory specification. If no extension is given for the filename, a default extension of .ASM is
supplied.

The file is searched for first in the current directory, unless the <<string>> syntax is used,
or in the directory specified in <string>. If the file is not found, and the -I option was used
on the command line that invoked the Assembler, then the string specified with the -I op-
tion is prefixed to <string> and that directory is searched. If the <<string>> syntax is given,
the file is searched for only in the directories specified with the -I option. Refer to Chapter
1, Running The Assembler.

A label is not allowed with this directive.

See also: MACLIB

EXAMPLE:

INCLUDE 'headers/io.asm' ; Unix example

INCLUDE 'storage\mem.asm' ; MS-DOS example

INCLUDE <data.asm> ; Do not look in current directory

Assembler Significant Characters And Directives
Assembler Directives

6-60 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

LIST
List the Assembly

LIST

Print the listing from this point on. The LIST directive will not be printed, but the subse-
quent source lines will be output to the source listing. The default is to print the source
listing. If the IL option has been specified, the LIST directive has no effect when encoun-
tered within the source program.

The LIST directive actually increments a counter that is checked for a positive value and
is symmetrical with respect to the NOLIST directive. Note the following sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was issued.

A label is not allowed with this directive.

See also: NOLIST, OPT

EXAMPLE:

IF LISTON
LIST ; Turn the listing back on
ENDIF

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-61

LOCAL
Local Section Symbol Declaration

LOCAL <symbol>[,<symbol>,...,<symbol>]

The LOCAL directive is used to specify that the list of symbols is defined within the current
section, and that those definitions are explicitly local to that section. It is useful in cases
where a symbol is used as a forward reference in a nested section where the enclosing
section contains a like-named symbol. This directive is only valid if used within a program
block bounded by the SECTION and ENDSEC directives. The LOCAL directive must ap-
pear before <symbol> is defined in the section. If the symbols that appear in the operand
field are not defined in the section, an error will be generated.

A label is not allowed with this directive.

See also: SECTION, XDEF, XREF

EXAMPLE:

SECTION IO
LOCAL LOOPA ; LOOPA local to this section
.
.
.
ENDSEC

Assembler Significant Characters And Directives
Assembler Directives

6-62 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

LOMEM
Set Low Memory Bounds

LOMEM <mem>[<rl>]:<expression>[,...]

The LOMEM directive establishes an absolute low memory bound for code and data gen-
eration. <mem> corresponds to one of the DSP memory spaces (X, Y, L, P, E). <rl> is one
of the letters R for runtime counter or L for load counter. The <expression> is an absolute
integer value within the address range of the machine. If during assembly the specified
location counter falls below the value given by <expression>, a warning is issued.

A label is not allowed with this directive.

See also: HIMEM

EXAMPLE:

LOMEM XR:$100,YR:$100 ; SET X/Y RUN LOW MEM BOUNDS

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-63

LSTCOL
Set Listing Field Widths

LSTCOL [<labw>[,<opcw>[,<oprw>[,<opc2w>[,<opr2w>[,<xw>[,<yw>]]]]]]]

Sets the width of the output fields in the source listing. Widths are specified in terms of
column positions. The starting position of any field is relative to its predecessor except for
the label field, which always starts at the same position relative to page left margin, pro-
gram counter value, and cycle count display. The widths may be expressed as any pos-
itive absolute integer expression. However, if the width is not adequate to accommodate
the contents of a field, the text is separated from the next field by at least one space.

Any field for which the default is desired may be null. A null field can be indicated by two
adjacent commas with no intervening space or by omitting any trailing fields altogether. If
the LSTCOL directive is given with no arguments all field widths are reset to their default
values.

A label is not allowed with this directive.

See also: PAGE

EXAMPLE:

LSTCOL 40,,,,,20,20 ; Reset label, X, and Y data field widths

Assembler Significant Characters And Directives
Assembler Directives

6-64 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

MACLIB
Macro Library

MACLIB <pathname>

This directive is used to specify the <pathname> (as defined by the operating system) of
a directory that contains macro definitions. Each macro definition must be in a separate
file, and the file must be named the same as the macro with the extension .ASM added.
For example, BLOCKMV.ASM would be a file that contained the definition of the macro
called BLOCKMV.

If the Assembler encounters a directive in the operation field that is not contained in the
directive or mnemonic tables, the directory specified by <pathname> will be searched for
a file of the unknown name (with the .ASM extension added). If such a file is found, the
current source line will be saved, and the file will be opened for input as an INCLUDE file.
When the end of the file is encountered, the source line is restored and processing is re-
sumed. Because the source line is restored, the processed file must have a macro defi-
nition of the unknown directive name, or else an error will result when the source line is
restored and processed. However, the processed file is not limited to macro definitions,
and can include any legal source code statements.

Multiple MACLIB directives may be given, in which case the Assembler will search each
directory in the order in which it is encountered.

A label is not allowed with this directive.

See also: INCLUDE

EXAMPLE:

MACLIB 'macros\mymacs\' ; IBM PC example
MACLIB 'fftlib/' ; UNIX example

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-65

MACRO
Macro Definition

<label> MACRO [<dummy argument list>]
.
.
<macro definition statements>
.
.
ENDM

The dummy argument list has the form:

[<dumarg>[,<dumarg>,...,<dumarg>]]

The required label is the symbol by which the macro will be called. If the macro is named
the same as an existing Assembler directive or mnemonic, a warning will be issued. This
warning can be avoided with the RDIRECT directive.

The definition of a macro consists of three parts: the header, which assigns a name to the
macro and defines the dummy arguments; the body, which consists of prototype or skel-
eton source statements; and the terminator. The header is the MACRO directive, its label,
and the dummy argument list. The body contains the pattern of standard source state-
ments. The terminator is the ENDM directive.

The dummy arguments are symbolic names that the macro processor will replace with ar-
guments when the macro is expanded (called). Each dummy argument must obey the
same rules as symbol names. Dummy argument names that are preceded by an under-
score are not allowed. Within each of the three dummy argument fields, the dummy ar-
guments are separated by commas. The dummy argument fields are separated by one
or more blanks.

Macro definitions may be nested but the nested macro will not be defined until the primary
macro is expanded.

Chapter 5 contains a complete description of macros.

See also: DUP, DUPA, DUPC, DUPF, ENDM

EXAMPLE:

SWAP_SYM MACRO REG1,REG2 ;swap REG1,REG2 using X0 as temp
MOVE R\?REG1,X0
MOVE R\?REG2,R\?REG1
MOVE X0,R\?REG2
ENDM

Assembler Significant Characters And Directives
Assembler Directives

6-66 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

MODE
Change Relocation Mode

MODE <ABS[OLUTE] | REL[ATIVE]>

Causes the Assembler to change to the designated operational mode. The MODE direc-
tive may be given at any time in the assembly source to alter the set of location counters
used for section addressing. Code generated while in absolute mode will be placed in
memory at the location determined during assembly. Relocatable code and data are
based from the enclosing section start address. The MODE directive has no effect when
the command line -A option is issued. See Chapter 4 for more information on modes, sec-
tions, and relocation.

A label is not allowed with this directive.

See also: ORG

EXAMPLE:

MODE ABS ; Change to absolute mode

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-67

MSG
Programmer Generated Message

MSG [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The MSG directive will cause a message to be output by the Assembler. The error and
warning counts will not be affected. The MSG directive is normally used in conjunction
with conditional assembly directives for informational purposes. The assembly proceeds
normally after the message has been printed. An arbitrary number of strings and expres-
sions, in any order but separated by commas with no intervening white space, can be
specified optionally to describe the nature of the message.

A label is not allowed with this directive.

See also: FAIL , WARN

EXAMPLE:

MSG 'Generating sine tables'

Assembler Significant Characters And Directives
Assembler Directives

6-68 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

NOLIST
Stop Assembly Listing

NOLIST

Do not print the listing from this point on (including the NOLIST directive). Subsequent
source lines will not be printed.

The NOLIST directive actually decrements a counter that is checked for a positive value
and is symmetrical with respect to the LIST directive. Note the following sequence:

; Counter value currently 1
LIST ; Counter value = 2
LIST ; Counter value = 3
NOLIST ; Counter value = 2
NOLIST ; Counter value = 1

The listing still would not be disabled until another NOLIST directive was issued.

A label is not allowed with this directive.

See also: LIST, OPT

EXAMPLE:

IF LISTOFF
NOLIST ; Turn the listing off
ENDIF

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-69

OPT
Assembler Options

OPT <option>[,<option>,...,<option>] [<comment>]

The OPT directive is used to designate the Assembler options. Assembler options are giv-
en in the operand field of the source input file and are separated by commas. Options also
may be specified using the command line -O option (see Chapter 1). All options have a
default condition. Some options are reset to their default condition at the end of pass one.
Some are allowed to have the prefix NO attached to them, which then reverses their
meaning.

Options can be grouped by function into five different types:

1. Listing format control
2. Reporting options
3. Message control
4. Symbol options
5. Assembler operation

Listing Format Control

These options control the format of the listing file:

FC - Fold trailing comments
FF - Form feeds for page ejects
FM - Format messages
PP - Pretty print listing
RC - Relative comment spacing

Assembler Significant Characters And Directives
Assembler Directives

6-70 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Reporting Options

These options control what is reported in the listing file:

CC - Enable cycle counts
CEX - Print DC expansions
CL - Print conditional assembly directives
CM - Preserve comment lines within macros
CONTC - Continue cycle counts
CRE - Print symbol cross-reference
DXL - Expand DEFINE directive strings in listing
HDR - Generate listing headers
IL - Inhibit source listing
LOC - Print local labels in cross-reference
MC - Print macro calls
MD - Print macro definitions
MEX - Print macro expansions
MU - Print memory utilization report
NL - Print conditional assembly and section nesting levels
S - Print symbol table
U - Print skipped conditional assembly lines

Message Control

These options control the types of Assembler messages that are generated:

AE - Check address expressions
IDW - Warn on pipeline stalls
MSW - Warn on memory space incompatibilities
NDE - Warn on DALU pipeline interlocks
UR - Flag unresolved references
W - Display warning messages

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-71

Symbol Options

These options deal with the handling of symbols by the Assembler:

CONST - Make EQU symbols assembly time constants
DEX - Expand DEFINE symbols within quoted strings
GL - Make all section symbols global
GS - Make all sections global static
IC - Ignore case in symbol names
NS - Support symbol scoping in nested sections
SCL - Scope structured control statement labels
SCO - Structured control statement labels to listing/object file
SMS - Preserve memory space in SET symbols
SO - Write symbols to object file
XLL - Write local labels to object file
XR - Recognize XDEFed symbols without XREF

Assembler Operation

Miscellaneous options having to do with internal Assembler operation:

AL - Align load counter in overlay buffers
CK - Enable checksumming
CONTCK - Continue checksumming
DBL - Split dual read instructions
DLD - Do not restrict directives in loops
EM - Emulate 56100 instructions on the 56800
INTR - Perform interrupt location checks
LB - Byte increment load counter
LBX - Split load words into bytes
LDB - Listing file debug
MI - Scan MACLIB directories for include files
PS - Pack strings
PSB - Preserve sign bit in negative operands
PSM - Programmable short addressing mode
RP - Generate NOP to accommodate pipeline delay
RSV - Check reserve data memory locations
SBM - Sixteen bit mode support
SI - Interpret short immediate as long or sign extended
SVO - Preserve object file on errors

Assembler Significant Characters And Directives
Assembler Directives

6-72 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Following are descriptions of the individual options. The parenthetical inserts specify de-
fault if the option is the default condition, and reset if the option is reset to its default state
at the end of pass one.

A label is not allowed with this directive.

AE (default, reset) Check address expressions for appropriate arithmetic opera-
tions. For example, this will check that only valid add or subtract operations
are performed on address terms.

AL (default, reset) Align load counter in overlay buffers.

CC Enable cycle counts and clear total cycle count. Cycle counts will be shown
on the output listing for each instruction. Cycle counts assume a full instruc-
tion fetch pipeline and no wait states.

CEX Print DC expansions.

CK Enable checksumming of instruction and data values and clear cumulative
checksum. The checksum value can be obtained using the @CHK() function
(see Chapter 3).

CL (default, reset) Print the conditional assembly directives.

CM (default, reset) Preserve comment lines of macros when they are defined.
Note that any comment line within a macro definition that starts with two con-
secutive semicolons (;;) is never preserved in the macro definition.

CONST EQU symbols are maintained as assembly time constants and will not be sent
to the object file.

CONTC Re-enable cycle counts. Does not clear total cycle counts. The cycle count
for each instruction will be shown on the output listing.

CONTCK Re-enable checksumming of instructions and data. Does not clear cumula-
tive checksum value.

CRE Print a cross reference table at the end of the source listing. This option, if
used, must be specified before the first symbol in the source program is de-
fined.

DBL (DSP56800 only) Split dual read instructions.

DEX Expand DEFINE symbols within quoted strings. Can also be done on a case-
by-case basis using double-quoted strings.

DLD Do not restrict directives in DO loops. The presence of some directives in DO
loops does not make sense, including some OPT directive variations. This op-
tion suppresses errors on particular directives in loops.

DXL (default, reset) Expand DEFINE directive strings in listing.

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-73

EM (DSP56800 only) Used when it is necessary to emulate 56100 instructions.
This option must be used in order to use the following 56100 instructions in
the 56800 part: ASR16, IMAC, NEGW, TFR2, SUBL and SWAP.

FC Fold trailing comments. Any trailing comments that are included in a source
line will be folded underneath the source line and aligned with the opcode
field. Lines that start with the comment character will be aligned with the label
field in the source listing. The FC option is useful for displaying the source
listing on 80 column devices.

FF Use form feeds for page ejects in the listing file.

FM Format Assembler messages so that the message text is aligned and broken
at word boundaries.

GL Make all section symbols global. This has the same effect as declaring every
section explicitly GLOBAL. This option must be given before any sections are
defined explicitly in the source file.

GS (default, reset in absolute mode) Make all sections global static. All section
counters and attributes will be associated with the GLOBAL section. This op-
tion must be given before any sections are defined explicitly in the source file.

HDR (default, reset) Generate listing header along with titles and subtitles.

IC Ignore case in symbol, section, and macro names. This directive must be is-
sued before any symbols, sections, or macros are defined.

IDW (DSP56300 only) (default, reset) Generate warning on instruction delays due
to pipeline stalls.

IL Inhibit source listing. This option will stop the Assembler from producing a
source listing.

INTR (default, reset in absolute mode) Perform interrupt location checks. Certain
DSP instructions may not appear in the interrupt vector locations in program
memory. This option enables the Assembler to check for these instructions
when the program counter is within the interrupt vector bounds.

LB Increment load counter (if different from runtime) by number of bytes in DSP
word to provide byte-wide support for overlays in bootstrap mode. This option
must appear before any code or data generation.

LBX Split overlay load words into bytes and increment load counter by bytes. This
option facilitates debugging of custom boot code. It must appear prior to any
code or data generation.

LDB Use the listing file as the debug source file rather than the assembly language
file. The -L command line option to generate a listing file must be specified for
this option to take effect.

Assembler Significant Characters And Directives
Assembler Directives

6-74 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

LOC Include local labels in the symbol table and cross-reference listing. Local la-
bels are not normally included in these listings. If neither the S or CRE options
are specified, then this option has no effect. The LOC option must be speci-
fied before the first symbol is encountered in the source file.

MC (default, reset) Print macro calls.

MD (default, reset) Print macro definitions.

MEX Print macro expansions.

MI Scan MACLIB directory paths for include files. The Assembler ordinarily
looks for included files only in the directory specified in the INCLUDE directory
or in the paths given by the -I command line option. If the MI option is used
the Assembler will also look for included files in any designated MACLIB di-
rectories.

MSW (default, reset) Issue warning on memory space incompatibilities.

MU Include a memory utilization report in the source listing. This option must ap-
pear before any code or data generation.

NDE (DSP56300 only) (default, reset) This is used to check for DALU pipeline in-
terlocks. It flags all interlocks that occur as a result of using the accumulator
register as a destination in previous instructions.

NL Display conditional assembly (IF-ELSE-ENDIF) and section nesting levels on
listing.

NOAE Do not check address expressions.

NOAL Do not align load counter in overlay buffers.

NOCC (default, reset) Disable cycle counts. Does not clear total cycle count.

NOCEX (default, reset) Do not print DC expansions.

NOCK (default, reset) Disable checksumming of instruction and data values.

NOCL Do not print the conditional assembly directives.

NOCM Do not preserve comment lines of macros when they are defined.

NOCONST (default, reset) EQU symbols are exported to the object file.

NODBL (DSP56800 only) (default, reset) Do not split dual read instructions.

NODEX (default, reset) Do not expand DEFINE symbols within quoted strings.

NODLD (default, reset) Restrict use of certain directives in DO loop.

NODXL Do not expand DEFINE directive strings in listing.

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-75

NOEM (DSP56800 only) (default, reset) Do not emulate 56100 instructions.

NOFC (default, reset) Inhibit folded comments.

NOFF (default, reset) Use multiple line feeds for page ejects in the listing file.

NOFM (default, reset) Do not format Assembler messages.

NOGS (default, reset in relative mode) Do not make all sections global static.

NOHDR Do not generate listing header. This also turns off titles and subtitles.

NOIDW (DSP56300 only) Do not generate warnings on pipeline stalls.

NOINTR (default, reset in relative mode) Do not perform interrupt location checks.

NOMC Do not print macro calls.

NOMD Do not print macro definitions.

NOMEX (default, reset) Do not print macro expansions.

NOMI (default, reset) Do not scan MACLIB directory paths for include files.

NOMSW Do not issue warning on memory space incompatibilities.

NONDE (DSP56300 only) Do not flag DALU pipeline interlocks.

NONL (default, reset) Do not display nesting levels on listing.

NONS Do not allow scoping of symbols within nested sections.

NOPP Do not pretty print listing file. Source lines are sent to the listing file as they
are encountered in the source, with the exception that tabs are expanded to
spaces and continuation lines are concatenated into a single physical line for
printing.

NOPS Do not pack strings in DC directive. Individual bytes in strings will be stored
one byte per word.

NOPSB Do not preserve sign bit in twos-complement negative operands.

NOPSM (DSP56166 only) (default, reset) Do not allow programmable short address-
ing.

NORC (default, reset) Do not space comments relatively.

NORP (default, reset) Do not generate instructions to accommodate pipeline delay.

NORSV (DSP96000 only) (default, reset) Do not perform reserve memory checks.

NOSCL Do not maintain the current local label scope when a structured control state-
ment label is encountered.

Assembler Significant Characters And Directives
Assembler Directives

6-76 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

NOSI (DSP56000 only) (default, reset) Interpret an eight-bit short immediate value
moved to a fractional register as a short unless forced long.

(DSP56100 only) (default, reset) Do not interpret eighth bit of short immediate
value as implied sign extension.

NOSMS Do not preserve memory space in SET symbols.

NOU (default, reset) Do not print the lines excluded from the assembly due to a con-
ditional assembly directive.

NOUR (default, reset) Do not flag unresolved external references.

NOW Do not print warning messages.

NS (default, reset) Allow scoping of symbols within nested sections.

PP (default, reset) Pretty print listing file. The Assembler attempts to align fields
at a consistent column position without regard to source file formatting.

PS (default, reset) Pack strings in DC directive. Individual bytes in strings will be
packed into consecutive target words for the length of the string.

PSB (default, reset) Preserve sign bit in twos-complement negative operands.

PSM (DSP56100 only) Allow programmable short addressing, disabling short and
I/O short address checking.

RC Space comments relatively in listing fields. By default, the Assembler always
places comments at a consistent column position in the listing file. This option
allows the comment field to float: on a line containing only a label and opcode,
the comment would begin in the operand field.

RP Generate NOP instructions to accommodate pipeline delay. If an address
register is loaded in one instruction then the contents of the register is not
available for use as a pointer until after the next instruction. Ordinarily when
the Assembler detects this condition it issues an error message. The RP op-
tion will cause the Assembler to output a NOP instruction into the output
stream instead of issuing an error.

RSV (DSP96000 only) Perform location counter checks to insure code/data is not
located in DSP96000 reserve data memory locations. The Assembler will is-
sue a warning if the program counter value falls within the reserved range.

S Print symbol table at the end of the source listing. This option has no effect if
the CRE option is used.

SBM (DSP56300 only) Supports 16 bit mode operation for the 56300 when used in
such a mode. This option ensures that in evaluations of fractional values the

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-77

upper 16 bits are considered rather than the lower 16 bits. Not using this op-
tion does not preclude the use of the 16 bit mode in the 56300.

SCL (default, reset) Structured control statements generate non-local labels that
ordinarily are not visible to the programmer. This can create problems when
local labels are interspersed among structured control statements. This op-
tion causes the Assembler to maintain the current local label scope when a
structured control statement label is encountered.

SCO Send structured control statement labels to object and listing files. Normally
the Assembler does not externalize these labels. This option must appear be-
fore any symbol definition.

SI (DSP56000 only) Interpret an eight-bit short immediate value moved to a frac-
tional register as a long unless forced short.

(DSP56100 only) Interpret eighth bit of short immediate as implied sign exten-
sion.

SMS (default, reset) Preserve memory space in SET symbols.

SO Write symbol information to object file. This option is recognized but performs
no operation in COFF Assemblers.

SVO Preserve object file on errors. Normally any object file produced by the As-
sembler is deleted if errors occur during assembly. This option must be given
before any code or data is generated.

U Print the unassembled lines skipped due to failure to satisfy the condition of a
conditional assembly directive.

UR Generate a warning at assembly time for each unresolved external reference.
This option works only in relocatable mode.

W (default, reset) Print all warning messages.

WEX Add warning count to exit status. Ordinarily the Assembler exits with a count
of errors. This option causes the count of warnings to be added to the error
count.

XLL Write underscore local labels to object file. This is primarily used to aid de-
bugging. This option, if used, must be specified before the first symbol in the
source program is defined.

Assembler Significant Characters And Directives
Assembler Directives

6-78 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

XR Causes XDEFed symbols to be recognized within other sections without be-
ing XREFed. This option, if used, must be specified before the first symbol in
the source program is encountered.

EXAMPLE:

OPT CEX,MEX ; Turn on DC and macro expansions
OPT CRE,MU ; Cross reference, memory utilization

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-79

ORG
Initialize Memory Space and Location Counters

 ORG <rms>[<rlc>][<rmp>]:[<exp1>][,<lms>[<llc>][<lmp>]:[<exp2>]]

 ORG
<rms>[<rmp>][(<rce>)]:[<exp1>][,<lms>[<lmp>][(<lce>)]:[<exp2>]]

The ORG directive is used to specify addresses and to indicate memory space and map-
ping changes. It also can designate an implicit counter mode switch in the Assembler and
serves as a mechanism for initiating overlays.

A label is not allowed with this directive.

<rms>

Which memory space (X, Y, L, P, or E) will be used as the runtime memory
space. If the memory space is L, any allocated datum with a value greater
than the target word size will be extended to two words; otherwise, it is trun-
cated. If the memory space is E, then depending on the memory space qual-
ifier, any generated words will be split into bytes, one byte per word, or a 16/
8-bit combination.

<rlc>

Which runtime counter H, L, or default (if neither H or L is specified), that is
associated with the <rms> will be used as the runtime location counter.

<rmp>

Indicates the runtime physical mapping to DSP memory: I - internal, E - ex-
ternal, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

<rce>

Non-negative absolute integer expression representing the counter number
to be used as the runtime location counter. Must be enclosed in parenthe-
ses. Should not exceed the value 65535.

<exp1>

Initial value to assign to the runtime counter used as the <rlc>. If <exp1> is
a relative expression the Assembler uses the relative location counter. If
<exp1> is an absolute expression the Assembler uses the absolute location
counter. If <exp1> is not specified, then the last value and mode that the
counter had will be used.

Assembler Significant Characters And Directives
Assembler Directives

6-80 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

<lms>

Which memory space (X, Y, L, P, or E) will be used as the load memory
space. If the memory space is L, any allocated datum with a value greater
than the target word size will be extended to two words; otherwise, it is trun-
cated. If the memory space is E, then depending on the memory space qual-
ifier, any generated words will be split into bytes, one byte per word, or a 16/
8-bit combination.

<llc>

Which load counter, H, L, or default (if neither H or L is specified), that is as-
sociated with the <lms> will be used as the load location counter.

<lmp>

Indicates the load physical mapping to DSP memory: I - internal, E - exter-
nal, R - ROM, A - port A, B - port B. If not present, no explicit mapping is
done.

<lce>

Non-negative absolute integer expression representing the counter number
to be used as the load location counter. Must be enclosed in parentheses.
Should not exceed the value 65535.

<exp2>

Initial value to assign to the load counter used as the <llc>. If <exp2> is a
relative expression the Assembler uses the relative location counter. If
<exp2> is an absolute expression the Assembler uses the absolute loca-
tion counter. If <exp2> is not specified, then the last value and mode that
the counter had will be used.

If the last half of the operand field in an ORG directive dealing with the load memory space
and counter is not specified, then the Assembler will assume that the load memory space
and load location counter are the same as the runtime memory space and runtime loca-
tion counter. In this case, object code is being assembled to be loaded into the address
and memory space where it will be when the program is run, and is not an overlay.

If the load memory space and counter are given in the operand field, then the Assembler
always generates code for an overlay. Whether the overlay is absolute or relocatable de-
pends upon the current operating mode of the Assembler and whether the load counter
value is an absolute or relative expression. If the Assembler is running in absolute mode,
or if the load counter expression is absolute, then the overlay is absolute. If the Assembler
is in relative mode and the load counter expression is relative, the overlay is relocatable.
Runtime relocatable overlay code is addressed relative to the location given in the runtime

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-81

location counter expression. This expression, if relative, may not refer to another overlay
block.

See also: MODE

EXAMPLES:

ORG P:$1000

Sets the runtime memory space to P. Selects the default runtime counter (counter
0) associated with P space to use as the runtime location counter and initializes it
to $1000. The load memory space is implied to be P, and the load location counter
is assumed to be the same as the runtime location counter.

ORG PHE:

Sets the runtime memory space to P. Selects the H load counter (counter 2) as-
sociated with P space to use as the runtime location counter. The H counter will
not be initialized, and its last value will be used. Code generated hereafter will be
mapped to external (E) memory. The load memory space is implied to be P, and
the load location counter is assumed to be the same as the runtime location
counter.

ORG PI:OVL1,Y:

Indicates code will be generated for an overlay. The runtime memory space is P,
and the default counter is used as the runtime location counter. It will be reset to
the value of OVL1. If the Assembler is in absolute mode via the -A command line
option then OVL1 must be an absolute expression. If OVL1 is an absolute expres-
sion the Assembler uses the absolute runtime location counter. If OVL1 is a relo-
catable value the Assembler uses the relative runtime location counter. In this case
OVL1 must not itself be an overlay symbol (e.g. defined within an overlay block).
The load memory space is Y. Since neither H, L, nor any counter expression was
specified as the load counter, the default load counter (counter 0) will be used as
the load location counter. The counter value and mode will be whatever it was the
last time it was referenced.

ORG XL:,E8:

Sets the runtime memory space to X. Selects the L counter (counter 1) associated
with X space to use as the runtime location counter. The L counter will not be ini-
tialized, and its last value will be used. The load memory space is set to E, and the
qualifier 8 indicates a bytewise RAM configuration. Instructions and data will be
generated eight bits per output word with byte-oriented load addresses. The de-
fault load counter will be used and there is no explicit load origin.

Assembler Significant Characters And Directives
Assembler Directives

6-82 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

ORG P(5):,Y:$8000

Indicates code will be generated for an absolute overlay. The runtime memory
space is P, and the counter used as the runtime location counter is counter 5. It
will not be initialized, and the last previous value of counter 5 will be used. The load
memory space is Y. Since neither H, L, nor any counter expression was specified
as the load counter, the default load counter (counter 0) will be used as the load
location counter. The default load counter will be initialized to $8000.

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-83

PAGE
Top of Page/Size Page

PAGE [<exp1>[,<exp2>...,<exp5>]]

The PAGE directive has two forms:

1. If no arguments are supplied, then the Assembler will advance the listing to the top
of the next page. In this case, the PAGE directive will not be output.

2. The PAGE directive with arguments can be used to specify the printed format of
the output listing. Arguments may be any positive absolute integer expression.
The arguments in the operand field (as explained below) are separated by com-
mas. Any argument can be left as the default or last set value by omitting the ar-
gument and using two adjacent commas. The PAGE directive with arguments will
not cause a page eject and will be printed in the source listing.

A label is not allowed with this directive.

The arguments in order are:

PAGE_WIDTH <exp1>

Page width in terms of number of output columns per line (default 80, min 1, max
255).

PAGE_LENGTH <exp2>

Page length in terms of total number of lines per page (default 66, min 10, max
255). As a special case a page length of 0 (zero) turns off all headers, titles, sub-
titles, and page breaks.

BLANK_TOP <exp3>

Blank lines at top of page. (default 0, min 0, max see below).

BLANK_BOTTOM <exp4>

Blank lines at bottom of page. (default 0, min 0, max see below).

BLANK_LEFT <exp5>

Blank left margin. Number of blank columns at the left of the page. (default 0, min
0, max see below).

Assembler Significant Characters And Directives
Assembler Directives

6-84 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

The following relationships must be maintained:

BLANK_TOP + BLANK_BOTTOM <= PAGE_LENGTH - 10

BLANK_LEFT < PAGE_WIDTH

See also: LSTCOL

EXAMPLE:

PAGE 132,,3,3 ; Set width to132, 3 line top/bottom margins
PAGE ; Page eject

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-85

PMACRO
Purge Macro Definition

PMACRO <symbol>[,<symbol>,...,<symbol>]

The specified macro definition will be purged from the macro table, allowing the macro ta-
ble space to be reclaimed.

A label is not allowed with this directive.

See also: MACRO

EXAMPLE:

PMACRO MAC1,MAC2

This statement would cause the macros named MAC1 and MAC2 to be purged.

Assembler Significant Characters And Directives
Assembler Directives

6-86 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

PRCTL
Send Control String to Printer

PRCTL <exp>I<string>,...,<exp>I<string>

PRCTL simply concatenates its arguments and ships them to the listing file (the directive
line itself is not printed unless there is an error). <exp> is a byte expression and <string>
is an Assembler string. A byte expression would be used to encode non-printing control
characters, such as ESC. The string may be of arbitrary length, up to the maximum As-
sembler-defined limits.

PRCTL may appear anywhere in the source file and the control string will be output at the
corresponding place in the listing file. However, if a PRCTL directive is the last line in the
last input file to be processed, the Assembler insures that all error summaries, symbol ta-
bles, and cross-references have been printed before sending out the control string. This
is so a PRCTL directive can be used to restore a printer to a previous mode after printing
is done. Similarly, if the PRCTL directive appears as the first line in the first input file, the
control string will be output before page headings or titles.

The PRCTL directive only works if the -L command line option is given; otherwise it is ig-
nored. See Chapter 1 for more information on the -L option.

A label is not allowed with this directive.

EXAMPLE:

PRCTL $1B,'E' ; Reset HP LaserJet printer

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-87

RADIX
Change Input Radix for Constants

RADIX <expression>

Changes the input base of constants to the result of <expression>. The absolute integer
expression must evaluate to one of the legal constant bases (2, 10, or 16). The default
radix is 10. The RADIX directive allows the programmer to specify constants in a pre-
ferred radix without a leading radix indicator. The radix prefix for base 10 numbers is the
grave accent (`). Note that if a constant is used to alter the radix, it must be in the appro-
priate input base at the time the RADIX directive is encountered.

A label is not allowed with this directive.

EXAMPLE:

_RAD10 DC 10 ; Evaluates to hex A
RADIX 2

_RAD2 DC 10 ; Evaluates to hex 2
RADIX `16

_RAD16 DC 10 ; Evaluates to hex 10
RADIX 3 ; Bad radix expression

Assembler Significant Characters And Directives
Assembler Directives

6-88 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

RDIRECT
Remove Directive or Mnemonic from Table

RDIRECT <direc>[,<direc>,...,<direc>]

The RDIRECT directive is used to remove directives from the Assembler directive and
mnemonic tables. If the directive or mnemonic that has been removed is later encoun-
tered in the source file, it will be assumed to be a macro. Macro definitions that have the
same name as Assembler directives or mnemonics will cause a warning message to be
output unless the RDIRECT directive has been used to remove the directive or mnemonic
name from the Assembler’s tables. Additionally, if a macro is defined through the MA-
CLIB directive which has the same name as an existing directive or opcode, it will not au-
tomatically replace that directive or opcode as previously described. In this case, the
RDIRECT directive must be used to force the replacement.

Since the effect of this directive is global, it cannot be used in an explicitly-defined section
(see SECTION directive). An error will result if the RDIRECT directive is encountered in
a section.

A label is not allowed with this directive.

EXAMPLE:

RDIRECT PAGE,MOVE

This would cause the Assembler to remove the PAGE directive from the directive table
and the MOVE mnemonic from the mnemonic table.

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-89

SCSJMP
Set Structured Control Statement Branching Mode

SCSJMP {SHORT | LONG | NONE}

The SCSJMP directive is analogous to the FORCE directive, but it only applies to branch-
es generated automatically by structured control statements (see Chapter 7). There is no
explicit way, as with a forcing operator, to force a branch short or long when it is produced
by a structured control statement. This directive will cause all branches resulting from sub-
sequent structured control statements to be forced to the specified mode.

Just like the FORCE pseudo-op, errors can result if a value is too large to be forced short.
For relocatable code, the error may not occur until the linking phase.

See also: FORCE, SCSREG

A label is not allowed with this directive.

EXAMPLE:

SCSJMP SHORT ; force all subsequent SCS jumps short

Assembler Significant Characters And Directives
Assembler Directives

6-90 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

SCSREG
Reassign Structured Control Statement Registers

SCSREG [<srcreg>[,<dstreg>[,<tmpreg>[,<extreg>]]]]

The SCSREG directive reassigns the registers used by structured control statement
(SCS) directives (see Chapter 7). It is convenient for reclaiming default SCS registers
when they are needed as application operands within a structured control construct. <sr-
creg> is ordinarily the source register for SCS data moves. <dstreg> is the destination reg-
ister. <tmpreg> is a temporary register for swapping SCS operands. <extreg> is an extra
register for complex SCS operations. With no arguments SCSREG resets the SCS regis-
ters to their default assignments.

The SCSREG directive should be used judiciously to avoid register context errors during
SCS expansion. Source and destination registers may not necessarily be used strictly as
source and destination operands. The Assembler does no checking of reassigned regis-
ters beyond validity for the target processor. Errors can result when a structured control
statement is expanded and an improper register reassignment has occurred. It is recom-
mended that the MEX option (see the OPT directive) be used to examine structured con-
trol statement expansion for relevant constructs to determine default register usage and
applicable reassignment strategies.

See also: OPT (MEX), SCSJMP

A label is not allowed with this directive.

EXAMPLE:

SCSREG Y0,B ; reassign SCS source and dest. registers

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-91

SECTION
Start Section

SECTION <symbol> [GLOBAL | STATIC | LOCAL]
.
.
<section source statements>
.
.
ENDSEC

The SECTION directive defines the start of a section. All symbols that are defined within
a section have the <symbol> associated with them as their section name. This serves to
protect them from like-named symbols elsewhere in the program. By default, a symbol
defined inside any given section is private to that section unless the GLOBAL or LOCAL
qualifier accompanies the SECTION directive.

Any code or data inside a section is considered an indivisible block with respect to relo-
cation. Code or data associated with a section is independently relocatable within the
memory space to which it is bound, unless the STATIC qualifier follows the SECTION di-
rective on the instruction line.

Symbols within a section are generally distinct from other symbols used elsewhere in the
source program, even if the symbol name is the same. This is true as long as the section
name associated with each symbol is unique, the symbol is not declared public (XDEF/
GLOBAL), and the GLOBAL or LOCAL qualifier is not used in the section declaration.
Symbols that are defined outside of a section are considered global symbols and have no
explicit section name associated with them. Global symbols may be referenced freely
from inside or outside of any section, as long as the global symbol name does not conflict
with another symbol by the same name in a given section.

If the GLOBAL qualifier follows the <section name> in the SECTION directive, then all
symbols defined in the section until the next ENDSEC directive are considered global.
The effect is as if every symbol in the section were declared with GLOBAL . This is useful
when a section needs to be independently relocatable, but data hiding is not desired.

If the STATIC qualifier follows the <section name> in the SECTION directive, then all code
and data defined in the section until the next ENDSEC directive are relocated in terms of
the immediately enclosing section. The effect with respect to relocation is as if all code
and data in the section were defined within the parent section. This is useful when a sec-
tion needs data hiding, but independent relocation is not required.

If the LOCAL qualifier follows the <section name> in the SECTION directive, then all sym-
bols defined in the section until the next ENDSEC directive are visible to the immediately
enclosing section. The effect is as if every symbol in the section were defined within the
parent section. This is useful when a section needs to be independently relocatable, but
data hiding within an enclosing section is not required.

Assembler Significant Characters And Directives
Assembler Directives

6-92 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

The division of a program into sections controls not only labels and symbols, but also mac-
ros and DEFINE directive symbols. Macros defined within a section are private to that
section and are distinct from macros defined in other sections even if they have the same
macro name. Macros defined outside of sections are considered global and may be used
within any section. Similarly, DEFINE directive symbols defined within a section are pri-
vate to that section and DEFINE directive symbols defined outside of any section are glo-
bally applied. There are no directives that correspond to XDEF for macros or DEFINE
symbols, and therefore, macros and DEFINE symbols defined in a section can never be
accessed globally. If global accessibility is desired, the macros and DEFINE symbols
should be defined outside of any section.

Sections can be nested to any level. When the Assembler encounters a nested section,
the current section is stacked and the new section is used. When the ENDSEC directive
of the nested section is encountered, the Assembler restores the old section and uses it.
The ENDSEC directive always applies to the most previous SECTION directive. Nesting
sections provides a measure of scoping for symbol names, in that symbols defined within
a given section are visible to other sections nested within it. For example, if section B is
nested inside section A, then a symbol defined in section A can be used in section B with-
out XDEFing in section A or XREFing in section B. This scoping behavior can be turned
off and on with the NONS and NS options respectively (see the OPT directive, this chap-
ter).

Sections may also be split into separate parts. That is, <section name> can be used mul-
tiple times with SECTION and ENDSEC directive pairs. If this occurs, then these separate
(but identically named) sections can access each others symbols freely without the use of
the XREF and XDEF directives. If the XDEF and XREF directives are used within one
section, they apply to all sections with the same section name. The reuse of the section
name is allowed to permit the program source to be arranged in an arbitrary manner (for
example, all statements that reserve X space storage locations grouped together), but re-
tain the privacy of the symbols for each section.

When the Assembler operates in relative mode (the default), sections act as the basic
grouping for relocation of code and data blocks. For every section defined in the source
a set of location counters is allocated for each DSP memory space. These counters are
used to maintain offsets of data and instructions relative to the beginning of the section.
At link time sections can be relocated to an absolute address, loaded in a particular order,
or linked contiguously as specified by the programmer. Sections which are split into parts
or among files are logically recombined so that each section can be relocated as a unit.

Sections may be relocatable or absolute. In the Assembler absolute mode (command line
-A option) all sections are considered absolute. A full set of locations counters is reserved
for each absolute section unless the GS option is given (see the OPT directive, this chap-
ter). In relative mode, all sections are initially relocatable. However, a section or a part of

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-93

a section may be made absolute either implicitly by using the ORG directive, or explicitly
through use of the MODE directive.

A label is not allowed with this directive.

See also: MODE, ORG, GLOBAL , LOCAL , XDEF, XREF

EXAMPLE:

SECTION TABLES ; TABLES will be the section name

Assembler Significant Characters And Directives
Assembler Directives

6-94 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

SET
Set Symbol to a Value

<label> SET <expression>

SET <label> <expression>

The SET directive is used to assign the value of the expression in the operand field to the
label. The SET directive functions somewhat like the EQU directive. However, labels de-
fined via the SET directive can have their values redefined in another part of the program
(but only through the use of another SET directive). The SET directive is useful in estab-
lishing temporary or reusable counters within macros. The expression in the operand field
of a SET must be absolute and cannot include a symbol that is not yet defined (no forward
references are allowed).

See also: EQU, GSET

EXAMPLE:

COUNT SET 0 ; INITIALIZE COUNT

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-95

STITLE
Initialize Program Sub-Title

STITLE [<string>]

The STITLE directive initializes the program subtitle to the string in the operand field. The
subtitle will be printed on the top of all succeeding pages until another STITLE directive is
encountered. The subtitle is initially blank. The STITLE directive will not be printed in the
source listing. An STITLE directive with no string argument will cause the current subtitle
to be blank.

A label is not allowed with this directive.

See also: TITLE

EXAMPLE:

STITLE 'COLLECT SAMPLES'

Assembler Significant Characters And Directives
Assembler Directives

6-96 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

SYMOBJ
Write Symbol Information to Object File

SYMOBJ <symbol>[,<symbol>,...,<symbol>]

The SYMOBJ directive causes information for each <symbol> to be written to the object
file. This directive is recognized but currently performs no operation in COFF Assemblers
(see Appendix E, Motorola DSP Object File Format (COFF)).

A label is not allowed with this directive.

EXAMPLE:

SYMOBJ XSTART,HIRTN,ERRPROC

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-97

TABS
Set Listing Tab Stops

TABS <tabstops>

The TABS directive allows resetting the listing file tab stops from the default value of 8.

A label is not allowed with this directive.

See also: LSTCOL

EXAMPLE:

TABS 4 ; Set listing file tab stops to 4

Assembler Significant Characters And Directives
Assembler Directives

6-98 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

TITLE
Initialize Program Title

TITLE [<string>]

The TITLE directive initializes the program title to the string in the operand field. The pro-
gram title will be printed on the top of all succeeding pages until another TITLE directive
is encountered. The title is initially blank. The TITLE directive will not be printed in the
source listing. A TITLE directive with no string argument will cause the current title to be
blank.

A label is not allowed with this directive.

See also: STITLE

EXAMPLE:

TITLE 'FIR FILTER'

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-99

UNDEF
Undefine DEFINE Symbol

UNDEF [<symbol>]

The UNDEF directive causes the substitution string associated with <symbol> to be re-
leased, and <symbol> will no longer represent a valid DEFINE substitution. See the DE-
FINE directive for more information.

A label is not allowed with this directive.

See also: DEFINE

EXAMPLE:

UNDEF DEBUG ; UNDEFINES THE DEBUG SUBSTITUTION STRING

Assembler Significant Characters And Directives
Assembler Directives

6-100 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

WARN
Programmer Generated Warning

WARN [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>}]]

The WARN directive will cause a warning message to be output by the Assembler. The
total warning count will be incremented as with any other warning. The WARN directive
is normally used in conjunction with conditional assembly directives for exceptional con-
dition checking. The assembly proceeds normally after the warning has been printed. An
arbitrary number of strings and expressions, in any order but separated by commas with
no intervening white space, can be specified optionally to describe the nature of the gen-
erated warning.

A label is not allowed with this directive.

See also: FAIL , MSG

EXAMPLE:

WARN 'parameter too large'

Assembler Significant Characters And Directives
Assembler Directives

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 6-101

XDEF
External Section Symbol Definition

XDEF <symbol>[,<symbol>,...,<symbol>]

The XDEF directive is used to specify that the list of symbols is defined within the current
section, and that those definitions should be accessible by sections with a corresponding
XREF directive. This directive is only valid if used within a program section bounded by
the SECTION and ENDSEC directives. The XDEF directive must appear before <sym-
bol> is defined in the section. If the symbols that appear in the operand field are not de-
fined in the section, an error will be generated.

A label is not allowed with this directive.

See also: SECTION, XREF

EXAMPLE:

SECTION IO
XDEF LOOPA ; LOOPA will be accessible by sections with XREF
.
.
.
ENDSEC

Assembler Significant Characters And Directives
Assembler Directives

6-102 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

XREF
External Section Symbol Reference

XREF <symbol>[,<symbol>,...,<symbol>]

The XREF directive is used to specify that the list of symbols is referenced in the current
section, but is not defined within the current section. These symbols must either have
been defined outside of any section or declared as globally accessible within another sec-
tion using the XDEF directive. If the XREF directive is not used to specify that a symbol
is defined globally and the symbol is not defined within the current section, an error will be
generated, and all references within the current section to such a symbol will be flagged
as undefined. The XREF directive must appear before any reference to <symbol> in the
section.

A label is not allowed with this directive.

See also: SECTION, XDEF

EXAMPLE:

SECTION FILTER
XREF AA,CC,DD ; XDEFed symbols within section
.
.
.
ENDSEC

	Chapter 6
	Assembler Significant Characters And Directives
	6.1 Introduction
	6.2 Assembler Significant Characters
	6.3 Assembler Directives
	Assembler directives can be grouped by function in...
	6.3.1 Assembly Control
	The directives used for assembly control are:

	6.3.2 Symbol Definition
	The directives used to control symbol definition a...

	6.3.3 Data Definition/Storage Allocation
	The directives used to control constant data defin...

	6.3.4 Listing Control and Options
	The directives used to control the output listing ...

	6.3.5 Object File Control
	The directives used for control of the object file...

	6.3.6 Macros and Conditional Assembly
	The directives used for macros and conditional ass...

	6.3.7 Structured Programming
	The directives used for structured programming are...

	; Comment Delimiter Character
	EXAMPLE:

	;; Unreported Comment Delimiter Characters
	EXAMPLE:

	\ Line Continuation Character or Macro Argument Co...
	Line Continuation
	EXAMPLE:

	Macro Argument Concatenation
	EXAMPLE:
	Suppose the source input file contained the follow...
	the resulting expansion would be:

	? Return Value of Symbol Character
	EXAMPLE:
	Consider the following macro definition:
	If the source file contained the following SET sta...
	the resulting expansion as it would appear on the ...

	% Return Hex Value of Symbol Character
	EXAMPLE:
	Consider the following macro definition:
	If this macro were called as follows,
	The resulting expansion as it would appear in the ...

	^ Macro Local Label Override
	EXAMPLE:
	Consider the following macro definition:
	If this macro were called as follows,
	the Assembler would ordinarily issue an error sinc...

	" Macro String Delimiter or Quoted String DEFINE E...
	Macro String
	EXAMPLE:
	Using the following macro definition,
	and a macro call,
	the resulting macro expansion would be:

	Quoted String DEFINE Expansion
	EXAMPLE:
	Consider the source fragment below:
	If this macro were invoked as follows,
	then the resulting expansion would be:

	@ Function Delimiter
	EXAMPLE:

	* Location Counter Substitution
	EXAMPLE:

	++ String Concatenation Operator
	EXAMPLE:

	[] Substring Delimiter
	[<string>,<offset><length>]
	EXAMPLE:

	<< I/O Short Addressing Mode Force Operator
	EXAMPLE:

	< Short Addressing Mode Force Operator
	See also: FORCE
	EXAMPLE:

	> Long Addressing Mode Force Operator
	See also: FORCE
	EXAMPLE:

	# Immediate Addressing Mode
	EXAMPLE:

	#< Immediate Short Addressing Mode Force Operator
	See also: FORCE
	EXAMPLE:

	#> Immediate Long Addressing Mode Force Operator
	See also: FORCE
	EXAMPLE:

	BADDR Set Buffer Address
	BADDR <M | R>,<expression>
	A label is not allowed with this directive.
	See also: BSM, BSB, BUFFER, DSM, DSR
	EXAMPLE:

	BSB Block Storage Bit-Reverse
	[<label>] BSB <expression>[,<expression>]
	See also: BSC, BSM, DC
	EXAMPLE:

	BSC Block Storage of Constant
	[<label>] BSC <expression>[,<expression>]
	See also: BSM, BSB, DC
	EXAMPLE:

	BSM Block Storage Modulo
	[<label>] BSM <expression>[,<expression>]
	See also: BSC, BSB, DC
	EXAMPLE:

	BUFFER Start Buffer
	BUFFER <M | R>,<expression>
	A label is not allowed with this directive.
	See also: BADDR, BSM, BSB, DSM, DSR, ENDBUF
	EXAMPLE:

	COBJ Comment Object File
	COBJ <string>
	A label is not allowed with this directive.
	See also: IDENT
	EXAMPLE:

	COMMENT Start Comment Lines
	COMMENT <delimiter> . . <delimiter>
	A label is not allowed with this directive.
	EXAMPLE:

	DC Define Constant
	[<label>] DC <arg>[,<arg>,...,<arg>]
	EXAMPLE: 'R' = $000052
	EXAMPLE:

	See also: BSC, DCB
	EXAMPLE:

	DCB Define Constant Byte
	[<label>] DCB <arg>[,<arg>,...,<arg>]
	EXAMPLE: 'R' = $000052
	EXAMPLE:

	See also: BSC, DC
	EXAMPLE:

	DEFINE Define Substitution String
	DEFINE <symbol> <string>
	A label is not allowed with this directive.
	See also: UNDEF
	EXAMPLE:
	If the following DEFINE directive occurred in the ...
	then the source line below:
	would be transformed by the Assembler to the follo...

	DS Define Storage
	[<label>] DS <expression>
	See also: DSM, DSR
	EXAMPLE:

	DSM Define Modulo Storage
	[<label>] DSM <expression>
	See also: DS, DSR
	EXAMPLE:

	DSR Define Reverse Carry Storage
	[<label>] DSR <expression>
	See also: DS, DSM
	EXAMPLE:

	DUP Duplicate Sequence of Source Lines
	[<label>] DUP <expression> . . ENDM
	See also: DUPA, DUPC, DUPF, ENDM, MACRO
	EXAMPLE:
	The sequence of source input statements,
	would generate the following in the source listing...
	Note that the lines
	will only be shown on the source listing if the MD...
	will only be shown on the source listing if the ME...

	DUPA Duplicate Sequence With Arguments
	[<label>] DUPA <dummy>,<arg>[<,<arg>,...,<arg>]
	See also: DUP, DUPC, DUPF, ENDM, MACRO
	EXAMPLE:
	If the input source file contained the following s...
	then the assembled source listing would show
	Note that the lines
	will only be shown on the source listing if the MD...
	will only be shown on the source listing if the ME...

	DUPC Duplicate Sequence With Characters
	[<label>] DUPC <dummy>,<string> . . ENDM
	See also: DUP, DUPA, DUPF, ENDM, MACRO
	EXAMPLE:
	If input source file contained the following state...
	then the assembled source listing would show:
	Note that the lines
	will only be shown on the source listing if the MD...
	will only be shown on the source listing if the ME...

	DUPF Duplicate Sequence In Loop
	[<label>] DUPF <dummy>,[<start>],<end>[,<increment...
	See also: DUP, DUPA, DUPC, ENDM, MACRO
	EXAMPLE:
	If input source file contained the following state...
	then the assembled source listing would show:
	Note that the lines
	will only be shown on the source listing if the MD...
	will only be shown on the source listing if the ME...

	END End of Source Program
	END [<expression>]
	A label is not allowed with this directive.
	EXAMPLE:

	ENDBUF End Buffer
	ENDBUF
	A label is not allowed with this directive.
	See also: BUFFER
	EXAMPLE:

	ENDIF End of Conditional Assembly
	ENDIF
	A label is not allowed with this directive.
	See also: IF
	EXAMPLE:

	ENDM End of Macro Definition
	ENDM
	A label is not allowed with this directive.
	See also: DUP, DUPA, DUPC, MACRO
	EXAMPLE:

	ENDSEC End Section
	ENDSEC
	Every SECTION directive must be terminated by an E...
	A label is not allowed with this directive.
	See also: SECTION
	EXAMPLE:

	EQU Equate Symbol to a Value
	<label> EQU [{X: | Y: | L: | P: | E:}]<expression>...
	See also: SET
	EXAMPLE:

	EXITM Exit Macro
	EXITM
	A label is not allowed with this directive.
	See also: DUP, DUPA, DUPC, MACRO
	EXAMPLE:

	FAIL Programmer Generated Error
	FAIL [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp...
	A label is not allowed with this directive.
	See also: MSG, WARN
	EXAMPLE:

	FORCE Set Operand Forcing Mode
	FORCE {SHORT | LONG | NONE}
	A label is not allowed with this directive.
	See also: <, >, #<, #>
	EXAMPLE:

	GLOBAL Global Section Symbol Declaration
	GLOBAL <symbol>[,<symbol>,...,<symbol>]
	A label is not allowed with this directive.
	See also: SECTION, XDEF, XREF
	EXAMPLE:

	GSET Set Global Symbol to a Value
	<label> GSET <expression>
	GSET <label> <expression>
	See also: EQU, SET
	EXAMPLE:

	HIMEM Set High Memory Bounds
	HIMEM <mem>[<rl>]:<expression>[,...]
	A label is not allowed with this directive.
	See also: LOMEM
	EXAMPLE:

	IDENT Object Code Identification Record
	[<label>] IDENT <expression1>,<expression2>
	See also: COBJ
	EXAMPLE:
	If the following line was included in the source f...

	IF Conditional Assembly Directive
	IF <expression> . . [ELSE] (the ELSE directive is ...
	A label is not allowed with this directive.
	See also: ENDIF
	EXAMPLE:

	INCLUDE Include Secondary File
	INCLUDE <string> | <<string>>
	A label is not allowed with this directive.
	See also: MACLIB
	EXAMPLE:

	LIST List the Assembly
	LIST
	A label is not allowed with this directive.
	See also: NOLIST, OPT
	EXAMPLE:

	LOCAL Local Section Symbol Declaration
	LOCAL <symbol>[,<symbol>,...,<symbol>]
	A label is not allowed with this directive.
	See also: SECTION, XDEF, XREF
	EXAMPLE:

	LOMEM Set Low Memory Bounds
	LOMEM <mem>[<rl>]:<expression>[,...]
	A label is not allowed with this directive.
	See also: HIMEM
	EXAMPLE:

	LSTCOL Set Listing Field Widths
	A label is not allowed with this directive.
	See also: PAGE
	EXAMPLE:

	MACLIB Macro Library
	MACLIB <pathname>
	A label is not allowed with this directive.
	See also: INCLUDE
	EXAMPLE:

	MACRO Macro Definition
	The dummy argument list has the form:
	EXAMPLE:

	MODE Change Relocation Mode
	MODE <ABS[OLUTE] | REL[ATIVE]>
	A label is not allowed with this directive.
	See also: ORG
	EXAMPLE:

	MSG Programmer Generated Message
	MSG [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp>...
	A label is not allowed with this directive.
	See also: FAIL, WARN
	EXAMPLE:

	NOLIST Stop Assembly Listing
	NOLIST
	A label is not allowed with this directive.
	See also: LIST, OPT
	EXAMPLE:

	OPT Assembler Options
	Options can be grouped by function into five diffe...
	Listing Format Control
	These options control the format of the listing fi...

	Reporting Options
	These options control what is reported in the list...

	Message Control
	These options control the types of Assembler messa...

	Symbol Options
	These options deal with the handling of symbols by...

	Assembler Operation
	Miscellaneous options having to do with internal A...
	A label is not allowed with this directive.
	EXAMPLE:

	ORG Initialize Memory Space and Location Counters
	<rms>
	<rlc>
	<rmp>
	<rce>
	<exp1>
	<lms>
	<llc>
	<lmp>
	<lce>
	<exp2>
	See also: MODE
	EXAMPLES:
	ORG P:$1000
	ORG PHE:
	ORG PI:OVL1,Y:
	ORG XL:,E8:
	ORG P(5):,Y:$8000

	PAGE Top of Page/Size Page
	PAGE [<exp1>[,<exp2>...,<exp5>]]
	The PAGE directive has two forms:
	A label is not allowed with this directive.
	The arguments in order are:
	PAGE_WIDTH <exp1>
	PAGE_LENGTH <exp2>
	BLANK_TOP <exp3>
	BLANK_BOTTOM <exp4>
	BLANK_LEFT <exp5>
	The following relationships must be maintained:
	BLANK_TOP + BLANK_BOTTOM <= PAGE_LENGTH - 10
	BLANK_LEFT < PAGE_WIDTH
	See also: LSTCOL
	EXAMPLE:

	PMACRO Purge Macro Definition
	PMACRO <symbol>[,<symbol>,...,<symbol>]
	A label is not allowed with this directive.
	See also: MACRO
	EXAMPLE:

	PRCTL Send Control String to Printer
	PRCTL <exp>I<string>,...,<exp>I<string>
	A label is not allowed with this directive.
	EXAMPLE:

	RADIX Change Input Radix for Constants
	RADIX <expression>
	A label is not allowed with this directive.
	EXAMPLE:

	RDIRECT Remove Directive or Mnemonic from Table
	RDIRECT <direc>[,<direc>,...,<direc>]
	A label is not allowed with this directive.
	EXAMPLE:

	SCSJMP Set Structured Control Statement Branching ...
	SCSJMP {SHORT | LONG | NONE}
	See also: FORCE, SCSREG
	A label is not allowed with this directive.
	EXAMPLE:

	SCSREG Reassign Structured Control Statement Regis...
	SCSREG [<srcreg>[,<dstreg>[,<tmpreg>[,<extreg>]]]]...
	The SCSREG directive reassigns the registers used ...
	The SCSREG directive should be used judiciously to...
	See also: OPT (MEX), SCSJMP
	A label is not allowed with this directive.
	EXAMPLE:

	SECTION Start Section
	SECTION <symbol> [GLOBAL | STATIC | LOCAL] . . <se...
	A label is not allowed with this directive.
	See also: MODE, ORG, GLOBAL, LOCAL, XDEF, XREF
	EXAMPLE:

	SET Set Symbol to a Value
	<label> SET <expression>
	SET <label> <expression>
	See also: EQU, GSET
	EXAMPLE:

	STITLE Initialize Program Sub-Title
	STITLE [<string>]
	A label is not allowed with this directive.
	See also: TITLE
	EXAMPLE:

	SYMOBJ Write Symbol Information to Object File
	SYMOBJ <symbol>[,<symbol>,...,<symbol>]
	A label is not allowed with this directive.
	EXAMPLE:

	TABS Set Listing Tab Stops
	TABS <tabstops>
	A label is not allowed with this directive.
	See also: LSTCOL
	EXAMPLE:

	TITLE Initialize Program Title
	TITLE [<string>]
	A label is not allowed with this directive.
	See also: STITLE
	EXAMPLE:

	UNDEF Undefine DEFINE Symbol
	UNDEF [<symbol>]
	A label is not allowed with this directive.
	See also: DEFINE
	EXAMPLE:

	WARN Programmer Generated Warning
	WARN [{<str>|<exp>}[,{<str>|<exp>},...,{<str>|<exp...
	A label is not allowed with this directive.
	See also: FAIL, MSG
	EXAMPLE:

	XDEF External Section Symbol Definition
	XDEF <symbol>[,<symbol>,...,<symbol>]
	A label is not allowed with this directive.
	See also: SECTION, XREF
	EXAMPLE:

	XREF External Section Symbol Reference
	XREF <symbol>[,<symbol>,...,<symbol>]
	A label is not allowed with this directive.
	See also: SECTION, XDEF
	EXAMPLE:

