Chapter 3
EXPRESSIONS

3.1 INTRODUCTION

An expression represents a value which is used as an operand in an Assembler instruc-
tion or directive. An expression is a combination of symbols, constants, operators, and
parentheses. Expressions may contain user-defined labels and their associated integer
or floating point values, and/or any combination of integers, floating point numbers, or
ASCI! literal strings. In general, white space (a blank or tab) is not allowed between the
terms and operators of an Assembler expression. Expressions otherwise follow the con-
ventional rules of algebra and boolean arithmetic.

3.2 ABSOLUTE AND RELATIVE EXPRESSIONS

An expression may be either relative or absolute . An absolute expression is one which
consists only of absolute terms, or is the result of two relative terms with opposing signs.
A relative expression consists of a relative term by itself or only in combination with abso-
lute terms.

When the Assembler is operating in relative mode all address expressions must adhere
to the above definitions for absolute or relative expressions. This is because only these
types of expressions will retain a meaningful value after program relocation. For example,
when relative terms are paired with opposing signs, the result is the difference between
the two relative terms, which is an absolute value. However, if two positive relative terms
are added together the result is unpredictable based on the computed values of the terms
at relocation time.

3.3 EXPRESSION MEMORY SPACE ATTRIBUTE

A symbol is associated with either an integer or a floating point value which is used in
place of the symbol during the expression evaluation. Each symbol also carries a memory
space attribute of either X, Y, L, Program, EMI, or None. Constants and floating point ex-
pressions always have a memory space attribute of None. The result of an expression will
always have a memory space attribute associated with it. The unary logical negate oper-
ator, relational operators, and some functions return values that have a memory space at-
tribute of N. The result of an expression that has only one operand (and possibly the unary
negate or unary minus operator) always has the memory attribute of that operand. Ex-

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-1

Expressions
Expression Memory Space Attribute

pressions that involve two or more operands and operators other than those mentioned
above derive the memory space attribute of the result by examining the operands on the
left and right side of an operator as shown in the following chart:

Left Operand Memory Space Attribute

X Y L P EN
Right Operand X X * X * *X
Memory Space
Attribute Y * Y Y * *Y
L X Y L * *L
P * * * P *P
E * * * * EE
N X Y L P EN

* = Represents an illegal operation that will result in an error.

Notice that L memory space is regarded as a union of both X and Y space. In expressions
that have one element that has a memory space attribute of L and another element with
a memory space attribute of either X or Y, the result will have the more restrictive memory
space attribute (X or Y).

The memory space attribute is regarded by the Assembler as a type, in the same sense
that high level languages use type for variables. Symbols that are assigned memory
space attributes of X, Y, L, P, or E are assumed to be addresses and therefore can only
have values between zero and the maximum address of the target processor. Only sym-
bols that have a memory space attribute of N can have values greater than the maximum
address of the target machine.

Memory space attributes become important when an expression is used as an address.
Errors will occur when the memory space attribute of the expression result does not match
the explicit or implicit memory space specified in the source code. Memory spaces are
explicit when the address has any of the following forms:

X:<address expression>
Y:<address expression>
L:<address expression>
P:<address expression>
E:<address expression>

The memory space is implicitly P when an address is used as the operand of a DO,
branch, or jump-type instruction.

3-2 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Expressions
Internal Expression Representation

Expressions used for immediate addressing can have any memory space attribute.

3.4 INTERNAL EXPRESSION REPRESENTATION

Expression value representation internal to the Assembler is dependent on the word size
of the target processor. The Assembler supports a word and a double word integer format
internally. The actual storage size of an expression value is dependent upon the magni-
tude of the result, but the Assembler is capable of representing signed integers up to 64
bits in length. These longer integer representations are useful when performing data ini-
tialization in L memory space.

Internal floating point representation is almost entirely dependent upon the host environ-
ment, but in general floating point values are stored in double precision format. This
means that there are ordinarily 64 bits of storage allotted for a floating point number by
the Assembler, with 11 bits of exponent, 53 bits of mantissa, and an implied binary point.

3.5 CONSTANTS

Constants represent quantities of data that do not vary in value during the execution of a
program.

3.5.1 Numeric Constants

Numeric constants can be in one of three bases:

Binary Binary constants consist of a percent sign (%) followed by a string
of binary digits (0,1).

Example: %11010

Hexadecimal = Hexadecimal constants consist of a dollar sign ($) followed by a
string of hexadecimal digits (0-9, A-F, a-f).

Example: $12FF, $12ff

Decimal Decimal constants can be either floating point or integer. Integer
decimal constants consist of a string of decimal (0-9) digits op-
tionally preceded by a grave accent (7). Floating point constants
are indicated either by a preceding, following, or included decimal
point or by the presence of an upper or lower case ‘E’ followed by
the exponent.

Example:

12345 (integer)
6E10 (floating point)

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-3

Expressions
Operators

.6 (floating point)
2.7e2 (floating point)

A constant may be written without a leading radix indicator if the input radix is changed
using the RADIX directive. For example, a hexadecimal constant may be written without
the leading dollar sign ($) if the input radix is set to16 (assuming an initial radix of 10). The
default radix is10. See Chapter 6 on the RADIX directive for more information.

3.5.2 String Constants

String constants that are used in expressions are converted to a concatenated sequence
of ASCII bytes (right aligned), as shown below. Strings used in expressions are limited to
the long word size of the target processor; subsequent characters in the string are ig-
nored. Null strings (strings that have no characters) have a value of 0.

String constants greater than the maximum number of characters can be used in expres-
sions, but the Assembler will truncate the value and will use only those characters that will
fitin a DSP long word. In this case, a warning will be printed. This restriction also applies
to string constants using the string concatenation operator. Handling of string constants
by the DC and DCB directives is an exception to this rule; see Chapter 6 for a description.

Examples:
'ABCD' ($41424344)
"79' ($00273739)
‘Al ($00000041)
" ($00000000) - null string
‘abcdef' ($61626364)
‘abc'++'de’ ($61626364)

3.6 OPERATORS

Some of the Assembler operators can be used with both floating point and integer values.
If one of the operands of the operator has a floating point value and the other has an in-
teger value, the integer will be converted to a floating point value before the operator is
applied and the result will be floating point. If both operands of the operator are integers,
the result will be an integer value. Similarly, if both the operands are floating point, the
result will be a floating point value.

3.6.1 Unary operators

plus (+)
minus)
one’s complement (~) - Integer only
logical negate)]

3-4 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Expressions
Operators

The unary plus operator returns the value of its operand.
The unary minus operator returns the negative of its operand.

The one’s complement operator returns the one’s complement of its operand. It cannot
be used with a floating point operand.

The unary logical negation operator returns an integer 1 (memory space attribute None)
if the value of its operand is 0 and will return a O otherwise. For example, if the symbol
BUF had a value of 0, then |BUF would have a value of 1. If BUF had a value of 1000,
IBUF would have a value of O.

3.6.2 Arithmetic operators

addition (+)
subtraction)
multiplication ™*)
division ()]
mod (%)

The addition operator yields the sum of its operands.
The subtraction operator yields the difference of its operands.
The multiplication operator yields the product of its operands.

The divide operator yields the quotient of the division of the first operand by the second.
For integer operands the divide operation will produce a truncated integer result.

The mod operator applied to integers will yield the remainder from the division of the first
operand by the second. If the mod operator is used with floating point operands, the mod
operator will apply the following rules:

Y%Z=Y ifZ=0
=X ifZ<>0

where X has the same sign as YV, is less than Z, and satisfies the relationship:
Y=i*Z+X

where i is an integer.

3.6.3 Shift operators

shift left (<<) - Integer only
shift right (>>) - Integer only

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-5

Expressions
Operators

The shift left operator causes the left operand to be shifted to the left (and zero-filled) by
the number of bits specified by the right operand.

The shift right operator causes the left operand to be shifted to the right by the number of
bits specified by the right operand. The sign bit will be extended.

Shift operators cannot be applied to floating point operands.

3.6.4 Relational operators

less than <)
less than or equal (<=)
greater than >)
greater than or equal (>=)
equal (==)
not equal (=)

Relational operators all work the same way. If the indicated condition is true, the result of
the expression is an integer 1. Ifitis false, the result of the expression is an integer 0. In
either case, the memory space attribute of the result is None.

For example, if D has a value of 3 and E has a value of 5, then the result of the expression
D<E is 1, and the result of the expression D>E is 0. Each operand of the conditional op-
erators can be either floating point or integer. Test for equality involving floating point val-
ues should be used with caution, since rounding error could cause unexpected results.
Relational operators are primarily intended for use with the conditional assembly IF direc-
tive, but can be used in any expression.

3.6.5 Bitwise operators

AND (&) - Integer only
OR () - Integer only
exclusive OR () - Integer only

The bitwise AND operator yields the bitwise AND function of its operands.
The bitwise OR operator yields the bitwise OR function of its operands.

The bitwise exclusive OR operator yields the bitwise exclusive OR function of its oper-
ands.

Bitwise operators cannot be applied to floating point operands.

3-6 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Expressions
Operator Precedence

3.6.6 Logical operators

Logical AND (&&)
Logical OR an

The logical AND operator returns an integer 1 if both of its operands are nonzero; other-
wise, it returns an integer 0.

The logical OR operator returns an integer 1 if either of its operands is nonzero; otherwise
it returns an integer 0.

The types of the operands may be either integer or floating point; the memory space at-
tribute of the result is None. Logical operators are primarily intended for use with the con-
ditional assembly IF directive, but can be used in any expression.

3.7 OPERATOR PRECEDENCE

Expressions are evaluated with the following operator precedence:

=

parenthetical expression (innermost first)

unary plus, unary minus, one’s complement, logical negation
multiplication, division, mod

addition, subtraction

shift

relational operators: less, less or equal, greater, greater or equal
relational operators: equal, not equal

bitwise AND, OR, EOR

logical AND, OR

© NGO~ WDN

Operators of the same precedence are evaluated left to right. Valid operands include nu-
meric constants, literal ASCII strings, and symbols. The one’s complement, shift, and bit-
wise operators cannot be applied to floating point operands. That is, if the evaluation of
an expression (after operator precedence has been applied) results in a floating point
number on either side of any of these operators, an error will be generated.

3.8 FUNCTIONS

The Assembler has several built-in functions to support data conversion, string compari-
son, and transcendental math computations. Functions may be used as terms in any ar-
bitrary expression. Functions may have zero or more arguments, but must always be
followed by open and closed parentheses. Function arguments which are expressions
must be absolute expressions except where noted. Arguments containing external refer-
ences are not allowed. There must be no intervening spaces between the function name

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-7

Expressions
Functions

and the opening parenthesis, and there must be no spaces between comma-separated
arguments.

Assembler functions can be grouped into five types:

1. Mathematical functions
Conversion functions
String functions

Macro functions
Assembler mode functions

abrwn

3.81 Mathematical Functions

The mathematical functions comprise transcendental, random value, and min/max func-
tions, among others:

ABS - Absolute value
ACS - Arc cosine

ASN - Arc sine

AT2 - Arc tangent

ATN - Arc tangent

CEL - Celling function
COH - Hyperbolic cosine
COS - Cosine

FLR - Floor function
L10 - Log base 10

LOG - Natural logarithm
MAX - Maximum value
MIN - Minimum value
POW - Raise to a power
RND - Random value
SGN - Return sign

SIN - Sine

SNH - Hyperbolic sine
SQT - Square root

TAN - Tangent

TNH - Hyperbolic tangent
XPN - Exponential function

3-8 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Expressions
Functions

3.8.2 Conversion Functions

The conversion functions provide conversion between integer, floating point, and fixed
point fractional values:

CVF - Convert integer to floating point

CVI - Convert floating point to integer

CVS - Convert memory space

FLD - Shift and mask operation

FRC - Convert floating point to fractional

LFR - Convert floating point to long fractional
LNG - Concatenate to double word

LUN - Convert long fractional to floating point
RVB - Reverse bits in field

UNF - Convert fractional to floating point

3.8.3 String Functions

String functions compare strings, return the length of a string, and return the position of a
substring within a string:

LEN - Length of string
POS - Position of substring in string
SCP - Compare strings

3.8.4 Macro Functions

Macro functions return information about macros:

ARG - Macro argument function
CNT - Macro argument count
MAC - Macro definition function
MXP - Macro expansion function

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-9

Expressions
Functions

3.8.5 Assembler Mode Functions

Miscellaneous functions having to do with Assembler operation:

CCC - Cumulative cycle count

CHK - Current instruction/data checksum
CTR - Location counter type

DEF - Symbol definition function

EXP - Expression check

INT - Integer check

LCV - Location counter value

LST - LIST directive flag value

MSP - Memory space

REL - Relative mode function

Individual descriptions of each of the Assembler functions follow. They include usage
guidelines, functional descriptions, and examples.

@ABS(<expression>)

Returns the absolute value of <expression> as a floating point value. The memory
space attribute of the result will be None.

Example:

MOVE #@ABS(VAL),D4.S ; load absolute value

@ACS(<expression>)

Returns the arc cosine of <expression> as a floating point value in the range zero
to pi. The result of <expression> must be between -1 and 1. The memory space
attribute of the result will be None.

Example:

ACOS = @ACS(-1.0) ; ACOS = 3.141593

@ARG(<symbol> | <expression>)

Returns integer 1 if the macro argument represented by <symbol> or <expression>
is present, 0 otherwise. If the argument is a symbol it must be single-quoted and
refer to a dummy argument name. If the argument is an expression it refers to the
ordinal position of the argument in the macro dummy argument list. A warning will
be issued if this function is used when no macro expansion is active. The memory
space attribute of the result will be None.

Example:

IF @ARG(TWIDDLE) ; twiddle factor provided?

3-10 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Expressions
Functions

@ASN(<expression>)

Returns the arc sine of <expression> as a floating point value in the range -pi/2 to
pi/2. The result of <expression> must be between -1 and 1. The memory space
attribute of the result will be None.

Example:
ARCSINE SET @ASN(-1.0) ; ARCSINE = -1.570796
@AT2(<exprl,expr2>)

Returns the arc tangent of <exprl>/<expr2> as a floating point value in the range
-pi to pi. Exprl and expr2 must be separated by a comma. The memory space
attribute of the result will be None.

Example:
ATAN EQU @AT2(-1.0,1.0) ; ATAN = -0.7853982
@ATN(<expression>)

Returns the arc tangent of <expression> as a floating point value in the range -pi/
2 to pi/2. The memory space attribute of the result will be None.

Example:

MOVE #@ATN(1.0),D0.S ; load arc tangent

@CCC()

Returns the cumulative cycle count as an integer. Useful in conjunction with the
CC, NOCC, and CONTCC Assembler options (see the OPT directive). The mem-
ory space attribute of the result will be None.

Example:
IF @CCC() > 200 ; cycle count > 2007
@CEL(<expression>)

Returns a floating point value which represents the smallest integer greater than or
equal to <expression>. The memory space attribute of the result will be None.

Example:

CEIL SET @CEL(-1.05) ; CEIL = -1.0

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-11

Expressions
Functions

@CHK()

Returns the current instruction/data checksum value as an integer. Useful in con-
junction with the CK, NOCK, and CONTCK Assembler options (see the OPT direc-
tive). Note that assignment of the checksum value with directives other than SET
could cause phasing errors due to different generated instruction values between
passes. The memory space attribute of the result will be None.

Example:

CHKSUM SET @CHK() ; reserve checksum value

@CNT()

Returns the count of the current macro expansion arguments as an integer. A
warning will be issued if this function is used when no macro expansion is active.
The memory space attribute of the result will be None.

Example:
ARGCNT SET @CNT() ; squirrel away arg count
@COH(<expression>)

Returns the hyperbolic cosine of <expression> as a floating point value. The mem-
ory space attribute of the result will be None.

Example:
HYCOS EQU @COH(VAL) ; compute hyperbolic cosine
@COS(<expression>)

Returns the cosine of <expression> as a floating point value. The memory space
attribute of the result will be None.

Example:
DC -@COS(@CVF(COUNT)*FREQ) ; compute cosine value
@CTR({L | R})

If L is specified as the argument, returns the counter number of the load location
counter. If R is specified, returns the counter number of the runtime location
counter. The counter number is returned as an integer value with memory space
of None.

Example:

CNUM = @CTR(R) ; runtime counter number

3-12 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Expressions
Functions

@CVF(<expression>)

Converts the result of <expression> to a floating point value. The memory space
attribute of the result will be None.

Example:
FLOAT SET @CVF(5) ; FLOAT = 5.0
@CVI(<expression>)

Converts the result of <expression> to an integer value. This function should be
used with caution since the conversions can be inexact (e.g., floating point values
are truncated). The memory space attribute of the result will be None.

Example:
INT SET @CVI(-1.05) ;INT = -1
@CVS({X|Y|L|P|E]|N}<expression>)

Converts the memory space attribute of <expression> to that specified by the first
argument; returns <expression>. See section 3.3 for more information on memory
space attributes. The <expression> may be relative or absolute.

Example:

LOADDR EQU @CVS(X,TARGET) ; set LOADDR to X:TARGET

@DEF(<symbol>)

Returns an integer 1 (memory space attribute N) if <symbol> has been defined, 0
otherwise. <symbol> may be any label not associated with a MACRO or SECTION
directive. If <symbol>is quoted it is looked up as a DEFINE symbol; if it is not quot-
ed it is looked up as an ordinary label.

Example:
IF @DEF(ANGLE) ; assemble if ANGLE defined
@EXP(<expression>)

Returns an integer 1 (memory space attribute N) if the evaluation of <expression>
would not result in errors. Returns O if the evaluation of <expression> would cause
an error. No error will be output by the Assembler if <expression> contains an er-
ror. No test is made by the Assembler for warnings. The <expression> may be
relative or absolute.

Example:

IF I@QEXP(@FRC(VAL)) ; skip on error

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-13

Expressions
Functions

@FLD(<base>,<value>,<width>[,<start>])

Shift and mask <value> into <base> for <width> bits beginning at bit <start>. If
<start> is omitted, zero (least significant bit) is assumed. All arguments must be
positive integers and none may be greater than the target word size. Returns the
shifted and masked value with a memory space attribute of None.

Example:
SWITCH EQU @FLD(TOG,1,1,7) ; turn eighth bit on
@FLR(<expression>)

Returns a floating point value which represents the largest integer less than or
equal to <expression>. The memory space attribute of the result will be None.

Example:
FLOOR SET @FLR(2.5) ; FLOOR = 2.0
@FRC(<expression>)

For binary fractional DSPs (DSP56000) this functions performs scaling and con-
vergent rounding to obtain the fractional representation of the floating point <ex-
pression> as an integer. For floating point DSPs (DSP96000) this function simply
returns the binary representation of <expression> as an integer. The memory
space attribute of the result will be None.

Example:

FRAC EQU @FRC(FLT)+1 ; compute saturation

@INT(<expression>)

Returns an integer 1 (memory space attribute N) if <expression> has an integer re-
sult, O otherwise. The <expression> may be relative or absolute.

Example:
IF @INT(TERM) ; Insure integer value
@L10(<expression>)

Returns the base 10 logarithm of <expression> as a floating point value. <expres-
sion> must be greater than zero. The memory space attribute of the result will be
None.

Example:

LOG EQU @L10(100.0) . LOG = 2

3-14 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Expressions
Functions

@LCV({L | R}.{L | H | <expression>}])

If L is specified as the first argument, returns the memory space attribute and value
of the load location counter. If R is specified, returns the memory space attribute
and value of the runtime location counter. The optional second argument indicates
the Low, High, or numbered counter and must be separated from the first argument
by a comma. If no second argument is present the default counter (counter 0) is
assumed.

The @LCV function will not work correctly if used to specify the runtime counter
value of a relocatable overlay. This is because the resulting value is an overlay ex-
pression, and overlay expressions may not be used to set the runtime counter for
a subsequent overlay. See the ORG directive (Chapter 6) for more information.

Also, @LCV(L,...) will not work inside a relocatable overlay. In order to obtain the
load counter value for an overlay block, origin to the load space and counter imme-
diately before the overlay and use @LCV/(L) to get the beginning load counter val-
ue for the overlay.

Example:
ADDR = @LCV(R) ; save runtime address
@LEN(<string>)

Returns the length of <string> as an integer. The memory space attribute of the
result will be None.

Example:
SLEN SET @LEN('string’) ; SLEN = 6
@LFR(<expression>)

For binary fractional DSPs (DSP56000) this functions performs scaling and con-
vergent rounding to obtain the fractional representation of the floating point <ex-
pression> as a long integer. For floating point DSPs (DSP96000) this function
simply returns the binary representation of <expression> as a long integer. The
memory space attribute of the result will be None.

Example:

LFRAC EQU @LFR(LFLT) ; store binary form

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-15

Expressions
Functions

@LNG(<exprl><expr2>)

Concatenates the single word <exprl> and <expr2> into a double word value such
that <exprl> is the high word and <expr2> is the low word. The memory space
attribute of the result will be None.

Example:
LWORD DC @LNG(HI,.LO) ; build long word
@LOG(<expression>)

Returns the natural logarithm of <expression> as a floating point value. <expres-
sion> must be greater than zero. The memory space attribute of the result will be
None.

Example:
LOG EQU @LOG(100.0) ; LOG = 4.605170
@LST()

Returns the value of the LIST directive flag as an integer, with a memory space at-
tribute of None. Whenever a LIST directive is encountered in the Assembler
source, the flag is incremented; when a NOLIST directive is encountered, the flag
is decremented.

Example:
DUP @CVI(@ABS(@LST())) ; list unconditionally
@LUN(<expression>)

Converts the double-word <expression> to a floating point value. For fractional
DSPs (DSP56000) <expression> should represent a binary fraction. For floating
point DSPs (DSP96000) <expression> should represent a binary floating point
number. The memory space attribute of the result will be None.

Example:
DBLFRC EQU @LUN($3FE0O000000000000) ;DBLFRC = 0.5
@MAC(<symbol>)

Returns an integer 1 (memory space attribute N) if <symbol> has been defined as
a macro name, 0 otherwise.

Example:

IF @MAC(DOMUL) ; expand macro

3-16 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Expressions
Functions

@MAX(<expr1>[,...,<exprN>])

Returns the greatest of <exprl>,...,<exprN> as a floating point value. The memory
space attribute of the result will be None.

Example:
MAX DC @MAX(1.0,5.5,-3.25) ; MAX = 55
@MIN(<exprl>[,...,<exprN>])

Returns the least of <exprl>,...,<exprN> as a floating point value. The memory
space attribute of the result will be None.

Example:
MIN DC @MIN(1.0,5.5,-3.25) ; MIN = -3.25
@MSP (<expression>)
Returns the memory space attribute of <expression> as an integer value:

None =0
X space =
Y space =
L space =
P space =
E space =

The <expression> may be relative or absolute.
Example:
MEM SET @MSP(ORIGIN) ; save memory space
@MXP()

Returns an integer 1 (memory space attribute N) if the Assembler is expanding a
macro, 0 otherwise.

Example:
IF @MXP() ; macro expansion active?
@POS(<strl>,<str2>[,<start>])

Returns the position of string <str2> in <strl> as an integer, starting at position
<start>. If <start>is not given the search begins at the beginning of <str1>. If the

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-17

Expressions
Functions

<start> argument is specified it must be a positive integer and cannot exceed the
length of the source string. The memory space attribute of the result will be None.

Example:
ID EQU @POS(DSP96000','96") ;ID =3
@POW(<exprl>,<expr2>)

Returns <exprl> raised to the power <expr2> as a floating point value. <exprl>
and <expr2> must be separated by a comma. The memory space attribute of the
result will be None.

Example:
BUF EQU @CVI(@POW(2.0,3.0)) ; BUF = 8
@REL()

Returns an integer 1 (memory space attribute N) if the Assembler is operating in
relative mode, O otherwise.

Example:

IF @REL() : in relative mode?

@RND()

Returns a random value in the range 0.0 to 1.0. The memory space attribute of the
result will be None.

Example:
SEED DC @RND() ; save initial seed value
@RVB(<exprl>[,<expr2>])

Reverse the bits in <exprl> delimited by the number of bits in <expr2>. If <expr2>
is omitted the field is bounded by the target word size. Both expressions must be
single word integer values.

Example:

REV EQU @RVB(VAL) ; reverse all bits in value

3-18 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

Expressions
Functions

@SCP(<strl><str2>)

Returns an integer 1 (memory space attribute N) if the two strings compare, 0 oth-
erwise. The two strings must be separated by a comma.

Example:
IF @SCP(STR,'MAIN') ; does STR equal MAIN?
@SGN(<expression>)

Returns the sign of <expression> as an integer: -1 if the argument is negative, O if
zero, 1 if positive. The memory space attribute of the result will be None. The <ex-
pression> may be relative or absolute.

Example:
IF @SGN(INPUT) ; IS sign positive?
@SIN(<expression>)

Returns the sine of <expression> as a floating point value. The memory space at-
tribute of the result will be None.

Example:
DC @SIN(@CVF(COUNT)*FREQ) ; compute sine value
@SNH(<expression>)

Returns the hyperbolic sine of <expression> as a floating point value. The memory
space attribute of the result will be None.

Example:
HSINE EQU @SNH(VAL) ; hyperbolic sine
@SQT(<expression>)

Returns the square root of <expression> as a floating point value. <expression>
must be positive. The memory space attribute of the result will be None.

Example:

SQRT EQU @SQT(3.5) - SQRT = 1.870829

MOTOROLA DSP ASSEMBLER REFERENCE MANUAL 3-19

Expressions
Functions

@TAN(<expression>)

Returns the tangent of <expression> as a floating point value. The memory space
attribute of the result will be None.

Example:
MOVE #@TAN(1.0),D1.S ; load tangent
@TNH(<expression>)

Returns the hyperbolic tangent of <expression> as a floating point value. The
memory space attribute of the result will be None.

Example:
HTAN = @TNH(VAL) ; hyperbolic tangent
@UNF(<expression>)

Converts <expression> to a floating point value. For fractional DSPs (DSP56000)
<expression> should represent a binary fraction. For floating point DSPs
(DSP96000) <expression> should represent a binary floating point number. The
memory space attribute of the result will be None.

Example:
FRC EQU @UNF($400000) ;FRC = 0.5
@XPN(<expression>)

Returns the exponential function (base e raised to the power of <expression>) as
a floating point value. The memory space attribute of the result will be None.

Example:

EXP EQU @XPN(1.0) EXP = 2.718282

3-20 DSP ASSEMBLER REFERENCE MANUAL MOTOROLA

	Chapter 3
	Expressions
	3.1 Introduction
	3.2 Absolute And Relative Expressions
	3.3 Expression Memory Space Attribute
	3.4 Internal Expression Representation
	3.5 Constants
	3.5.1 Numeric Constants
	Numeric constants can be in one of three bases:
	Example: %11010
	Example: $12FF, $12ff
	Example:

	3.5.2 String Constants

	3.6 Operators
	3.6.1 Unary operators
	3.6.2 Arithmetic operators
	3.6.3 Shift operators
	3.6.4 Relational operators
	3.6.5 Bitwise operators
	3.6.6 Logical operators

	3.7 Operator Precedence
	3.8 Functions
	Assembler functions can be grouped into five types...
	3.8.1 Mathematical Functions
	The mathematical functions comprise transcendental...

	3.8.2 Conversion Functions
	The conversion functions provide conversion betwee...

	3.8.3 String Functions
	String functions compare strings, return the lengt...

	3.8.4 Macro Functions
	Macro functions return information about macros:

	3.8.5 Assembler Mode Functions
	Miscellaneous functions having to do with Assemble...
	@ABS(<expression>)
	Example:

	@ACS(<expression>)
	Example:

	@ARG(<symbol> | <expression>)
	Example:

	@ASN(<expression>)
	Example:

	@AT2(<expr1,expr2>)
	Example:

	@ATN(<expression>)
	Example:

	@CCC()
	Example:
	@CEL(<expression>)
	Example:

	@CHK()
	Example:

	@CNT()
	Example:

	@COH(<expression>)
	Example:

	@COS(<expression>)
	Example:

	@CTR({L | R})
	Example:

	@CVF(<expression>)
	Example:

	@CVI(<expression>)
	Example:

	@CVS({X | Y | L | P | E | N},<expression>)
	Example:

	@DEF(<symbol>)
	Example:

	@EXP(<expression>)
	Example:

	@FLD(<base>,<value>,<width>[,<start>])
	Example:

	@FLR(<expression>)
	Example:

	@FRC(<expression>)
	Example:

	@INT(<expression>)
	Example:

	@L10(<expression>)
	Example:

	@LCV({L | R}[,{L | H | <expression>}])
	Example:

	@LEN(<string>)
	Example:

	@LFR(<expression>)
	Example:

	@LNG(<expr1>,<expr2>)
	Example:

	@LOG(<expression>)
	Example:

	@LST()
	Example:
	@LUN(<expression>)
	Example:

	@MAC(<symbol>)
	Example:

	@MAX(<expr1>[,...,<exprN>])
	Example:

	@MIN(<expr1>[,...,<exprN>])
	Example:

	@MSP(<expression>)
	Example:

	@MXP()
	Example:
	@POS(<str1>,<str2>[,<start>])
	Example:

	@POW(<expr1>,<expr2>)
	Example:

	@REL()
	Example:

	@RND()
	Example:

	@RVB(<expr1>[,<expr2>])
	Example:
	@SCP(<str1>,<str2>)
	Example:

	@SGN(<expression>)
	Example:

	@SIN(<expression>)
	Example:

	@SNH(<expression>)
	Example:

	@SQT(<expression>)
	Example:

	@TAN(<expression>)
	Example:

	@TNH(<expression>)
	Example:

	@UNF(<expression>)
	Example:

	@XPN(<expression>)
	Example:

